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Abstract—Radio-frequency interference (RFI) in the spaceborne
multichannel radiometer data of WindSat and the Advanced Mi-
crowave Scanning Radiometer–EOS is currently being detected
using a spectral difference technique. Such a technique does not
explicitly utilize multichannel correlations of radiometer data,
which are key information in separating RFI from natural radia-
tions. Furthermore, it is not optimal for radiometer data observed
over ocean regions due to the inherent large natural variability
of spectral difference over ocean. In this paper, we first analyzed
multivariate WindSat and Scanning Multichannel Microwave
Radiometer (SMMR) data in terms of channel correlation, in-
formation content, and principal components of WindSat and
SMMR data. Then two methods based on channel correlation
were developed for RFI detection over land and ocean. Over land,
we extended the spectral difference technique using principal com-
ponent analysis (PCA) of RFI indices, which integrates statistics
of target emission/scattering characteristics (through RFI indices)
and multivariate correlation of radiometer data into a single
statistical framework of PCA. Over ocean, channel regression
of X-band can account for nearly all of the natural variations in
the WindSat data. Therefore, we use a channel regression-based
model difference technique to directly predict RFI-free brightness
temperature, and therefore RFI intensity. Although model differ-
ence technique is most desirable, it is more difficult to apply over
land due to heterogeneity of land surfaces. Both methods improve
our knowledge of RFI signatures in terms of channel correlations
and explore potential RFI mitigation, and thus provide risk re-
ductions for future satellite passive microwave missions such as
the NPOESS Conical Scanning Microwave Imager/Sounder. The
new RFI algorithms are effective in detecting RFI in the C- and
X-band Windsat radiometer channels over land and ocean.

Index Terms—Microwave remote sensing, radio-frequency
interference (RFI), WindSat.

I. INTRODUCTION

DURING the past several decades, many satellite mi-
crowave radiometers have been launched into space.

The Scanning Multichannel Microwave Radiometer (SMMR)
was launched in 1978 to collect data at four frequencies from
6.8–37 GHz [1]. A series of the Special Sensor Microwave/Im-
ager (SSM/I) instruments have been collecting data from
19–85 GHz for more than 15 years [2]. In 2002, the National
Space Development Agency of Japan launched the Advanced
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TABLE I
SPACEBORNE PASSIVE MICROWAVE SENSOR CHARACTERISTICS

Microwave Scanning Radiometer–EOS (AMSR-E) onboard
the National Aeronautics and Space Administration Earth
Obsering System Aqua satellite [3]. In 2003, the U.S. Naval
Research Laboratory (NRL) launched the WindSat radiometer
on the Department of Defense Coriolis satellite [4]. Except for
SSM/I, the other sensors have included C- and X-band channels
to enhance surface sensing capabilities. WindSat is the first
spaceborne polarimetric radiometer that measures the third and
fourth components of the modified Stokes vector in addition to
the first two components of vertical and horizontal brightness
temperature. It can be viewed as a successor in technology to
SSM/I and AMSR-E with extended polarimetric capabilities
for detecting ocean surface wind directions. WindSat is also
a risk reduction mission to the next-generation polarimetric
radiometer mission, the Conical Scanning Microwave Im-
ager/Sounder (CMIS) [5], [6], planned for launch as part of the
National Polar-orbiting Operational Environmental Satellite
System (NPOESS) in the 2009 time frame. Table I provides
a comparison of sensor characteristics. In the table ,

, and denote vertical, horizontal, third, and fourth Stokes
parameters, respectively. Except for their difference in po-
larimetric capabilities, AMSR-E, WindSat, and CMIS are all
functionally quite similar in terms of frequencies, viewing
configurations, and spatial resolutions.

In recent years, due to the increasing conflict between sci-
entific and commercial users of the radio spectrum, radio-fre-
quency interference (RFI) has become a serious problem for
microwave radiometry. Postlaunch AMSR-E data analysis
revealed for the first time very strong and widespread RFI in the
C- and X-band observations, which were also seen in WindSat
measurements. If not properly identified and rejected, this RFI
contamination problem could significantly reduce the science
value of existing and future C- and X-band passive microwave
missions. To this end, a spectral difference technique has been
developed for AMSR-E to quantify the RFI magnitude and
extent over the U.S. and global land areas [7], [8]. A similar
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method was also used to survey WindSat land RFI over the U.S.
[9]. Despite its effectiveness in detecting these types of RFI,
such a spectral difference technique was applied only to detect
land RFI; it is not optimal for ocean RFI due to inherent large
natural variability of the spectral difference over the ocean.

The principle of spectral difference RFI detection technique
is based on the distinct signature differences between natural
radiation and RFI induced by human activities. Because the
RFI has narrower bandwidth relative to natural radiation, its
emission/scattering characteristics are very different, resulting
in negative spectral gradient [7], [10]. Equally important, natural
radiation can be characterized by high correlations among dif-
ferent radiometer channels; while RFI tends to be decorrelated
with natural variations. By examining variations of channel cor-
relation and spectral gradient, the spectral difference technique
defines the negative spectral gradient as an RFI index (RI), and
RFI is detected if the RI exceeds a threshold beyond its natural
variation [7]. The threshold determination does not use infor-
mation from the correlation between channels.

The principal components analysis (PCA) is an efficient tool
for analyzing the channel correlation of the multivariate ra-
diometer data. It decomposes multichannel data into a number
of orthonormal components according to their correlations,
and separates RFI components from natural variations more
efficiently and consistently. By incorporating PCA in the
spectral difference technique, we can integrate statistics of
target emission/scattering characteristics (through RFI indices)
and multivariate correlation of radiometer data into a single
statistical framework. This methodology will be used in C-band
RFI detection over land. Over ocean, the channel correlations
are sufficiently high and can be used to predict RFI-free mea-
surements with small uncertainty.

The model difference technique defines the difference be-
tween measured and predicted brightness temperatures as RFI
Intensity [11]. It has the advantage of producing a more di-
rect measure of the RFI intensity than the spectral difference
or PCA techniques. However, the heterogeneity of land scenes
causes model difference technique to have a higher prediction
uncertainty than for ocean scenes. Therefore, despite being a
preferred technique, model difference was only implemented to
ocean scenes.

The vertical and horizontal polarization brightness temper-
atures respond directly to the RFI intensity, but the third and
fourth Stokes parameters also respond to the polarization states
of the RFI signals. The use of WindSat polarimetric channels
to detect RFI is discussed in detail in [9]. In this paper we ex-
clude polarimetric channels in our RFI detection algorithm. Sec-
tion II discusses briefly the WindSat instrument and its data pro-
cessing. Section III examines WindSat multivariate signatures in
terms of channel correlations and principal component analysis,
based on which land and ocean RFI detection algorithms are
developed in Section IV. Finally, WindSat RFI results and their
implications to CMIS risk reduction are discussed in Section V.

II. WINDSAT INSTRUMENT AND MEASUREMENTS

The WindSat instrument is the first and only spaceborne
polarimetric microwave radiometer currently in operation [4].
It is designed to demonstrate the capability of polarimetric

microwave radiometry in ocean vector wind sensing and should
also have very significant value for land sensing. In addition
to the SSM/I and AMSR-E dual-polarization microwave im-
ager frequency bands, WindSat provides fully polarimetric
measurements at 10.7, 18.7, and 37.0 GHz, and additional
dual-polarization measurements at 6.8 and 23.8 GHz. Each
channel is first individually calibrated, geolocated, and quality
controlled to produce antenna temperatures at its footprint res-
olution. Then, all the channels are further processed for antenna
pattern correction, data resampling, and beam averaging to
generate brightness temperature data at a common spatial reso-
lution, called Sensor Data Record (SDR) [4]. In this study, we
used SDR version 1.6.1 data coregistered to a common spatial
resolution of 40 km 60 km. Following the SDR processing,
we binned the swath data onto the global 25-km EASE grid and
composed them into separate daily ascending and descending
data files.

For comparison with WindSat data, we acquired the histor-
ical SMMR multichannel brightness temperature data from the
National Snow and Ice Data Center. The data were processed
using a similar binning method and the 25-km EASE grid
format [12]. SMMR had vertical and horizontal polarization
channels at five frequencies, 6.6, 10.7, 18, 21, and 37 GHz,
which are very similar to WindSat frequencies. However,
SMMR spatial resolutions are very different for each fre-
quency. They are 148 km 95 km, 91 km 59 km, 55 km 41
km, 46 km 30 km, and 27 km 18 km from 6.6–37 GHz,
respectively. These footprints were not resampled to a common
resolution as was WindSat. Nevertheless, the SMMR data were
much less contaminated by RFI during its mission from 1978
to 1987. Therefore, it is interesting to compare the statistics of
Windsat measurements against those of SMMR.

III. MULTIVARIATE SIGNATURES OF RFI
AND NATURAL RADIATION

A. RFI and Natural Radiation Characteristics

Man-made radiation from active microwave transmitters (or
RFI to a radiometer) is distinctly different from natural radia-
tion in terms of intensity, spatial variability, spectral character-
istics, and channel correlations. RFI signals typically originate
from a wide variety of coherent point target sources, i.e., radi-
ating devices and antennas, and are often directional, isolated,
narrowband, and coherent. On the other hand, as distributed tar-
gets, the Earth’s surfaces often produce smooth, ultrawideband,
and incoherent microwave radiation. At 30 GHz and below, scat-
tering effects from natural targets are relatively weaker than the
emission signals. RFI can increase brightness temperatures sig-
nificantly at a particular frequency and generate negative spec-
tral gradient [7], which can be used to identify RFI when such
scattering signatures, in terms of the spectral differences, and
its spatial variations (standard deviation), are beyond their nat-
ural variability [7], [8]. This method is called the spectral dif-
ference technique. For example, land RFI is identified for the
6-GHz AMSR-E vertical polarization channel if the mean and
standard deviation of RFI Index, RI ,
exceed 3-K threshold [8]. The exact threshold used depends on
the radiometer sensitivity and channels, the application, and the
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TABLE II
(a) SMMR CHANNEL CORRELATION MATRIX. (b) WINDSAT CHANNEL

CORRELATION MATRIX. (c) WINDSAT CHANNEL CORRELATION

MATRIX FOR RFI-CONTAMINATED DATA

(a)

(b)

(c)

natural scene. From multivariate perspective, the natural mi-
crowave radiation measured by each radiometer channel is gov-
erned by the naturally occurring geophysical processes, and thus
has very well defined interchannel correlations. An RFI signal,
due to its relatively narrow bandwidth, tends to be independent
and decorrelated with the natural variations.

Since the SMMR mission ended in 1987 prior to today’s
proliferation of microwave sources and no RFI contamination
was found in SMMR data over the U.S., we compared SMMR
channel correlation against those of WindSat. Only SMMR and
WindSat data over the U.S. were used in such a comparison.
Ten-day composite EASE-Grid data were generated for SMMR
and WindSat using EASE-Grid data from July 1–10, 1979 and
2003, respectively. We used ten days of SMMR data to have a
complete global coverage because the SMMR instrument was
switched on and off on alternate days due to power sharing con-
straints among different instruments on the spacecraft. Ocean
and coastal pixels were removed from this data to focus on the
multicorrelations of land data. Table II compares SMMR and
WindSat correlation matrices for vertical and horizontal chan-
nels. In Table II(a), for SMMR, all the channels are positively
and highly correlated, and correlations are higher for vertical po-

TABLE III
WINDSAT CHANNEL CORRELATION MATRIX FOR RFI-FREE OCEAN DATA

larization than horizontal. For C-band vertical brightness tem-
peratures, the correlation decreases from 0.91 to 0.82 as the
frequency increases. For C-band horizontal brightness tempera-
ture, the correlation varies from 0.88 to 0.73. Higher frequency
SMMR channel correlation is mostly above 0.95. In the case of
WindSat in Table II(b), similar high correlations remain evident
except for the RFI-contaminated C-band channels, which have
significantly decreased correlations against all other channels.
To further examine the channel correlations in RFI-contami-
nated regions, we recalculated the WindSat correlation matrix
using only RFI-contaminated data points where the RFI Index

exceeds 10 K for both vertical and horizontal po-
larizations. The result is shown in Table II(c). Clearly, the two
C-band channels have virtually no correlation with higher fre-
quency channels. The highest correlation is only 0.398 between
C- and X-band vertical polarizations channels; other C-band
channel correlations vary between 0.13 and 0.29. Except for
the C-band channels, correlations between other channels re-
main quite high around 0.9. Therefore, the RFI signal is indeed
decorrelated with natural radiation in the contaminated areas,
showing channel correlation as critical information in distin-
guishing RFI from natural radiation.

Table III shows the WindSat channel correlation matrix for
global RFI-free ocean measurements from June 20–29, 2004.
In general, the correlations are extremely high, mostly between
0.95 and 0.99. For convenience, let us denote 6.8- and 10.7-GHz
channels as surface channels and 18 GHz and above as atmo-
spheric channels. We can see that channel correlations within
the surface or atmospheric channels separately are in the 0.97 to
0.99 range. The correlations between surface and atmospheric
channels are less, but still above 0.93. These extremely high
channel correlations will provide us an excellent opportunity
to implement the channel regression based model difference
method, shown in Section IV.

B. Principal Component Analysis

PCA is a statistical technique that linearly transforms a set of
correlated variables into a smaller set of uncorrelated variables
that forms a new orthonormal data space. In this new data space,
the first basis vector spans in the direction of maximum variance
in the data. Each successive basis vector spans the direction of
largest variance not accounted for by the previous vectors. This
new set of variables, or basis vectors, are called principal com-
ponents [13], which can be constructed using eigenvalue/eigen-
vector decomposition. The size of each eigenvalue determines
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the variance of the corresponding principal component. If we
assume that information in data is represented by its variance,
eigenvalues can be used to quantify informational content for
each principal component. PCA is commonly used to reduce
data dimensionality, computational complexity and the noise
levels. It can also be used in cluster identification and classifica-
tions. In our case of RFI detection, we seek to extract the RFI-re-
lated principal component in multidimensional radiometer data.
But first let us examine the multichannel WindSat brightness
temperatures in terms of its principal components, and its vari-
ance or information content.

For a given set of multichannel radiometer data, the original
data vector is given by

(1)

where represents the brightness tem-
peratures of different frequency and polarization channels,

is the number of the data channel to be analyzed, and
denotes the transpose operation. In our case, a ten-channel
SMMR or WindSat data vector is defined as

. Letting the covariance matrix be denoted as
, the eigenvalue and eigenvector are found in equation

(2)

where is the eigenvector matrix and the diagonal eigenvalue
matrix. Once the eigenvalues and eigenvectors are obtained, the
original data vector can be projected onto the new basis vec-
tors in principal component space

(3)

The elements of are often referred as the principal component
scores. For RFI-related principal components, the score is high
when RFI is present and low when it is not.

Since channel correlations are key information in detecting
RFI, it is interesting to examine them in terms of information
content using PCA. It is also interesting to compare RFI-contam-
inated Windsat data with RFI-free SMMR data. However, one
must remember that different SMMR channels are not resampled
to the same footprint resolution as WindSat, and thus have dif-
ferent spatial resolutions for different frequency. In other words,
the different SMMR channels do not observe a given target at
the same time and location. Such a difference in resolution will
introduce distortions to SMMR channel correlations, which are
especially pronounced when the satellite passes over a strong
storm system or land/water boundary. Therefore, the differences
between WindSat and SMMR can not be attributed entirely to
RFI influence. Nevertheless, these two satellites have very sim-
ilar vertical and horizontal polarized channels at the five sim-
ilar frequencies as shown in Table I. Without RFI corruption,
their natural radiation signature should be similar, which is illus-
trated here with the WindSat and SMMR signatures over land. To
better contrast the signatures of RFI and natural radiation, only
EASE-Grid WindSat and SMMR data over the U.S. were used in
the PCA for this specific comparison. Ocean and coastal region
data are also masked out in this data analysis.

Fig. 1(a) illustrates resulting eigenvalue spectrum for WindSat
(the solid line) and SMMR (the dotted line). Fig. 1(b) shows the

Fig. 1. Comparisons of WindSat and SMMR eigenvalues and variance.
WindSat data are indicated by a solid line and SMMR by a dotted line.

percent of total variance accounted for by each principal com-
ponent. The eigenvalues are similar and drop very quickly for
both sensors: therefore, a majority of data variance is contained
the first few principal components. Eigenvalues that are less than
4 for SMMR and 0.4 for WindSat are below the speci-
fied instrument noise level. Out of ten-channel radiometer data,
the top three components account for more than 96% of the vari-
ance for both sensors, confirming the high channel correlations.
Nevertheless, the SMMR eigenvalues drop faster than WindSat,
which indicates less variance or information in SMMR data than
in WindSat. This is consistent with the fact that there is no RFI
information in the selected SMMR dataset.

Fig. 2 plots the coefficients of top three SMMR (dotted line)
and WindSat (solid line) principal components. Their corre-
sponding variances were plotted in Fig. 1(a). Higher order com-
ponents account for only 2.2% of the total variance for SMMR
and 3.3% for WindSat. Therefore they are not plotted here. In
general, each component responds to the combination of three
variables with different emphasis: the overall magnitude of all
radiometer channels, the spectral gradient, and the polarization
difference. When a component responds to overall magnitude,
its coefficients are all positive. The horizontal polarization chan-
nels can have larger coefficients than vertical since their data
variances are usually larger. Responding to the spectral gradient
means the coefficients decrease with frequency. If the coeffi-
cients have opposite sign for vertical and horizontal channels,
the component is responding to the polarization difference.

Clearly, there is a significant difference in first principal com-
ponent between SMMR and Windsat, but their second and third
principal components are very similar. Similar SMMR principal
component signatures were also found over sea ice regions in the
Arctic [14]. The first SMMR and WindSat components empha-
size the overall magnitude. All the coefficients are positive and
of similar magnitude for vertical (odd-numbered channels) and
horizontal (even-numbered channels) polarizations. SMMR co-
efficients are quite flat for all channels, but WindSat coefficients
decrease with frequency and are higher for vertical polarization
than horizontal. The 6.8-GHz channels are weighted much more
than the rest of the channels, showing that WindSat first principal
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Fig. 2. Comparisons of WindSat and SMMR eigenvectors. WindSat data are
indicated by a solid line and SMMR by a dotted line.

component contains some spectral gradient and polarization in-
formation. From Fig. 1, the SMMR first component has 24.14-K
standard deviation, accounting for 89% of the variance. For
WindSat first component, the standard deviation is about 22.47 K
accounting for 73% of the variance. The SMMR and Windsat
second principal components respond strongly to the spectral
gradient. For 10-GHz and higher channels, the negative coeffi-
cients emphasize vertical over horizontal polarizations. Since
vertical polarization is much less sensitive to environmental
variations than horizontal, such a coefficient structure will act to
reduce the natural radiation background against the RFI signals.
The standard deviations of the second components are 6.2 K (6%
of total variance) and 9.7 K (14% of total variance) for SMMR
and WindSat, respectively. The third eigenvector has negative
coefficients for vertical polarization channels and positive for
horizontal ones, therefore it highlights the difference between
the polarizations and acts as a measure of the polarization signal.

IV. RFI IDENTIFICATION OVER LAND AND OCEAN

A. Spectral Difference Technique

Spectral difference and channel correlation are two pieces of
key information for RFI identification. Previous land RFI iden-
tification algorithms were based mostly on the spectral differ-
ences or RFI indices [7]–[9]. Channel correlation was not used
to establish the threshold values for the RFI Indices. For such a
spectral difference technique to be effective in identifying RFI,
the natural variability of spectral differences has to be relatively
small compared to RFI signatures, which is indeed the case
for land multivariate radiometer data. However, over the ocean,
spectral differences can change significantly with ocean surface
conditions (wind speed and direction) and atmospheric events
(water vapor, cloud, and precipitation), creating high natural
variation or large inherent uncertainties in RFI indices. There-
fore, the spectral difference technique has not been previously
used in ocean RFI identification.

To understand the natural variability of the RFI-free spectral
differences, we calculated the normalized histogram of SMMR
and WindSat RFI index RI from the
ten-day composite global EASE-Grid data that we have used
in previous section. In this case, global brightness temperatures
are separated into two groups of land and ocean data using a
static 10-km land mask dataset. Sea ice, land ice, island, and
coastal regions were excluded from the data. It is to be noted that
most of the 10-GHz RFI in the WindSat data in and around Eu-
rope were removed from the data by a 270-km coastal mask.
Therefore, the RFI distortion of the statistics should be limited.
Fig. 3(a) plots the normalized histogram of SMMR and WindSat
RFI index RI . The solid and dashed lines are for WindSat
and SMMR spectral differences, respectively. The land spectral
difference statistics for both sensors are close to a Gaussian dis-
tribution and have standard deviations of 3.2 K for SMMR and
4.7 K for WindSat. For the ocean spectral difference, its statis-
tics do not follow the Gaussian distribution and have standard
deviations of 9.4 K for SMMR and 14.5 K for WindSat, which
are about three times larger than their land spectral differences
for both sensors, highlighting the large natural variability of the
ocean spectral difference relative to land. Unlike land data his-
tograms, there are apparent disagreements on ocean histograms
between SMMR and WindSat, which are reflections of different
beamfilling effects for the two sensors. Over ocean, light to
moderate rain (less than 8 mm/h) can generate RFI index RI
as high as 90 , while RI over land is mostly less than 15
to 20 . Therefore, beamfilling affects RI histograms much
more over ocean than land.

Since Siberia has always been relatively RFI-free, we also
compared SMMR and WindSat spectral differences in this re-
gion, which is defined by latitude between 62 N and 72 N and
longitude between 90 E and 125 E. The data were extracted
from seven data-days covering July 1–7, 2003 for WindSat and
July 1–14, 1979 for SMMR (note that SMMR instrument was
switched on-and-off on alternate days). The 10-km land mask
dataset was again used to remove nonland pixels. Fig. 3(b) com-
pares the normalized histogram of RFI index RI for WindSat
(solid line) and SMMR (dashed line) over the Siberia region,
which shows very consistent statistics of spectral differences for
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Fig. 3. Normalized histogram of RFI index. (a) (Solid line) WindSat and
(dashed line) SMMR RI over global land and ocean. (b) RI over
Siberia, Russia for (solid line) WindSat and (dashed line) SMMR.

both sensors. The standard deviations are 1.4 K for WindSat and
1.8 K for SMMR. Their mean are also very consistent, being

and K, respectively. Therefore, WindSat and SMMR
have very consistent statistics on RFI-free spectral difference.

B. PCA-Based Land RFI Detection

In principle, RFI identification relies on two kinds of infor-
mation. The first one is the emission/scattering characteristics
represented by RFI indices, which is the physical informa-
tion determined by the Earth materials and structures of the
natural targets. The second one is the correlations between dif-
ferent channels or indices, which is the statistical information
introduced by natural variability of the targets. The spectral dif-
ference technique contrasts RFI and natural radiation through
emission/scattering signature and thus does not consider the
statistical information. On the other hand, a statistics-based
algorithm would consider only natural variability through
independent principal components without using any physical
information. Principal component analysis of RFI indices offers
an elegant way to combine the spectral difference technique
with channel correlation information. It generates an RFI-re-
lated principal component that is orthogonal to multivariate
natural radiations, therefore integrating statistics of target
emission/scattering characteristics and multivariate correlation
of radiometer data into a single statistical framework.

The RFI indices used in the principal component analysis are
RI RI RI

RI RI
RI
RI . Our goal

is to define and separate two endmembers: RFI and RFI-free
observations, which can be achieved through unsupervised
analysis using all the pertinent WindSat data in and around the
RFI-contaminated regions. To avoid coupling of RFI signals
between vertical and horizontal polarizations, RI and RI
were grouped into separated datasets with the rest of the RFI
indices and used in two independent PCA studies, which have
very similar results. RFI sources usually use polarized antennas.
One wants to avoid coupling V and H channels so that one can
better isolate the characteristics of the RFI. Furthermore, by
performing the RFI detection separately for each polarization,
one may find that only one of the two principal polarizations is
contaminated. Therefore, only the case for horizontal polariza-
tion will be presented here. The input data vector is given by
RI RI RI RI RI RI RI RI

RI , which represents a data cloud in a nine-dimensional
space . After the principal component decomposition, the
data points in space can be projected to a new set of orthog-
onal coordinate, namely the principal component score (PCS)

PCS RI RI (4)

where represents frequency from 6–37 GHz.
Fig. 4 shows the top three principal components of RFI

indices of WindSat data over the U.S. The first principal com-
ponent demonstrated a large contrast between large coefficients
(near 1.0) of RFI-contaminated RI and small coefficients
(about 0.03 to 0.1) for rest of the RFI-free indices, which
suggests that this component is PCA-identified RFI signal that
is decorrelated with natural radiations. For the second and third
principal components, the RI coefficients are small or near
zero, indicating RFI-free signatures. We also found that RI
coefficients of fourth or higher order components (not shown
here) are all very small.

Once the multivariate RFI indices data are decomposed into
orthogonal components, their information content and eigenvec-
tors can be analyzed to identify the RFI-related principal com-
ponents in a similar way to the process discussed in Section III.
The principal component scores of the RFI components are then
used to identify RFI-contaminated observations. Two RFI algo-
rithms were developed from these PCA studies: C- and X-band
land RFI algorithms. Each algorithm has separate sets of param-
eters for vertical and horizontal polarization.

WindSat PCA data analysis reveals widespread C-band land
RFI in many regions of the world, particularly in the U.S., the
Middle East, and Japan. As an example, Fig. 5(a) depicts C-band
land RFI principal component score (RPCS) over the U.S. for
horizontal polarization. RFI is identified for RPCS value greater
than zero. Higher RPCS values indicate stronger RFI. These
WindSat RFI distributions have many similarities to the ones
found in AMSR-E data [7], which is reasonable since WindSat
and AMSR-E have slightly different C-band center frequencies
but significantly different bandwidth, which are 6.8 GHz with
125 MHz for WindSat and 6.9 GHz with 300 MHz for AMSR-E.
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Fig. 4. Top three eigenvectors of WindSat RFI indices.

Most RFI are in or near cities or populated areas, and are per-
sistent for every satellite overpass. Interestingly, while the U.S.
shows a large amount of RFI, there is not much RFI in the
neighboring countries of Canada and Mexico. Although there
are no ground truth data available at this moment to objectively
evaluate the existing RFI detection techniques, it is neverthe-
less informative to compare spectral difference and PCA-based
methods in terms of their consistency and differences. Fig. 5(b)
plots the absolute differences between PCA-based and spec-
tral difference methods (PCA—Spectral Difference) for the RFI
map shown in Fig. 5(a). Clearly, the difference changes with
geophysical locations and is mostly under 2 K, although it can
exceed 5 K at some locations. This small difference is consis-
tent with the basic assumption of the spectral difference method,
which is that the RFI index has small natural variability over
land and can be used effectively to detect RFI except when it is
weak. In other words, the difference of the two RFI techniques
should be in the weak RFI range, as demonstrated in Fig. 5(b).

Fig. 5. WindSat C-band RFI distribution for horizontal polarization over the
U.S. using (top panel) a PCA-based method and (bottom panel) the absolute
difference between PCA-base and spectral difference methods (PCA minus
Spectral Difference).

Fig. 6. WindSat X-band PCA-based RFI distribution for horizontal
polarization over Europe.

WindSat X-band RFI is mostly found in Europe and Japan.
Fig. 6 plots an X-band land RPCS map for horizontal polariza-
tion over Europe. In this case, RFI is defined where RPCS values
are greater than 5. Similar to the C-band RFI, X-band RFI is
again strongly correlated with geopolitical boundaries. There is
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strong and widespread RFI in Great Britain and northern Italy.
Some weaker RFI is found along Italy’s coastal regions, and
some spotty ones are seen in Bosnia. Overall, the RFI distribu-
tion over Europe is much sparser than the RFI seen over the U.S.
It is also interesting that the RFI does not spread out into other
parts of Europe, including northern England. However, such RFI
maps often generate many intriguing questions about the source
of these interference signals that are difficult to answer based on
RFI distribution information alone. Exploring the linkage be-
tween observed RFI signals and man-made emitter sources is
beyond the scope of this paper.

C. Model Difference Method for Ocean RFI Detection

The idea behind the model difference technique is to pre-
dict “RFI-free” brightness temperatures at a specific channel
and define the positive difference between measured (TB) and
predicted brightness temperature (FB) as RFI intensity RI

[11]. Because RFI intensity has physical interpre-
tation, this technique is most desirable if the brightness temper-
ature can be predicted with sufficient accuracy, which is indeed
the case for ocean. Over the last decades, very well calibrated ra-
diative transfer models have been developed that can “predict”
brightness temperatures to within a few degrees. We can im-
plement the model difference method using a radiative transfer
model with inputs from results of numerical weather prediction
or retrievals from other satellite sensors. Alternatively, we can
utilize the very high channel correlations within the Windsat
data, as demonstrated in Section III, and use RFI-free chan-
nels to predict the RFI corrupted data. This method does not
need a radiative transfer model or ancillary dataset, and can be
readily implemented using multichannel regressions [10], [11].
The second approach was used in this paper. We determined that
oceans in the vicinities Europe and Argentina are RFI-contam-
inated regions since they are characterized by persistent high
brightness temperature residuals in a radiative transfer-based
ocean retrieval algorithm, which was developed for the WindSat
[15]. Only rain-free conditions are considered by this algorithm.
Excluding oceans near Europe and Argentina, the global oceans
are assumed to be RFI-free. Six months of global RFI-free ocean
data was collected from September 2003 to February 2004 ex-
cluding land, coastal region, and sea ice. These data were then
used as a training dataset to regress X-band channels against
the other WindSat channels. The predicted 10.7-GHz RFI-free
brightness temperature is given by

(5)

where is either the vertical or horizontal polarization
brightness temperature. represents every WindSat channel
except for those at 10.7- and 23.8-GHz frequencies. The regres-
sion errors have virtually zero mean and very small standard
deviations, which are 0.48 and 0.75 K for the 10.7-GHz vertical
and horizontal polarization channels, respectively. Such small
errors indicate that the regression accounts for virtually all

Fig. 7. WindSat X-band model difference-based RFI distribution for
horizontal polarization over the Mediterranean Sea and North Sea.

of the variance of the natural radiation. Next, this regression
was applied to predict RFI-free brightness temperatures in the
RFI-contaminated areas.

We applied the model difference technique to WindSat ocean
observations over Europe. Fig. 7 shows the RFI intensity map
of WindSat X-band horizontal polarization data in descending
passes from October 1–7, 2003. Clearly, there is very strong
ocean RFI in the WindSat X-band data, mostly in the Mediter-
ranean Sea. Three very bright RFI spots are located in the Adri-
atic Sea north of Italy, and some extensive ones around Sicily.
The RFI locations and strength are also quite persistent for every
satellite overpass with similar observation geometry, ruling out
any mobile sources on the ocean. The likely sources of these RFI
are broadcasting signals from European geostationary television
(TV) satellites [16] above the equator. At microwave frequen-
cies, the ocean surface has much larger reflectance than land
surface due to the high permittivity value of seawater. Given the
right viewing geometry and frequency, a spaceborne radiometer
can observe strong satellite broadcasting signals reflected off the
ocean surface, creating RFI over extended ocean areas. Such
RFI was not found in the ascending pass of WindSat because
the TV satellite signals are not in the forward looking direction
of WindSat.

To illustrate that the spectral difference technique is ineffec-
tive in detecting ocean RFI, in Fig. 8 we calculated spectral
difference or RFI Index RI using the
same data in Fig. 7 and compared it with the model differ-
ence technique in Fig. 7. As we can see, the spectral difference
method can indeed detect much of the ocean RFI shown in
Fig. 7, but it also misidentified a weather system at (9 W,
47 N) as RFI. There are also many misidentified RFI oc-
currences near coastal regions. At the global scale, we found
similar misidentifications distributed all over the ocean with
spatial patterns closely related to weather systems depicted by
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Fig. 8. Ocean RFI detections for X-band horizontal polarization using the
spectral difference method.

ocean surface wind, cloud, and rain variations. We could cer-
tainly increase the RFI index threshold value to remove these
“false alarm,” but such an adjustment would also remove some
moderate-level real RFI (below 15 K) in other regions. There-
fore, spectral difference technique is not optimal for ocean RFI
detection.

V. CONCLUSION

The RFI problem poses a significant challenge to current mi-
crowave missions including WindSat and AMSR-E, and will
remain a serious issue for planned future microwave missions
such as CMIS. A software/processing solution must be derived
to identify and remove RFI since an RFI hardware solution is
not likely to be able to suppress RFI globally and completely or
even reduce it to an insignificant level, owing to either the avail-
ability or the cost of “perfect” RFI suppression technology [6].
To better identify WindSat RFI contamination, as well as pro-
vide risk reduction for CMIS, we need to fully understand and
quantify the multivariate signatures of natural radiation and RFI
signals. In return, our improved knowledge of radiometer data
signatures will benefit us in developing effective RFI mitigation
solutions through instrument modification or data analysis. To
this end, we analyzed channel correlation, information content,
and principal components of WindSat and SMMR data. The
“RFI-free” SMMR data provided us an opportunity to contrast
RFI signatures from natural radiation. Based on these analyses,
we developed WindSat RFI detection algorithms using prin-
cipal component analysis and a channel regression technique.
Different from the spectral difference technique that use a pair
of channels, the new algorithms use multichannel data anal-
ysis and are effective in detecting RFI over both land and
ocean. However, the advantage of such a multivariate approach
cannot be fully validated without direct comparison with RFI

in situ data. During the joint Soil Moisture Experiment/Po-
larimetry Land Experiment in June–July 2005, we collected
a large amount of RFI in situ data using an airborne radiometer
and a ground-based RF emitter survey [17]. We plan to use such
a dataset to validate different RFI detection techniques in our
future studies.
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