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We examined how graph readers extracted specific information, integrated information and made 
inferences from choropleth graphs. We present a hierarchical framework of graph comprehension 
suggesting how graph readers extract these different types of information. Our framework suggests the 
cognitive operations required to extract these different types of information build in a hierarchical fashion 
as the complexity of the type of extraction increases. Empirical data gathered in our laboratory is reviewed 
in support of our hierarchical framework and implications are discussed.  
 

INTRODUCTION 
 

     In today’s data rich world, we are bombarded by 
information nearly everywhere we look. Because graphs are 
generally an optimal way to represent data, this information is 
often displayed in some kind of graphical format (Larkin & 
Simon, 1987).  For example, when reading the newspaper we 
often see many different types of graphs displaying data about 
things like population, stock prices, gross domestic product 
and unemployment. In order to be able to function in this data 
rich world, it is imperative that we have the necessary skills to 
interpret these graphs.  
     The skill to interpret the information displayed in graphs is 
so important to have, the National Council of Teachers of 
Mathematics has created guidelines to ensure that students 
learn these skills (NCTM: Standards for Mathematics, 2003). 
These guidelines are based primarily on the extraction of three 
different types of information from graphs: read-off, 
integration, and inference. Read-off’s require the graph reader 
to extract one or two explicitly represented data points from 
the graph. Integration involves the comparison of multiple 
points in the graph (e.g. evaluating the trend in the graph). 
The most difficult type of information extraction is making 
inferences which require the graph reader to go beyond the 
explicitly represented data to make some prediction based on 
the current data.  
     What cognitive processes do graph readers use to extract 
these different types of information from graphs? The 
classical theories of graph comprehension suggest that graph 
readers first read a question to determine what information 
they are being asked to extract from the graph (e.g., What is 
the price of tin in 2001?).  Parts of the question may be read 
multiple times (Peebles & Cheng, 2002).  Next, the participant 
searches for the specific information on the graph, shifting 

from the axes to the main part of the graph and back again 
(Carpenter & Shah, 1998; Kosslyn, 1989; Lohse, 1993; 
Pinker, 1990). Once the information is found, multiple 
saccades occur between the main part of the graph and the 
legend in order to keep the information in memory (Carpenter 
& Shah, 1998; Trafton, Marshall, Mintz, & Trickett, 2002). 
Finally, the question itself is answered. 
     Classical theories of graph comprehension have focused 
primarily on the extraction of specific information from 
simple graph types generally displaying relatively few data 
points. Do these theories account for how graph readers 
perform more complex extractions like integrating 
information and making inferences? Trickett, Ratwani, & 
Trafton (under review) examined whether the classical 
theories could account for the extraction of these different 
types of information and applied these theories to more 
complex graph types. Trickett et al. (under review) found that 
the classical theories were able to accurately account for the 
read-off of information in simple and complex graphs, but the 
theories had difficulty accounting for how graph readers 
integrated information and how graph readers made inferences 
from graphs.  
     When Trickett et al. (under review) applied the classical 
theories to integration questions, the theories had difficulty 
accounting for how graph readers combined the information 
from multiple data points, especially in the more complex 
graphs. For example, when there are 10 data points that need 
to be combined in order to extract the trend, the classical 
theories have difficulty with these operations. The theories 
cannot account for inferences because inferences require the 
graph reader to go beyond the explicitly represented data; 
classical theories do not specify how graph readers go beyond 
explicitly represented data.  



     The purpose of this paper is to work towards a theory of 
graph comprehension that accounts for how graph readers 
read-off, integrate, and make inferences from graphs. In an 
effort to work towards this theory, we propose a hierarchical 
framework of graph comprehension supported by experiments 
that have been conducted in our laboratory. In this paper we 
detail the hierarchical framework and review the empirical 
data that have been collected in our laboratory in support of 
the hierarchical framework.  
  

THE HIERARCHICAL FRAMEWORK 
 

     Following from the guidelines of the NCTM, a hierarchy 
of complexity exists in the extraction of information from 
graphs. Read-off’s are the simplest type of information 
extraction, followed by integration and then inferences. Our 
framework suggests that the cognitive processes required to 
extract these different types of information scale up in a 
hierarchical fashion with the difficulty of the extraction type. 
The read-off of information is the most basic type of 
extraction from graphs. The more complex integration of 
information will require read-off’s in addition to spatial 
transformations. Finally, in order to make inferences, graph 
readers will use the processes used for integration in addition 
to pattern extrapolation and mental models.    
     The cognitive processes required to read-off specific 
information from graphs is well specified by the classical 
theories of graph comprehension. In our experiments we 
replicated these processes. In order to integrate information in 
graphs, graph readers will use read-offs and spatial 
transformations. Spatial transformations are any mental 
manipulation of data in a graph, for example mentally moving 
one line next to another for comparison is a spatial 
transformation (Trafton, Trickett, & Mintz, in press). Spatial 
transformations allow graph readers to combine different 
areas of the graph, this operation can aid graph readers in 
comparisons and trend making processes.  
     When graph readers make inferences from graphs we 
believe they will use read-off’s, spatial transformations, 
pattern extrapolation and mental models. Graph readers may 
not use all of these processes, but may rely on a few of these 
operations in order to make inferences. Pattern extrapolation 
is a process by which graph readers examine known data 
points and then, based on the pattern of these data points, 
make an inference (Bott & Heit, 2004). Mental models may 
also be used to make inferences (Trafton et al., 2000). Trafton 
et al (2000) has shown that expert meteorologists form 
qualitative mental models when making inferences from 
meteorological visualizations.  
     Although our framework suggests which cognitive 
processes graph readers will use when extracting different 
types of information from graphs, graph readers are likely to 
use the simplest process possible to extract the desired 
information. For example, when integrating information, if 
made possible, graph readers will use mostly read-offs 
because read-offs are a simple way of extracting information 
from graphs and require very little cognitive effort in 
comparison to spatial transformations. Thus, while the 

hierarchical framework suggests what cognitive processes will 
be used when extracting these different types of information 
from graphs, other factors such as cognitive effort are likely to 
influence which operations are performed. Our framework 
serves to identify which processes are likely to be used to 
extract the desired information from the graph.  
 

EMPIRICAL SUPPORT 
 
     In order to illustrate the cognitive operations that are used 
to extract different types of information, we chose to use 
choropleth graphs. Choropleth graphs use different colors, 
shades of gray, or patterns to represent different quantities. 
Choropleth graphs were chosen for multiple reasons. First, 
they are more complex than the graph types used in more 
traditional studies of graph comprehension and better reflect 
how graphs are used in the real-world. Second, these 
particular graphs do not require a great deal of domain 
knowledge and can be presented to undergraduates without 
much training. Finally, choropleth graphs represent a class of 
graphs that are commonly used by scientists in such domains 
as meteorology, geology and oceanography.  

Read-off and Integration 
  
     We presented choropleth graph’s depicting the population 
of fifty fictitious counties to graph readers (Figure 2). Graph 
readers were asked both read-off and integration questions for 
each graph. The read-off question asked the graph reader to 
identify the current population of a specific county. The 
integration question asked the graph reader to identify the 
general trend in the graph (for more details of the method see 
Ratwani, Trafton, & Boehm-Davis, 2003). 
     We collected eye track data using an LC technologies 
eyegaze system operating at 60HZ. The eye track data were 
coded in two ways. First, we coded each gaze as either a 
reading gaze or a non-reading gaze. Gazes that were directly 
to county names were coded as reading gazes. Gazes that were 
to other parts of the graph were coded as non-reading gazes. 
Second, we coded the location of the gazes to the graph. A 
boundary edge gaze was defined as a gaze directed towards 
the edge of two different colored counties. An inner gaze was 
defined as a gaze to a solid color, either completely within one 
single county or to multiple counties of the same color. 
     When graph readers were answering read-off questions we 
expected their cognitive processes to follow suit with the 
classical theories of graph comprehension. Graph readers 
should first read the question, then search for the target county 
by reading county names, and then finally read-off the 
population value by looking at the legend. Based on the eye-
track data this is exactly what we found. Graph readers made 
significantly more reading gazes than non-reading gazes when 
answering read-off questions, χ2(1) = 32.0 p < .0001, as 
Figure 1 suggests. Thus graph readers are searching for the 
desired county by reading county names when answering 
read-off questions.  
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Figure 1: Number of reading and non-reading gazes.  
 
     Figure 2 is a sample of the eye track patterns observed 
when participants were asked to answer a read-off question. 
The graph reader first reads the question asking for the 
population of Palos Verdes County, then briefly searches for 
the target county by reading county names. Once the county is 
found, they quickly saccade to the legend to identify the 
population value. Each of the gazes to the graph itself are 
reading gazes in service of finding the target county.  
 

  
Figure 2. Eye track data when answering a read-off question.  
  
    Do graph readers use read-off’s and spatial transformations 
when integrating information as the hierarchical framework 
would suggest? We believe graph readers will form clusters of 
proximate same colored counties by fixating on the edges of 
these clusters. Graph readers therefore should make a large 
number of fixations at the edges of these groups of same 
colored counties in order to form clusters. The explicit 
formation of these clusters is a type of spatial transformation 
that allows the graph reader to integrate information in the 
graph. We do not expect many fixations to the names of 
counties since graph readers should be more interested in the 
formation of clusters as opposed to individual county 
information.  
    The eye track data suggest that graph readers are making 
more boundary edge gazes and are not as interested in 
reading. Graph readers made significantly more boundary 

edge gazes as compared to inner gazes, χ2(1) = 7.8 p < .01. In 
addition, the number of reading and non-reading gazes was 
nearly equal, as Figure 1 shows. The boundary edge gazes are 
in service of the formation of clusters, a type of spatial 
transformation, which allows the graph reader to evaluate the 
trend in the graph. Yet, graph readers are still reading off 
some information as indicated by 50% of the gazes still being 
directed towards reading county names.  
    Figure 3 shows the eye track data from a participant 
answering an integration question. The graph reader’s make 
gazes to the boundary edges of proximate same colored 
counties in an effort to form clusters. These clusters can then 
be used in the reasoning process to evaluate the trend. After 
forming clusters, graph readers evaluated the trend in the 
graph by using these clusters in their verbal responses. 
  

 
Figure 3. Eye track data when answering an integration 
question.  
 
     As the eye track data show when graph readers are 
answering read-off questions, the cognitive processes follow 
suit with current theories of graph comprehension. When 
graph readers are answering integration questions, the eye 
track data is in agreement with the hierarchical framework of 
graph comprehension. Graph readers are using spatial 
transformations by forming clusters of counties and graph 
readers are reading-off some specific county information.  
 
Inferences 
 
     To examine how graph readers made inferences, we 
presented graph readers with a series of choropleth graphs 
depicting population over a 10 year period. Participants were 
presented with three choropleth graphs, one from 1990, 1995 
and 2000; the graphs were similar to those used in previous 
experiments. The participants were asked to infer the 
population of a specific county in the year 2005. The 
population of the specific target county did not change in the 
graph, however, the surrounding counties did change in 
population. The surrounding counties changed in population 
(i.e. decreased or increased) such that there was a strong 



contextual indication that the population of the target county 
would either increase or decrease in the future time period (for 
more details see Ratwani & Trafton, in press).  
     Eye track data were collected using an LC Technologies 
eyegaze system operating at 60HZ. We coded the location of 
gazes to the graph in relation to the target county. Thus, gazes 
to other counties in the graph were coded by counting how 
many counties away the gaze was from the target county. We 
also coded when participants gazed at a county that changed 
in population compared to the previous graph they examined. 
For example, if a participant looked at county A in the graph 
from 1990 and then looked at county A in the graph from 
1995 and county A changed in population over this time 
period, this was coded. 
     In order to make an inference based on these graphs one 
would have to examine the influence of the surrounding 
counties on the target county in each of the graphs and then 
across all three of the graphs. The hierarchical framework 
suggests that graph readers would have to use read-off’s, 
spatial transformations, pattern extrapolation, and mental 
models in order to make these inferences. Once they examine 
all of the information in each of the graphs they can determine 
whether the target county will change in population. In this 
experiment we chose to focus on read-off’s, spatial 
transformations, and pattern extrapolation. The use of mental 
models may be heavily dependent on domain knowledge. 
Because these graph types were selected for undergraduate 
university students to understand they do not require much 
domain knowledge.  
     Participants either responded that the population of the 
target county would change in the direction of the surronding 
counties or that the population of the target county would not 
change. None of the participants responded that the target 
county would change in the opposite direction of the 
surrounding counties. Each participant was fairly consistent in 
their responses, that is they either always said the population 
would change or always said the population would not 
change.  
    The graph readers who said the population of the target 
county would not change appeared to only pay attention to the 
target county in each of the three graphs. These graph readers 
did not examine the surrounding counties when making an 
inference. As Figure 4 suggests, these graph readers primarily 
focused on the target county in the graphs. These graph 
readers made very few gazes to non-target counties and made 
few change gazes. Figure 5 shows the distribution of gaze 
location when graph readers made non-change and change 
responses. Graph readers who made non-change responses 
focused primarily on the target county, represented by the zero 
in the graph. These graph readers did not use all of the 
information displayed in the graphs as indicated by their eye 
movements. Because these graph readers simply focused on 
the target county they did not consider the heavy contextual 
influence of the surrounding counties.   
     Alternatively, the graph readers who said the target county 
would change in population used read-off’s, spatial 
transformations and pattern extrapolation. Graph readers using 
this strategy appeared to integrate information in two ways: 

(1) they integrated information within the graph by examining 
the target county and surrounding counties, and (2) they 
integrated information across graphs by comparing particular 
areas that changed in population to see how the population 
increased or decreased.  
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Figure 4. Location of gazes given an inference question.  
 
    As Figure 4 shows, when graph readers said the population 
of the target county would change, they integrated information 
within the graph by examining the target county and counties 
surrounding the target county. Figure 5 shows that graph 
readers who made change responses looked at more counties 
away from the target on average. Thus, they are integrating 
information within a graph by combining the target county 
information and the information from surrounding counties.  
 

Distance of Gazes from Target

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 1 2 3 4 5 6 7 8
Distance 

A
ve

ra
ge

 F
re

qu
en

cy

Non-change Response
Change Response

 
Figure 5. Distribution of the gazes to the graph by county 
location.  
 
     Graph readers who made change responses integrated 
information across the graphs by examining counties that 
changed in population relative to the previous graph they 
examined, as suggested by the number of change gazes in 
Figure 4. These change gazes suggest that participants are 
comparing the same county across graphs to see how the 
population is changing in the particular county. Graph readers 
who said the population of the target county would change 
went back and forth between graphs more often then graph 
readers who said the population of the target county would not 
change. Thus, information is integrated across graphs by 
comparing a few counties in each graph to understand how the 
population is changing.  



    Do these two strategies of making inferences fit with our 
hierarchical framework? Graph readers who did not use read-
offs, spatial transformations and pattern extrapolation 
consequently did no evaluate all of the information in the 
graph and thus made a non-change response. Graph readers 
who appropriately evaluated all of the information in the 
graph did perform read-off’s, spatial transformations, and 
pattern extrapolation and consequently made a change 
response.  

 
GENERAL DISCUSSION 

 
    The hierarchical framework of graph comprehension serves 
to identify what cognitive processes are used when graph 
readers extract different types of information from graphs. 
Graph readers may not always use these processes; they are 
likely to use whatever processes are easiest for them to 
perform. Our framework suggests that the cognitive processes 
required to extract information depends on the complexity of 
the information being extracted from the graph. Reading-off 
information from the graph is the easiest and most basic type 
of information extraction. The classical theories of graph 
comprehension adequately account for this process. However, 
the classical theories do not adequately account for how graph 
readers integrate information or make inferences from graphs.  
    The integration of information and making inferences from 
graphs are much more difficult types of extractions. Our 
framework suggests the integration of information requires 
spatial transformations and read-offs. In order to integrate 
information in the choropleth graphs, graph readers explicitly 
formed clusters and then used these clusters to evaluate the 
general trend.  This spatial transformation of the data allowed 
the graph readers to more easily reason with the data in the 
graph. 
    The processes used to make inferences build from the 
processes used to integrate information; graph readers use 
read-off’s, spatial transformations, pattern extrapolation and 
mental models to make inferences. With the choropleth graphs 
used in our experiments, we focused on read-off’s, spatial 
transformations and pattern extrapolation. Graph readers 
integrated information within the graph by combining target 
county information with the surrounding county information. 
Information was integrated across graphs by mentally 
comparing counties that changed in population across the 
three time periods. 
    Although we have shown that the hierarchal framework 
accounts for the processes used to make read-offs, integrate 
information and make inferences from choropleth graphs 
other graph types need to be examined. We believe our 
framework outlines the general processes that will be used to 
extract these different types of information. However, the 
specific processes, for example the specific types of spatial 
transformations performed, are likely to change depending on 
the specific type of graph being examined. Thus, other graph 
types such as line graphs and bar charts need to be examined 
to see how well the hierarchical framework accounts for the 
extraction of these different types of information in those 
graph types.  

    There is large body of empirical data examining how graph 
readers extract specific information from graphs. There are far 
fewer studies examining how graph readers integrate 
information in graphs, and even fewer studies examining how 
inferences are made. It is difficult to put forward a theory 
specifying how graph readers integrate information and make 
inferences from graphs when there is very little empirical data 
examining how these processes occur. What is needed is more 
empirical data systematically examining how graph readers 
make these extractions form different graph types. Once there 
is a greater body of empirical data examining these processes, 
a strong theory of graph comprehension can be put forward 
accounting for how these different types of information 
extraction occur. 
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