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Abstract—WindSat is a space-based polarimetric microwave ra-
diometer designed to demonstrate the capability to measure the
ocean surface wind vector using a radiometer. We describe a non-
linear iterative algorithm for simultaneous retrieval of sea surface
temperature, columnar water vapor, columnar cloud liquid water,
and the ocean surface wind vector from WindSat measurements.
The algorithm uses a physically based forward model function for
the WindSat brightness temperatures. Empirical corrections to the
physically based model are discussed. We present evaluations of
initial retrieval performance using a six-month dataset of WindSat
measurements and collocated data from other satellites and a nu-
merical weather model. We focus primarily on the application to
wind vector retrievals.

Index Terms—Microwave radiometer, ocean surface winds,
polarimetric, retrieval, WindSat.

I. INTRODUCTION

THE first space-based fully polarimetric microwave ra-
diometer, WindSat [1], was launched in January 2003.

WindSat’s primary mission is to provide measurements for the
evaluation of polarimetric microwave radiometry in retrieving
the ocean surface wind vector. WindSat also provides measure-
ments for retrieving sea surface temperature , columnar
atmospheric water vapor , and columnar atmospheric cloud
liquid water .

The polarization properties of an electromagnetic wave
can be fully characterized by measuring the modified Stokes
vector. The modified Stokes vector includes the vertical and
horizontal polarizations and the third and fourth Stokes param-
eters .1 Modeling and aircraft measurements
have shown that and are even periodic functions of

, and and are odd periodic functions of [2]–[4]
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1The symbols U and V are often used to denote the third and fourth Stokes
parameters. We use T and T here to avoid confusion with other notation used
in this paper.

where , the relative wind direction, is defined as the compass
wind direction minus the radiometer look direction. Therefore,
dual-polarization radiometers, which measure only and ,
do not provide enough information to unambiguously retrieve
wind direction. However, a fully polarimetric radiometer such
as WindSat, which also measures and , provides sufficient
information to, at least in principle, retrieve the ocean surface
wind vector.

Dual-polarization observations from radiometers such as
the Special Sensor Microwave/Imager (SSM/I) [5] and the
Advanced Microwave Scanning Radiometer–EOS (AMSR-E)
[6] have been used to retrieve ocean surface wind speed2

and with both statistical and physically based
methods. Most statistical regression algorithms empirically
derive regression coefficients for the retrieved parameters
using collocated in situ measurements or retrievals from other
satellites (see e.g., [7]–[9]). Wentz and Meissner [10] used a
multiple linear regression algorithm where the coefficients are
determined using brightness temperatures s simulated with
a physically based model function. Wentz [11] used physically
based model functions for the SSM/I s, to obtain a set of four
equations in four unknowns which are solved using an iterative
procedure. Wentz and Meissner [10] also outlined a nonlinear
iterative retrieval algorithm, but they do not discuss retrieval
results obtained with the algorithm.

Algorithms for retrieving wind direction from a polarimetric
microwave radiometer have previously been investigated using
aircraft measurements and simulated data. Studies using aircraft
measurements are limited in scope because only a relatively
small amount of data is available. Piepmeier and Gasiewski [4]
used aircraft data to retrieve wind direction using measurements
of and at 10.7 and 37 GHz and and at 18.7 GHz.
Their algorithm used maximum–likelihood estimation (MLE)
for separate retrievals of wind direction and wind speed and it-
erated between the two retrievals to arrive at a final wind vector
solution. Liu and Weng [12] used simulated polarimetric data
to demonstrate wind vector retrievals using a physical inversion
method. Their retrieval algorithm used the polarimetric mea-
surements for only one frequency.

WindSat provides the first opportunity to evaluate the
wind vector retrievals from polarimetric radiometer data on a
global scale. We previously described an empirically derived
combined statistical and MLE algorithm for retrieving ocean
surface wind vectors from WindSat measurements [13]. Here

2Throughout this paper wind speed refers to the equivalent neutral-stability
wind speed at a 10-m reference height.
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TABLE I
NOMINAL NEDT VALUES FOR RAIN-FREE OCEAN

RETRIEVAL CELLS (IN KELVIN)

we present a nonlinear optimization algorithm which simulta-
neously retrieves and from WindSat s. The
algorithm is designed to produce four solutions (ambiguities)
for each set of WindSat s using a physically based forward
model.

We begin by describing in Section II the WindSat dataset used
in our study. In Section III we describe our retrieval algorithm.
Section IV describes the first generation geophysical forward
model function used in our retrieval algorithm. We then present
retrieval performance results and a discussion of the results in
the final two sections.

II. WINDSAT DATA DESCRIPTION

A description of the WindSat sensor and data processing
system is provided in [1]. The data processing system produces
sensor data records (SDRs) which contain s, geolocation in-
formation and data quality information for 16 separate channels
at five different frequencies. s for the full modified Stokes
vector are provided at 10.7, 18.7, and 37 GHz. Dual-polariza-
tion measurements, vertical and horizontal, are provided at 6.8
and 23.8 GHz. The antenna temperature measurements, which
have a different beamwidth and relative pointing angle for each
frequency, are resampled and averaged to provide collocated

s for the SDRs at a common resolution. The SDRs used for
this paper have an effective field of view (EFOV) or footprint
of approximately 40 km 60 km. The nominal effective noise
equivalent differential tempertures (NEDT) for ocean scenes
after resampling and beam averaging were given in [13] and
are repeated here in Table I.

WindSat was designed with both one-look and two-look ca-
pability with measurements taken in both the forward and aft
viewing directions. The width of the forward swath is about
950 km and the width of the aft swath is about 350 km where
the swath width is defined to be the arc length on the Earth’s
surface where there are common measurements available for all
WindSat frequencies (except 6.8 GHz due to the 6.8-GHz horn
position on the edge of the swath). There are 80 pixels in the for-
ward scan with an approximate spacing of 12.5 km along scan
and along track. Retrievals are performed for all 80 pixels in the
forward scan. The common swath with 6.8-GHz measurements
contains 63 pixels but due to rolloffs at the edge of the swath
in the s at 6.8 GHz we only use the 6.8-GHz measurements
from 55 pixels in the retrievals. Due to the narrowness of the
aft swath our initial forward modeling and retrieval efforts have
focussed on the forward swath. The discussion in the remainder
of this paper applies only to the SDRs and retrievals from the
forward swath.

The SDRs used for the retrieval studies described in this paper
were produced with version 1.8.1 of the WindSat ground data
processing system. We use six months (September 1, 2003 to

February 28, 2004) of WindSat SDRs using every third day for
retrieval analysis with the remainder reserved as training data to
develop empirical corrections to the geophysical forward model
(as explained in Section IV). Data are excluded if the s are
outside of physical bounds for ocean scenes or the Earth inci-
dence angles are more than 0.5 from their nominal values. Data
are also excluded for rain, ice, radio-frequency interference at
10.7 GHz [14], land contamination, inland lakes, for satellite
attitude anomalies and if less than 60% of the measurements
nominally used for beam averaging are available. Rain is as-
sumed to be present if the retrieved cloud liquid water is greater
than 0.2 mm. A more conservative rain flag, which is based on
a flag developed for SSM/I [15], was used for the training set.
Rain was considered to be present if any of the following con-
ditions were satisfied:

III. RETRIEVAL ALGORITHM

A. Optimal Estimation

Our retrieval algorithm uses an optimal estimator [16] which
is a Gauss–Newton iterative method with a priori constraints.
The method is equivalent to minimization of the cost function

(1)

where the superscript indicates the matrix transpose and is
the state vector of quantities to be retrieved. The state vector
is comprised of and or a subset thereof. The
a priori constraints are given by the a priori state vector, , and
the a priori error covariance matrix, . The is a measure
of the goodness of fit of the forward model, evaluated using
the retrieved state vector, to the measurements [16], [17]. An
estimate of the is obtained from

(2)

where the subscript denotes the th iteration. In this equation,
is the measurement vector, with error covariance matrix .

The measurement vector is the set of WindSat s used for the
retrieval. The state and measurement spaces are related through
the forward model, . The forward model is described
in Section IV.

The iteration used can be written

(3)

The error covariance of the solution is approximated by

(4)

where is the final iteration.
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The matrix , called the weighting function or kernel, is
the derivative of the forward model with respect to the state
parameters

(5)

The kernel is calculated numerically at each stage of the itera-
tion using a centered finite difference scheme.

The convergence criteria we use compares the change in the
state vector at each iteration to an estimate of the retrieval error
covariance [16]

(6)

where is the dimension of the state vector.
This retrieval method requires an accurate forward model as

a function of the retrieval parameters, a priori estimates for the
retrieval parameters, an error covariance matrix for the a priori
and an estimate of the measurement error covariances. At this
time, we are using all of the WindSat s for our retrievals ex-
cept at 6.8 GHz and at 37 GHz. at 6.8 GHz has been
excluded for this version due to a wind speed bias problem but
we expect to include it in the future following improvements to
our forward model. at 37 GHz has been excluded because
the signal is too small ( K) to improve the retrievals.

We use constant a priori for . The a priori for
and are chosen to be near the center of their respective

ranges: K and mm. The distributions for
and are highly skewed so the a priori constants are chosen
near the median for each distribution: m/s and

mm. The a priori error covariance matrix, , is chosen to
be diagonal with values that allow the retrievals to cover the full
range of the retrieved parameters. The square root of the a priori
error covariance values are 12 K, 6 m/s, 50 mm, and 1 mm for

and , respectively. To a large degree, the a priori
error covariance values can be considered tuning parameters.

Initial analysis of the retrievals from a single-stage algorithm
with constant a priori values showed and biases toward
the respective a priori values due to the large ranges of values
and reduced forward model sensitivity at high and low .
Therefore, we use a two-stage retrieval algorithm where the
first-stage retrieval is performed to provide more accurate a
priori values for the second stage. In the first stage,
and are retrieved using only the WindSat s for the vertical
and horizontal polarizations. The forward model for the first
stage is not a function of the wind direction. Both retrieval
stages employ the optimal estimation method descibed above.
A diagram of the retrieval process is shown in Fig. 1. This
two-stage process could be used in the future with a priori for
the first stage derived from climatologies or numerical weather
models without biasing our final retrievals. The primary ad-
vangtage would likely be faster convergence of the retrieval
states.

The second stage retrieval solves for all five retrieval param-
eters and includes the azimuthal wind direction dependence in
the forward model. Simultaneous retrieval allows the algorithm

Fig. 1. Simplified flowchart of the retrieval algorithm.

to adjust all five parameters to optimally match the forward
model to the measured s. WindSat s for all Stokes parame-
ters are used. The first stage retrievals for are used
as a priori values for the second stage. The square root of the a
priori error covariance values are 6 K, 4 m/s, 5 mm, 0.5 mm, and
45 for and , respectively. These values have
been chosen to be roughly two to three times larger than the ex-
pected root mean squre (RMS) errors in the first stage retrievals
(the a priori values). As with the first stage a priori error co-
variance, these values can be treated as tuning parameters. The
method used to obtain the wind direction a priori is described
below.

The procedure outlined by (3)–(6) is equivalent to minimiza-
tion of the cost function (1), as noted above. The will have
multiple local minima primarily due to the dependence of the
forward model on ; so, the choice of a priori may effectively
choose a local minima. Multiple solutions or “ambiguities” can
therefore be obtained by performing separate retrievals for mul-
tiple a priori state vectors. We use four a priori state vectors,
where only the wind direction differs, to obtain four ambigu-
ities. The first a priori wind direction is obtained from the arc
tangent of the first harmonic upwind and crosswind components
of the wind vector from the two-stage regression algorithm de-
scribed in [13]. The three additional a priori wind directions are
chosen to be 90 , 180 , and 270 from the regression result. The
retrieved ambiguities are ranked by the corresponding with
the first rank ambiguity having the lowest .

The remaining information needed by the retrieval algorithm
is an estimate of the measurement error covariance matrix, .
We include both the effects of measurement noise and forward
model errors in . A diagonal measurement error covariance
matrix is often used to simplify the retrieval calculations and the
task of estimating . However, a diagonal does not account
for correlations in the errors for different channels. While the
measurement noise in different channels is uncorrelated, there
are significant correlations between the forward model errors.
There are many possible contributions to these correlations—we
provide two examples here. The atmospheric absorption and
emission are largely unpolarized so that errors in estimating
them will be common to all polarizations at a given frequency.
Forward model errors for the same polarization but different
frequencies may be correlated, for example, due to differences
in the ocean wave spectrum or sea surface foam coverage be-
tween the global means (for a given and ) and the ob-
served conditions. Therefore, including the off-diagonal terms
in improves the weighting of the channels for the retrievals.
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TABLE II
SQUARE ROOT OF THE DIAGONAL OF S USED FOR THE WIND SPEED

RANGE OF 7–13 m/s. THE SUPERSCRIPTS IN THE CHANNEL

COLUMN ARE THE FREQUENCIES IN GIGAHERTZ

This improves the accuracy of the state vector estimates and the
estimates of which, in turn, improves ambiguity selection.

is estimated using the differences between the measured
s from the WindSat SDRs and s simulated with the forward

model

where

The are vectors of the WindSat s from the SDRs and
is the total number of SDRs used to estimate . Here the
are state vectors consisting of collocated data from a numer-

ical weather model and other satellite retrievals. The method
for simulating the s and the data used are the same as those
used for empirical corrections to the sea surface emissivity (Sec-
tion IV). The measurement error covariance values vary signif-
icantly with wind speed. For example, the error covariance for
the third Stokes s is much smaller at low wind speeds, where
the magnitude of the signal is small, than it is at high wind
speeds. Therefore, to account for these variations we calculate
separate error covariance matrices for five different wind speed
ranges: m/s, m/s m/s, m/s m/s,

m/s m/s, and m/s. The resulting error
covariance matrices account for modeling error, measurement
noise, and calibration error. The estimated covariances also in-
clude “matchup noise” due to spatial and temporal differences
between the collocated data used for simulating s and the
values actually measured in the WindSat footprint. The square
roots of the diagonal elements of are shown in Table II where
the superscripts in the channel column are the frequencies in gi-
gahertz. Table III shows the lower triangular part of for the
6.8- and 10.7-GHz channels. The values for at 6.8 GHz are

TABLE III
S TERMS FOR THE 6.8- AND 10.7-GHz CHANNELS USED FOR THE WIND

SPEED RANGE OF 7–13 m/s. S IS SYMMETRIC, SO ONLY THE LOWER

TRIANGULAR PART IS SHOWN. THE SUPERSCRIPTS IN THE CHANNEL

COLUMN ARE THE FREQUENCIES IN GIGAHERTZ

included for information even though that channel is not cur-
rently in the retrievals. The values in Table III illustrate the cor-
relations between the errors for the and channels between
frequencies and polarizations. The values shown in Tables II and
III are used for the wind speed range of 7–13 m/s. The values
in Table II decrease up to 50% for the lowest wind speed range
and increase up to 100% for the highest wind speed range. The
diagonal elements of for the channels are larger than
those for the channels at the same frequency because
is more sensivite to changes in the wind vector and the atmo-
spheric parameters.

B. Median Filtering

We apply a spatial vector median filter (MF) to the retrieval
cells to correct isolated errors in the ambiguity selection based
on the ranking. The MF cost function for a given retrieval
cell is computed on a 7 7 cell box (in scan-based coordinates)
centered on and including that cell [18]. The median filter can
be initialized using the first rank retrieval from the optimal esti-
mation results. Alternatively, the median filter can be initialized
with a “nudged” wind field where a background wind field from
an external data source is used to select the first or second rank
ambiguity closest to the background field. Further detail on the
the median filter is given in [13]. We use spatially interpolated
wind fields from the National Centers for Environmental Pre-
diction Final Analysis (NCEP) as the background wind field for
the results presented in this paper.

IV. FORWARD MODEL

Our overall approach to development of a forward model is to
begin with a physically based radiative transfer model and then
apply empirical corrections to better match the measured s.
The empirical corrections are then used as a guide for improve-
ments to the radiative transfer model. In addition, the depen-
dence of the forward model on empirically derived relationships
is reduced relative to a completely empirically derived model,
so that the dependence of the retrievals on the training data used
is limited. Here we present an overview of our forward model
for the WindSat s.

We have developed a parameterized forward model similar to
that described in [10]. The s measured by the satellite are the
sum of the upwelling atmospheric radiation, the reflected down-
welling atmospheric and cosmic background radiation, and the
direct emission of the sea surface. The reflected downwelling
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radiation and the direct emission are attenuated by the atmos-
phere. The s at each WindSat frequency can be expressed as

(7)

(8)

where refers to the s for the vertically or horizontally po-
larized s, and refers to the s for the third and fourth
Stokes parameters. The sea surface emissivity for polarization
is , and the corresponding reflectivity is . is the
upwelling atmospheric brightness temperature at the top of the
atmosphere, is the downwelling atmospheric brightness
temperature at the surface, and is the atmospheric transmis-
sivity. is the cosmic background radiation temperature, which
is approximately 2.7 K. The term is a correction factor to ac-
count for nonspecular reflection of the atmospheric downwelling
radiation from the rough sea surface [19]. We are currently ne-
glecting the azimuthal dependence of the reflected downwelling
radiation because it is difficult to model empirically, and theoret-
ical work in this area has been done only recently [19]. We have
also neglected the effect of nonspecular reflection of the cosmic
background radiation since the effect is small.

A. Atmospheric Parameterization

We use a one-layer isotropic atmosphere approximation be-
cause the WindSat frequency band set does not provide the in-
formation necessary to estimate atmospheric profiles. In addi-
tion, the one-layer atmosphere approximation facilitates rapid
evaluation of the forward model for the retrieval algorithm. The
atmospheric transmissivity is taken to be

(9)

where is the Earth incidence angle, and and are
the vertical atmospheric absorptions due to oxygen, water vapor,
and cloud liquid water, respectively.

The upwelling and downwelling atmospheric brightness tem-
peratures are parameterized in terms of effective upwelling and
downwelling atmospheric temperatures, and

(10)

(11)

Values for and are computed at each
frequency so that the parameterized forward model matches
a plane-parallel atmospheric radiative transfer model. The ra-
diative transfer calculation uses the dry-air (primarily oxygen)
and water vapor absorption models given in [20]. Our current
model excludes precipitating clouds. For nonprecipitating
clouds at WindSat frequencies, scattering from cloud liquid
water is negligible because the drop size is small relative to
the radiation wavelength. The cloud liquid water absorption
coefficient is therefore proportional to the cloud liquid water
content and given by the Rayleigh approximation [21]. We use
a double Debye model for the dielectric constant of water [22].
Atmospheric profiles from NCEP were used for the radiative
transfer calculations. The profiles were taken from the 1st and
15th of each month between July 2001 and June 2002 on a
1 1 longitude/latitude grid. These data were filtered to only
include grid points that are in the ocean between and

TABLE IV
COEFFICIENTS FOR THE ATMOSPHERIC PARAMETERS

AT EACH WINDSAT FREQUENCY

latitude and at least 75 km from land. In addition, we only
included points where mm to exclude possible rain.

We use least squares fits to the radiative transfer modeling
results to calculate the atmospheric parameters for each forward
model evaluation. The form of the fits are

(12)

(13)

(14)

(15)

(16)

where the are the coefficients derived from the least squares
fits, and are in millimeters, and and are in Kelvin.
These functional forms are similar to those used by Wentz
and Meissner [10] with the following differences. Wentz and
Meissner fit to only second order in . They fit to fourth
order in and include an additional term which includes a
dependence. We also have chosen to use the dependence in
the fit for as a proxy for cloud temperature, while Wentz and
Meissner used . We have intentionally avoided connecting
the atmospheric parameterization to to limit coupling of the
atmospheric and surface parameters during our initial forward
model development. A separate set of coefficients is needed
for each WindSat frequency. The full set of coefficients used is
given in Table IV.

B. Sea Surface Emissivity

It follows from reflection symmetry properties of polarimetric
scattering and emission from the sea surface that and are
even periodic functions of , and and are odd periodic
functions of [2]. A Fourier cosine series for and and
Fourier sine series for and , expanded to the second har-
monic in , can be used to accurately represent the sea surface
emission [3], [23], [24].

We consider the emissivity and reflectivity of the sea sur-
face as determined by a combination of the effects from large-
scale gravity waves, small scale capillary waves, and sea surface
foam. The two-scale model approximation of dividing the wave
spectrum into large-scale gravity waves and small-scale capil-
lary waves has been shown to provide general agreement with
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radiometer brightness temperature measurements from aircraft
[24], [25]. We use a two-scale model implementation [19] to ob-
tain an initial approximation of the sea surface emissivity and
reflectivity and then use empirically derived corrections to ac-
count for modeling errors and sea surface foam. Emission from
sea surface foam increases with increasing wind speed due to
increasing foam coverage of the sea surface [26]. The presence
of foam increases the measured s because foam has a higher
emissivity than water [27], [28]. We have chosen to account for
sea surface foam emission using only empirical estimates be-
cause there is large uncertainty in current foam coverage models
[29]. However, this is a subject of our current work and we an-
ticipate that future versions of our forward model will include
an explicit foam formulation.

We have used the Durden–Vesecky model of the sea spectrum
[25], [30] with modifications to the cutoff wavenumber between
the large- and small-scale waves, the hydrodynamic modulation
and , the scalar multiplier of the wave spectra. We continue
to investigate improvements to the assumed wave spectrum
model based on analysis of WindSat s and comparisons
to predictions from the two-scale model. The wave spectrum
parameters we are currently using for the Durden–Vesecky
model, which are based on our initial analysis of WindSat s,
are described here. The scalar multiplier, , affects the mag-
nitude of all the harmonics including the isotropic components
of and where the magnitudes increase with increasing

. We have used as opposed to the
used in [30] and used in [24] and [25]. The cutoff
wavenumber primarily affects the magnitude of the second
harmonic terms where the magnitudes increase with increasing
cutoff wavenumber. We have chosen a cutoff wavenumber
between the large- and small-scale waves of versus

used in [30], used in [25], and used in
[24]. The term is the electromagnetic wavenumber for the
individual WindSat frequencies. The hydrodynamic modulation
term is defined in terms of the upwind slopes as in [25] but
modified to take on minimum and maximum values of 0 and
2, respectively, as opposed to the 0.5–1.5 range of [25]. This
range of values for the hydrodynamic modulation increases the
magnitude of the first harmonic of the azimuthal wind direction
dependence of the third Stokes s, which is indicated by
the WindSat measurements. Our values for and the cutoff
wavenumber are close to those given in [30] and within the
ranges of values in the previous studies.

We use a Gaussian model of the long wave slope probability
distribution function in the two-scale model calculations. The
“modified Stogryn” model of the sea water permittivity is used
[22], with a fixed sea surface salinity of 34 psu. Variations in
salinity have a small impact on retrievals resulting from
small changes in the s at 6.8 and 10.7 GHz. We plan to use a
sea water salinity climatology to improve sea surface tempera-
ture retrievals in future work.

To develop empirical corrections to the sea surface emis-
sivity we use values for the geophysical parameters from NCEP,
QuikSCAT [31], SSM/I, and TMI collocated to the training set
of WindSat SDRs described in Section II. We use values
from NCEP analysis closest in time and spatially interpolated
to the location of the WindSat SDRs. We use wind speed

and direction from QuikSCAT retrievals within 25 km and
60 min of the WindSat measurement when available. Before
collocation, the eight retrieval cells along both edges of the
QuikSCAT swath were removed, because they contain less than
the optimal four beam combinations, and have degraded wind
vectors [32]. When a QuikSCAT matchup is not available we
use NCEP wind speed and direction within 1 h of the NCEP
analysis time and spatially interpolated to the location of the
WindSat SDRs. Finally, we use SSM/I and TMI retrievals that
are averaged into 0.25 0.25 longitude-latitude cells for

and (see geophysical data at http://www.remss.com). The
SSM/I and TMI observations are collocated to within 25 km
and 40 min of the WindSat observations.

We use the values for and from the matchup
dataset and the two-scale model to calculate values for emis-
sivity, , atmospheric parameters, and . These values for

and along with the s from the corresponding
SDRs and are then used in (7) and (8) to solve for the “measured
emissivity” of the ocean surface, . We then calculate
empirical corrections to the emissivity using least squares fits
to the difference between and in 2-m/s-wide
wind speed bins. Our analysis showed that the following form
worked well for the and channels

(17)

We neglect variations of and due to changes in and
within a wind speed bin and calculate empirical fits of the form

(18)

A different set of coefficients is calculated for each 2-m/s wide
wind speed bin and each WindSat channel where denotes the
channel. The corrections for and are added to . For
the and channels the correction is applied as a ratio to
the result from the two-scale model, e.g.,
and where the model subscript denotes the
harmonic term calculated from the two-scale model using the
mean and from the wind speed bin and the nominal Earth
incidence angle. The term for the and channels is used
as a radiometer calibration offset.

We assume that variations in the Earth incidence angles that
are within the nominal ranges (about 0.6 ) have a negligible ef-
fect on the corrections. This is valid for the and channels
because the corrections account for less than 5% of the total

except at very high wind speeds. The effects of Earth inci-
dence angle and sea surface temperature variations on the
and channels are small but these effects, as predicted by the
two-scale model, are included since the empirical corrections
are applied as a scaling factor. The corrections do not account
for modeling errors in the azimuthal harmonics of the wind di-
rection dependence for the and channels; therefore, the
wind direction dependence in the forward model for and
is just the result from the two-scale model. We have developed
empirical corrections to the sea emissivity for wind speeds up
to 20 m/s; therefore, we limit the results shown in this paper to
wind speeds less than 20 m/s. The model function for high wind
speeds will be improved in future work.
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The two-scale model is computationally expensive and the
full calculation cannot practically be done during the retrieval
process. Therefore, we calculate emissivity values with the two-
scale model and store the results in a three-dimensional lookup
table in and Earth incidence angle. The emissivity used
for the retrievals is calculated by linearly interpolating between
values in this table. The maximum error introduced by this
interpolation method is less than 0.1 K.

V. RETRIEVAL PERFORMANCE

Wind vector retrievals are the primary focus of this paper.
However, analysis of the and retrievals provides addi-
tional information about how well the retrieval algorithm is per-
forming. The and retrieval performance is also relevant
to the wind vector retrievals because our algorithm simultane-
ously retrieves all five geophysical parameters. In this section,
we present measures of retrieval performance by comparing our
WindSat retrievals with NCEP for , QuikSCAT retrievals for
wind speed and direction, and SSM/I retrievals for and
using the WindSat dataset described in Section II. The results
shown here are intended to demonstrate the efficacy of the re-
trieval algorithm rather than to verify accurate calibration.

Ambiguity selection has only a small impact on our sea sur-
face temperature retrievals, and the effect on the water vapor
and cloud liquid water retrievals is negligible. Therefore, the re-
sults we present in this section for those retrievals are only given
for the ambiguity selected after median filtering with nudging.
For the wind vector results the ambiguity selection method is
more important, and we consider the differences that are related
to ambiguity selection. A 25-km collocation distance window
is used for all of the collocated (matchup) datasets. This dis-
tance is roughly half the diameter of the WindSat SDR foot-
print. For datasets where there are multiple measurements that
satisfy both the temporal and spatial thresholds, the measure-
ment closest to the WindSat location is used. The retrieval re-
sults presented are for every third day of WindSat measurements
from the six-month dataset.

A. Water Vapor and Cloud Liquid Water

We compare our water vapor and cloud liquid water retrievals
to SSM/I retrievals (http://www.remss.com). It is desirable to
use the smallest collocation time window that is feasible due to
the high temporal variability of cloud liquid water. A 40-min
window is the smallest window that can be used while still al-
lowing for a sufficiently large dataset with global coverage. This
yields more than 30 million matchups for the six-month dataset.
The estimated bias and RMS errors for the SSM/I water vapor
retrieval algorithm are 0.6 and 1.0 mm, respectively [11]. While
no in situ measurements for cloud liquid water over the ocean
are available for validation Wentz [11] used an analysis of the
distribution of retrieved cloud liquid water to estimate a RMS
retrieval accuracy of 0.025 mm.

The overall differences between our WindSat water vapor re-
trievals and the SSM/I retrievals are a bias difference of 0.43 mm
and a RMS difference of 1.05 mm. Fig. 2 shows the difference
in millimeters between the WindSat and SSM/I water vapor re-
trievals versus the SSM/I water vapor. The differences were cal-

Fig. 2. Difference between the WindSat and SSM/I water vapor retrievals
versus SSM/I water vapor.

Fig. 3. Histograms of the WindSat and SSM/I water vapor retrievals for more
than 33 million collocations.

Fig. 4. Difference between the WindSat and SSM/I cloud liquid water
retrievals versus SSM/I retrievals.

culated for measurements in 5-mm water vapor bins. The max-
imum RMS difference is about 2 mm at 65 mm, or about 3%,
and the maximum bias difference is slightly larger than 1 mm.
Fig. 3 shows the corresponding histograms for the water vapor
retrievals. The histograms agree well with only small differ-
ences above 60-mm water vapor. The differences we show here
between our WindSat retrievals and SSM/I retrievals are also
on the order of (or better than) the differences between various
SSM/I algorithms noted in [33] and [34].

Fig. 4 shows the difference in millimeters between the
WindSat and SSM/I cloud liquid water retrievals versus the
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Fig. 5. Histograms of the WindSat and SSM/I cloud liquid water retrievals for
more than 33 million collocations.

Fig. 6. Difference between the WindSat T retrievals and NCEP T results
versus NCEP T .

retrieved SSM/I cloud liquid water. The differences were cal-
culated for measurements within 0.02-mm cloud liquid water
bins. Fig. 5 shows the corresponding histograms for the cloud
liquid water retrievals. The high spatial and temporal variability
of cloud liquid water makes quantitative evaluation of these
results difficult since a substantial portion of the differences
may be due to collocation differences. However, the WindSat
and SSM/I retrievals are in good qualitative agreement.

B. Sea Surface Temperature

We have used NCEP sea surface temperature data with an
analysis time within one hour of the WindSat retrievals to
evaluate our sea surface temperature retrievals. The one hour
window is small enough such that temporal changes in
should not affect our results. The NCEP results are linearly
interpolated in space to the WindSat measurement location.
The dataset includes about 25 million matchups. We expect the
accuracy of the NCEP data used here to be similar to the
accuracy of the Reynolds optimum interpolated (OI) data
[35] which is produced using similar methods. The Reynolds
OI data have an overall standard deviation error of about
0.5 K and bias errors less than or about 0.1 K [36], [37].

The overall bias difference between the WindSat retrievals
and the interpolated NCEP values is K, and the stan-
dard deviation is 0.98 K. Fig. 6 shows the difference in degrees
Celsius between the WindSat retrievals for and the NCEP
results versus the NCEP in 2 bins. Fig. 7 shows the same

Fig. 7. Difference between the WindSat T retrievals and NCEP T results
versus NCEP wind speed.

Fig. 8. Derivative of T with respect to T at 6.8 and 10.7 GHz calculated
using the forward model.

differences plotted versus NCEP wind speed in 2-m/s wind
speed bins. There is generally good agreement for in the 20
to 30 C range and for m/s. At lower temperatures
and higher wind speeds the standard deviation of the differ-
ences increases significantly. There are two reasons for the ob-
served increases in the standard deviation of the differences
at lower temperatures and higher wind speeds. One is primarily
a low-temperature effect, and the other is primarily a high wind
speed effect. It is difficult to separate the contribution of these
effects because the global mean decreases with increasing
wind speed.

First, the retrieval accuracy decreases as decreases
because the sensitivity to changes in at 6.8
and 10.7 GHz decreases. This behavior is shown in Fig. 8
where , as calculated from our foward model for zero
wind speed and cloud liquid water and 20-mm water vapor, is
plotted versus . The retrievals primarily rely upon the
measurements of at 6.8 and 10.7 GHz because those channels
have the highest sensivity to and are relatively insensitive
to atmospheric variations. As discussed in Section II, at
6.8 GHz is only used for 55 of the 80 retrievals in the WindSat
forward scan. The channels also have a significant role in
retrievals because they are needed to separate the wind speed
and atmospheric contributions to the measurements from the

contribution. The variations in are due to changes
in the permittivity of sea water with [22]. The large positive

bias near occurs because, even with the two-stage
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Fig. 9. Bias difference between the WindSat T retrievals and NCEP T

versus NCEP wind direction relative to the WindSat look direction for three
wind speed ranges.

retrieval algorithm, the sensitivity to variations is not strong
enough at low to pull the retrieved from the constant
a priori value of 287 K.

Second, the retrieval accuracy decreases as wind speed
increases due to the increasing dependence of the s on the
wind direction. Small forward model errors for the directional
dependence can produce substantial errors in the retrievals.
Fig. 9 shows the mean differences plotted versus NCEP wind
direction relative to the WindSat look direction. For wind speeds
in the 0–5-m/s range there is no bias with wind direction, but
there is a large bias for wind speeds in the range of 10–15 m/s.
The difference is largest near 180 because the magnitude of the
directional signals for and are largest there (since they
vary as and ). In Figs. 6 and 7, the bias in
versus wind direction is averaged over all wind directions which
increases the standard deviation of the differences but the mean
is approximately zero.

C. Wind Vectors

We use QuikSCAT wind vector retrievals within one hour of
the WindSat measurements to evaluate WindSat wind vector
retrieval performance. This time window is chosen as a compro-
mise between minimizing the time difference and maximizing
global coverage. The resulting dataset contains more than
29 million matched retrievals. For comparison to the results
presented here, analysis of the differences between QuikSCAT
wind speed and direction and in situ measurements from bouys
[38], [39] show RMS wind speed differences of 1.2 m/s. The
directional differences between QuikSCAT and bouys are about
20 at 5-m/s wind speed and rapidly decrease to values in the
range of 10 to 15 for wind speeds above about 8 m/s.

The histograms of wind speed and direction retrievals in
Figs. 10 and 11 show good agreement between WindSat and
QuikSCAT. These plots are based on the selected ambiguity
after median filtering with nudging. The difference between
the WindSat and QuikSCAT wind direction histograms near
90 is due to differences at wind speeds below 5 m/s where
the directional signal is small and, as a result, the WindSat
retrievals are less accurate.

Fig. 12 shows the difference between WindSat and
QuikSCAT retrieved wind speed versus the QuikSCAT wind

Fig. 10. Wind speed histograms for WindSat and QuikSCAT in 1-m/s bins for
more than 29 million collocations.

Fig. 11. Wind direction histograms for WindSat and QuikSCAT in 5 bins for
more than 29 million collocations.

Fig. 12. Difference between WindSat and QuikSCAT retrieved wind speeds
in 2-m/s wind speed bins.

speeds for the selected ambiguity after median filtering with
nudging. The bias of the difference is less than about 0.2 m/s
for wind speeds less than 20 m/s. The standard deviation of
the difference is below 1 m/s for wind speeds below about
12 m/s. At higher wind speeds the standard deviation increases
but remains well below 2 m/s. The overall RMS difference for
all wind speeds is 0.89 m/s. The corresponding overall RMS
differences for the ambiguities based on rank are 0.91, 0.97,
1.04, and 1.28 m/s for the first through fourth rank ambiguities,
respectively. This shows that there are small but significant
differences between the wind speeds retrieved for the four
ambiguities.
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TABLE V
DIFFERENCE BETWEEN WINDSAT AND QUIKSCAT WIND

DIRECTION RETRIEVALS VERSUS QUIKSCAT WIND SPEED

Fig. 13. RMS difference between WindSat and QuikSCAT wind direction
retrievals in 2-m/s wind speed bins.

The RMS differences between WindSat and QuikSCAT re-
trieved wind directions versus the QuikSCAT wind speed are
shown in Table V and Fig. 13. The biases, which are not shown
in the table or the figure, are all small (less than 3 ) for all wind
speeds less than 20 m/s. In the table, “First” refers to the first
ranked ambiguity; “MF” refers to results with median filtering;
“MF/NG” refers to results with median filtering and nudging
with the NCEP background wind field; and “Closest” refers to
the retrieved WindSat ambiguity that is closest to the QuikSCAT
direction. The overall RMS wind direction difference is 30.0
for the selected ambiguity (MF/NG) and 60.2 for the first rank
ambiguity.

Fig. 14 shows an example of a retrieved wind field from
WindSat data for September 12, 2003 with the wind speed scale
shown in the colorbar. For clarity, the vectors are plotted for a
subset of the retrieval cells, but no averaging is done. Vectors
are not plotted for wind speeds less than 3 m/s. This figure
gives qualitative verification that the wind vector retrieval is
producing realistic wind fields. The apparent noise in the wind
convergence zones is not unexpected because the WindSat
footprint used here (40 km 60 km) is likely too large to
fully resolve the fronts and many of the abrupt changes in wind
direction are occurring at low wind speeds.

Fig. 14. Retrieved wind field from WindSat data for September 12, 2003. The
wind speed is indicated by the color. These retrievals are based on the selected
ambiguity after median filtering with nudging (MF/NG).

D. Ambiguity Selection

The difference between the wind direction retrieval perfor-
mance for the first rank and the closest ambiguities, as shown
in Fig. 13, demonstrates the importance of ambiguity selec-
tion. Fig. 15 shows the ambiguity selection skill for the se-
lected ambiguity after median filtering with nudging and for
each of the four ranked ambiguities. Skill is defined as the per-
centage of retrievals where the ranked (selected) ambiguity was
the closest to the QuikSCAT wind direction. The selected am-
biguity (MF/NG) is the closest over 80% of the time above

m/s. The skill for the third and fourth ranked ambi-
guities is small above m/s so that the closest ambiguity
is usually the first or second rank ambiguity. The combined skill
for the first rank and second rank ambiguities is always greater
than 50% and is greater than 90% above about m/s.

We use two steps for ambiguity selection as discussed in Sec-
tion III. The discussion of ambiguity selection presented here
focuses on the first step of ranking each ambiguity based on .
Detailed evaluation of the effects of the second step of median
filtering, and in particular median filtering with nudging, should
include the study of local phenomena such as at weather fronts
and the impact of nudging on the retrieved wind fields. Such a
study is beyond the scope of this paper.

Fig. 15 shows that skill varies significantly with wind speed.
Skill for a radiometer also depends on . The skill for the first
and second ranked ambiguities is shown in Fig. 16 versus the
the QuikSCAT wind direction for – m/s. The first rank
skill has two maxima near 90 and 270 and minima near

0 and 180 . The second rank skill varies inversely with
the first rank skill. These features can be explained by examining
the directional dependence of the s.
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Fig. 15. Ambiguity selection skill versus QuikSCAT wind speed.

Fig. 16. Ambiguity selection skill for (solid) the first and (dashed) second rank
ambiguities versus the QuikSCAT wind direction forW = 6–8 m/s.

Fig. 17. Directional dependence of the T s (as calculated by our forward
model) at 8-m/s wind speed and T = 290 K for 10.7 GHz.

Fig. 17 shows the directional dependence of the 10.7-GHz
s (as calculated by our forward model) at m/s and

K. We have chosen m/s for illustration

purposes because the wind direction difference for the closest
ambiguity, as shown Fig. 13, is near the minumum value while
there is a larger difference between retrieval performance for the
first rank and closest ambiguities than there is at higher wind
speeds. The signals are nearly pure second harmonic for all
frequencies and wind speeds and are, therefore, approximately
equal at and . The signals
have significant first and second harmonic terms; so, while
is the same at values at
and are distinct. Also, the ratio of the first and second har-
monics for varies with frequency and wind speed, and there-
fore, the values at which or has a local minimum or
maximum also vary.

The optimal estimation method effectively weights each mea-
sured based on where accounts for measurement
noise and modeling error. If we neglect the off-diagonal terms in

, the measurement and modeling noise are collectively treated
as zero mean with a standard deviation of (see Table II).
For m/s, the peak-to-peak amplitude of the and
directional signals is less than the corresponding values
while the opposite is true for the and directional signals.
Therefore, the retrieval of for a specified a priori depends
primarily on the and measurements. However, for some

, ambiguity selection is dependent on and . Consider
when or . Then both and are near zero, and
the and contributions to the will be the same for an
ambiguity at and a second ambiguity at .
Therefore, ambiguity selection must rely on the and mea-
surements which results in low first rank skill near both
and . Conversely, near and , while

is negative near and positive near .
Then and provide sufficient information for ambiguity se-
lection, and first rank skill is high. The second rank skill shown
in Fig. 16 is higher than the first rank skill near and

, which indicates a likely forward model error. Also, note
that for the lowest wind speeds the peak-to-peak signal for the
all polarizations is less than the corresponding value,
which leads to poor first rank skill for all .

We have chosen to use four separate a priori wind directions
to retrieve four ambiguities. This choice is supported by the di-
rectional dependence of the and measurements. Fig. 18
shows the retrieved wind direction from WindSat versus the
QuikSCAT wind direction for all four of the ambiguities for

– m/s (left panel) and – m/s (right panel). The
contours have been normalized so that the sum of all points in
each 5 QuikSCAT wind direction bin is 100. This was done so
that the shape of the overall wind direction distribution, shown
in Fig. 11, would not obscure the changes due to the directional
dependence of the s. There are four ambiguities for each
as can be seen by noting four local maxima along any vertical
line in the plots. The four ambiguities are spaced at nearly 90
intervals when is near 0 , 90 , 180 , or 270 and are grouped
in two pairs when is near 45 , 135 , 225 , and 315 . This
pairing of ambiguities near the local amplitude maxima in
and results from the uncertainty in the measurements and
forward model ( , as discussed above). Our discus-
sion here of the ambiguity selection features has been simpli-
fied for the sake of illustration. We have explained the primary
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Fig. 18. Two-dimensional histogram of the ambiguities in 5 � 5 bins of WindSat versus QuikSCAT wind direction relative to the WindSat look direction.

features using only the directional dependence of the s. The
retrieval algorithm is actually considering the ambiguities in a
five-dimensional space. However, variations between ambigui-
ties in the retrieved values for the other parameters are relatively
small.

VI. CONCLUSION

We have developed a nonlinear iterative retrieval algorithm
for wind vector retrievals from WindSat data. The algorithm
can easily be adapted to use different subsets of measured

s, and therefore, it can easily be adapted for use with future
polarimetric microwave radiometers. The comparisons of our
WindSat retrievals to QuikSCAT retrievals verify that the
retrieval algorithm is performing well. The accuracy of the
retrievals is limited by measurement noise and the accuracy of
the forward model. The differences between the forward model
and the measurements are currently dominated by modeling
errors as can be seen by comparing the values given in Tables I
and II. The results presented here are for the lowest resolution
footprint of about 40 km 60 km. Work is ongoing to produce
WindSat s and wind vector retrievals at a higher resolution
of about 25 km 40 km. For this higher resolution, beam
averaging will provide less noise reduction and measurement
noise will contribute significantly to the differences between
the forward model and the and measurements. It is
clear that minimizing the measurement noise in the third and
fourth Stokes measurements is important for measuring wind
direction with a polarimetric microwave radiometer. This will
be even more important as our forward model is improved.

The RMS difference between WindSat and QuikSCAT wind
speed retrievals is less than 1.0 m/s for wind speeds below 10

m/s. The increase in the standard deviation of the wind speed
difference at higher wind speeds is likely due to several factors.
The largest concentration of WindSat-QuikSCAT matchups
is in the midlatitudes with relatively few matchups at high
latitudes where sustained high winds are more prevalent. As
a result, many of the high wind speed cases are from storms
where the spatial and temporal variability of the wind speeds is
high. The storm-related localized variabilities would increase
the wind speed differences between WindSat and QuikSCAT
at high wind speeds. Another possible cause of the increasing
variability at high wind speeds is errors in the forward model
function for the directional dependence of the and
channels. This is similar to the effect of these forward model
errors on the retrieval performance that are shown in Fig. 9.
Finally, for high wind speeds less training data are available for
the empirical corrections to the sea surface emissivity which
results in greater uncertainty in the forward model.

The wind direction performance results are primarily wind
speed dependent. The magnitude of the wind direction signal be-
comes greater than the noise in the measurements around 4 m/s.
In addition, forward modeling errors for the and channels
are currently on the order of 0.1 K. The combination of these ef-
fects means that there is poor wind direction performance below
5 m/s. The directional signals for the and channels are
superposed on much larger isotropic signals. The forward mod-
eling errors for the isotropic signals are on the order of 0.7 K
for and 1.0 K for at 10.7 GHz and higher at the higher
frequencies. Therefore, the and directional signals have
a greater impact on the wind direction retrievals above about
10 m/s.

The retrieval error covariance matrix, , calculated from
(4) provides an estimate of the expected variance of the re-
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trievals. The square root of the diagonal of should approxi-
mate the standard deviation of the retrieval errors provided the
foward model, the measurement error covariance matrix, and
the a priori are good approximations. The overall mean values
for the square root of the diagonal of give 0.86 K for , 0.78
m/s for , 1.0 mm for , and 0.032 mm for . These values
are similar to the overall standard deviation of the differences
between our WindSat retrievals and collocated data from NCEP,
QuikSCAT, and SSM/I as presented in Section V. Those values
are 0.98 K for , 0.89 m/s for , 0.95 mm for , and 0.045
mm for . For wind direction, we computed the mean values for
the square root of the diagonal of for the same 2-m/s wide
wind speed bins that we used for the comparisons to QuikSCAT.
The results are within 2 of the values for differences between
the closest WindSat ambiguity and the QuikSCAT wind direc-
tion as give in Table V. These results confirm that our retrieval
algorithm is performing well.

The retrieval results described in this paper provide a base-
line for WindSat performance and show that our retrieval algo-
rithm effectively retrieves all five geophysical retrieval param-
eters. These results have been obtained using a first-generation
forward model function for the WindSat s. We continue to
improve our forward model function and WindSat calibration to
improve the retrievals. We anticipate that retrieval performance
will improve significantly as our forward model is refined.
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