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Abstract 

 How do problem solvers represent visual-spatial information in complex problem solving 

tasks? This paper explores the predictions of symbolic computation, embodied problem solving 

and a neurocomputational theory for what factors influence internal representation choices. 

Across two studies, data are collected from experts and novices in three different, complex 

visual-spatial problem-solving domains (weather forecasting, submarine target motion analysis, 

and fMRI data analysis). Internal spatial representations are coded from spontaneous gestures 

made during cued-recall summaries of problem solving activities. Analyses of domain 

differences, expertise differences, and changes over time with problem solving suggest that 

neurocomputational constraints play a larger role than the nature of the visual input or the nature 

of the underlying real world being examined through problem solving, especially for expert 

problem solvers. The particular neurocomptuational feature that was found to drive internal 

representation choice is the required spatial precision of the main goals of problem solving. 
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Representations and Complex Problem Solving 

A core thesis of cognitive science is that representations, be they structures inside the head of 

the problem solver (internal representations) or structures in the environment of the problem 

solver (external representations), are fundamental to understanding problem solving behavior 

(Markman, 1999). There may be some debate about the underlying nature of these 

representations (e.g., the relative weight that problem solvers place on internal versus external 

representations, whether the representations are symbolic or not), but all cognitive scientists 

endorse some form of underlying representation driving behavior (Dietrich & Markman, 2000). 

The value of talking about representation is that computation (the definitional core of 

cognition in cognitive science) can only be meaningfully defined over some type of 

representation. Computation at its root consists of a data structure (for input, output, and perhaps 

something being stored in between) and some process. One cannot talk about the process without 

describing the data structure. More importantly, different data structures enable certain 

computations to be done easily, whereas other data structures support other computations. Thus, 

the choice of data structure (representation) helps explain why a problem solver does or does not 

successfully engage in a given process (cognition/behavior) or perhaps why a process takes as 

long or as short as it does. 

The goal of this chapter is to argue that representation can and should be studied directly 

rather than be ignored or left as an explanatory variable. We begin with a discussion of how 

representations can be measured. We then examine several of the main theoretical paradigms of 

cognitive science to see what predictions they make for representation choice. Finally, we 

present data from two studies designed to test these predictions. 
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Measuring Representations 

While the theoretical construct of representations are fundamental to cognitive science 

theorizing, the dirty secret of cognitive science is that we do not have a good theory for 

predicting what representations a given problem solver in a given situation will use. The most 

common treatment of representation is as an explanatory, intermediate (i.e., hidden) variable of 

performance. In other words, we observe inputs and outputs, and perhaps infer process via a 

description of intermediate states, but the representation is something only posited or assumed in 

order to explain the relationship between inputs and outputs. 

To help explain why we do not have theories of how problem solvers pick a representation, 

we unpack in this section the basic measurement problem for internal and external 

representations. On some occasions, there is some attempt to measure the representations used 

by the problem solvers, to verify the assumptions that were made about the representations. 

Measuring representations is no easy feat. Even with external representations, the measurement 

task is challenging. Different observers can 'see' different things in the world around them. 

Humans are fundamentally limited in how much information they can attend from their 

perceptual input (Treisman, 1969). Thus, we do not know what information in the environment 

to which they are attending. In a complex problem-solving situation, the external environment 

can be quite complex, and thus there can be a very large amount of information that is not 

attended. Then there are the interactions of human perception with displays. Some perceptual 

features are salient and easily encoded (e.g., strong color contrasts, motion onset, object 

appearance) whereas other perceptual features not salient or not so easily encoded (e.g., 

conjunctions of features, absolute pitch of sounds, etc.). Operations are easier on some external 
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representations than on other external representations, and cognitive science talks about this 

interaction as affordances (Neisser, 1976). 

So, to capture what external representations a problem solver is using, we need to know what 

objects in the environment and what features of the objects are being attended, rather than just 

looking at what perceptual input is available in the environment and how it is structured. To 

some extent, we can measure what visual objects are being encoded through eye-tracking 

studies—people encode primarily what objects they foveate, and they tend to foveate objects 

they are thinking about (Just & Carpenter, 1976a, 1976b). But, people do encode some 

information from parafovea, and they sometimes do not encode information while staring 

blankly at the environment while their mind is elsewhere. 

Another approach to measuring external representations is a mixture of ethnographic or 

quantitative observation and interviews (Hutchins, 1995a). The external objects that problem 

solvers name or discuss while problem solving provide some good clues to what objects and 

features of the external environment are being attended. However, linguistics manifestations of 

the perceptual inputs in conversation may be systematically changed or selective, and may 

exclude some of the perceptual inputs that were attended. Thus, measuring external 

representations continues to be a challenging task. 

Even more challenging is the task of measuring internal representations. Even when 

information is represented using a fairly perceptual-based internal representation, people are 

capable of recoding information from one perceptual code into another. For example, people 

given words visually will often transform the words into an auditory code (thereby producing 

auditory confusion errors rather than visual confusion errors). More problematic are recodings of 

input into more symbolic, abstract forms. People can build mental links between objects that aid 
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later retrieval (Altmann & Trafton, 2002), develop new groupings of objects (called chunks) 

allowing them to simultaneously represent more information in mind, and categorize objects in 

ways unrelated to their perceptual input (e.g., the categories of 'even numbers', 'uncles', and 

'abstract categories'). 

Internal representations can only be measured indirectly, if 'measured' is even the correct 

term. The basic problem is that we must typically look for some kind of external manifestation of 

the internal representation and that external manifestation may be only a distant echo or heavily 

distorted copy of the internal representation. For example, we can ask a problem solver to draw a 

picture or verbally describe a given situation. The drawing may omit verbal representations, the 

verbal description may miss visual/spatial descriptions, both may be incomplete descriptions of 

those sensory-based representations, and both may be missing more abstract representations. 

Moreover, the act of having to describe the situation may push the problem solver to represent 

features they would not have otherwise mentioned, but only looking at spontaneous produced 

external manifestations (e.g., spontaneous speech, gesture, or drawings) may only capture 

communicatively-focused representations. 

One approach to measuring internal representations more directly is to use 

neuropsychological techniques such as neuroimaging (MEG, fMRI, ERP, or PET) or single-cell 

recording. While this approach holds some promise for more direct measurement, the 

methodological challenges of these methods (e.g., spatial and temporal resolution, extremely 

high noise levels) prevent their use in most complex problem solving situations, and currently we 

know relatively little about the internal codes of the brain (i.e., what activation in different brain 

areas even means). 
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The reason that we discussed the basic measurement problem for internal and external 

representations is to help explain why we do not have theories of how problem solvers pick a 

representation. The answer is that we rarely go to the trouble of measuring representations, and 

when we do, we are not so sure we have done it correctly. Thus, the set of results or phenomena 

related to representation choice is rather thin, and this would explain why we do not have much 

theorizing about representation choice. 

Theorizing about Representation Choice 

While there are relatively few theories of representation choice (i.e., how problem solvers 

choose representations) in cognitive science relative to how important representation choice is to 

cognitive science, there are some theories (e.g., Kaplan & Simon, 1990; e.g., Lovett & Schunn, 

1999). This theories can be summarized under the heading of Search and Rational Choice: 

problem solvers consider different representations when they are unsuccessful and select the 

representations that turn out to lead to more successful problem solving. There is also an 

assumption that problem solvers start with certain salient features, but there is no theoretical 

specification of what features will be salient. 

There is, however, considerable theorizing about the consequences of different representation 

choices. By applying this same general idea of rational choice, this broad theorizing about 

consequences can be turned into theories of choice. Specifically, with some form of rationality or 

asymptotic optimality assumptions, one could predict that problem solvers will tend to select the 

more useful or optimal representations, especially with expertise. While rationality and 

optimality are still somewhat controversial theoretical assumptions, they are not so controversial 

when 1) we limit ourselves to directional optimality (i.e., better is more likely than worse), and 

2) we focus on the case of expert behavior. Of course, experts also likely to be limited to some 
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form of bounded rationality (Simon, 1956), and it is possible for experts to get “stuck” using a 

representation chosen early but that becomes relatively successful through high levels of 

practice. 

In terms of consequences of representation choice, we believe there are three broad 

theoretical camps in cognitive science: symbolic problem solving, embodied problem solving, 

and neurocomputational problem solving. If we apply this rationality assumption to these 

different theoretical camps, we can derive different predictions about representation choice. The 

goal of this chapter is to spell out these predictions, and explore their relative usefulness for 

predicting representation choice in several complex problem-solving domains in which experts 

work with highly uncertain visual data. 

Representations in Symbolic Problem Solving 

Cognitive science began with a focus on the internal and a focus on symbol processing. This 

approach was heavily centered in Pittsburgh and was heavily influenced by Herb Simon (Chi, 

Feltovich, & Glaser, 1981; Kaplan & Simon, 1990; Klahr & Dunbar, 1988; Kotovsky, Hayes, & 

Simon, 1985; Larkin, McDermott, Simon, & Simon, 1980; Lovett & Schunn, 1999). The 

assumption of this symbolic problem solving camp is that representation is determined by task 

structure (in their language, the problem space) modulo various memory limitations. More 

specifically, experts are assumed to have representations that strip away irrelevant details and 

focus upon or build features that highlight the deep structure of the task at hand. For example, in 

a classic study, Chi, Feltovich, and Glaser (1981) found that physics experts represented simple 

physics problems not in their superficial terms (incline planes, pulley problems, etc), but in terms 

of their solution types (conservation of energy problems, F=ma problems, etc). 
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In terms of the constraints from the external world, the symbolic problem solving approach 

does not say much. Internal representations must be derivable in some ways from the external 

input, and it is assumed that people incur some processing costs for encoding and transformation. 

But there is not a detailed or higher-level theory for how the external world would shape the 

representational choice of an expert. 

In terms of constraints of the internal world (i.e., the brain), the symbolic problem solving 

approach places even fewer constraints as a general theoretical approach. When one gets into 

particular theories, memory constraints may become apparent. For example, expertise, in some 

accounts, is not thought to change the number of chunks a person can hold onto in memory. 

However, the size of chunks is not theoretically constrained, and some theories posit that experts 

can learn higher order structures which allow them to circumvent the number of chunks 

constraint as well (Gobet & Simon, 1996). Thus, even the memory constraint is not very 

constraining in terms of predicting expert representation choice. 

In sum, although the symbolic problem solving approach assumes that representation choice 

is one of the most important issues in predicting behavior, it says relatively little about how 

individuals make that choice. At most, the symbolic camp makes the general prediction that 

people start with representations that focus on salient or superficial features and move to 

representations that somehow better facilitate task-relevant computations (Lovett & Schunn, 

1999). 

Representations in Embodied Problem Solving 

 Beginning in the late 1970s, some researchers began to look to the structure of the external 

environment, and more specifically, the ways in which the human body fit into the structure of 

the external environment to explain human cognition and performance (Gibson, 1979; Neisser, 
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1976), rather than focusing so heavily on logical task structure and internal symbol manipulation. 

Several different lines of theorizing developed under this approach, including situated cognition 

(Suchman, 1987), distributed cognition (Hutchins, 1995a, 1995b), embodied action (Fu & Gray, 

2004; Gray, John, & Atwood, 1993), and perceptual symbol systems (Barsalou, 1999). For 

example, Ed Hutchins showed in great detail how the performance of an airplane pilot depends 

upon being able to apply simple perceptual heuristics to correctly laid-out instruments. 

An important construct in many (but not all) lines in this general approach is the notion of 

affordances. A display, instrument, or artifact is thought to afford certain actions and cognitions 

and not afford others, meaning the combination of past experiences and body/mind structure 

make certain actions very easy to do with a given display, instrument, or artifact. Along these 

lines, one might argue that experts adopt internal representations that maximize the affordances 

relationship between common tasks and external objects used to execute those tasks. Yet, 

without a very formal description of what affordances are and a predictive framework for 

specifying what affordances come from what tasks, the affordances framework tends to be 

circular in nature. Affordances are said to exist in an object when we observe smooth 

performance with that object. In other words, affordances are used to both describe and explain 

referentially to one another. 

A different, more straightforward prediction of representation choice from the embodied 

problem solving approach is to predict an internalization of the external. If cognition and 

problem solving is so heavily driven by the external world, then internal representations must be 

closely tied to the external world. That is, the choice of internal representation must be heavily 

driven by the nature of the external input (e.g., if input is 2-dimensional, then internal 

representations are likely to be 2-dimensional, though cf. Scaife and Rogers (1996)). 
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A related prediction focuses on the action rather than input side of performance. Sometimes 

input is in one form, but our actions occur in a different form. For example, the input a 

submariner gets from Sonar is very 2-dimensional, but the actions they take move the submarine 

in 3-dimensions. The expert problem solver may adopt an internal representation that is close to 

the external input form, thereby reducing the complexity of computations going from input to 

cognition. Alternatively, the expert problem solver may adopt an internal representation that is 

close to the external action form, thereby reducing the complexity of computations going from 

cognition to action. Thus, one could also predict from the embodied problem solving perspective 

that choice of internal representations are driven by the external reality of the action space that 

the problem solver is working within. 

In sum, the embodied problem solving perspective predicts a close match in internal 

representation choice to either the input representations or the output environment. 

Representations in Neurocomputational Problem Solving 

While the abstract and embodied problem solving perspectives are themselves very different, 

they share a belief about the very adaptable nature of human representations—at some level, any 

internal representation is possible, given an appropriate task and/or appropriate external input. Or 

said another way, at some level, the details of the human brain are irrelevant to predicting the 

range of possible expert internal representations or the choice among possible representations. 

At the same time, we now know a great deal about the way the human brain processes 

perceptual information. Since the early 1960s, we have known that the brain has very specific 

maps of perceptual information (Hubel & Wiesel, 1962). Since the 1980s, we have known that 

the brain has elaborate pathways by which complex representations of perceptual information are 

gradually and carefully constructed (Ungerleider & Mishkin, 1982). Whiles these pathways must 
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be rebuilt within each person through development, the general structure is very similar from 

individual to individual. The structure, therefore, is primarily driven by a genetic code, or at least 

a genetic code interacting with general features of the overall environment that are the same for 

everyone. Therefore, the structure of these perceptual pathways is not likely to vary significantly 

across individuals with different areas of expertise. 

Is the way that humans process perceptual information relevant to internal representation 

structure? In the 1970s and 1980s, there was considerable debate about whether mental imagery 

was entirely symbolic or more analog in format, and about whether it relied entirely on higher 

level cognition or whether the basic perceptual machinery was involved (e.g., Kosslyn, Ball, & 

Reiser, 1978; Kosslyn, Pinker, Smith, & Shwartz, 1979; e.g., Pylyshyn, 1973; Pylyshyn, 1981). 

By the 1990s, most researchers considered the issue resolved with the introduction of 

neuroscience evidence that showed clearly that mental imagery depended heavily upon all the 

same neural structures as did perception, except the very earliest part of perceptual pathways 

(Kosslyn, 1994; Kosslyn et al., 1999; Kosslyn, Thompson, Kim, & Alpert, 1995), although there 

is still some ongoing debate (Pylyshyn, 2002). 

In sum, human brains have complex information processing pathways that process 

information in very particular ways and are common across individuals regardless of expertise, 

and those processing pathways are used for at least some internal representations. From that 

point of view, it seems plausible that the details of our neurobiology would influence the range 

of possible internal representations that an expert could have. This restriction of choices is 

particularly relevant for representations that have a perceptual or analog character rather than 

purely symbolic flavor, in part because we understand in great detail the perceptual systems in 

the brain but understand very little about the symbol manipulation systems in the brain. On the 
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other hand, the cognitive architectures approach to modeling cognition (e.g., Anderson & 

Lebiere, 1998; Kieras & Meyer, 1997; Newell, 1990) also support the general idea that the 

underlying cognitive architecture places some restrictions, albeit relatively weak thus far 

(Anderson, 1990), on what kinds of representation systems are possible. Thus, there may also be 

neurocomputational restrictions of choices of more symbolic representations as well. 

Because we have now wandered into the realm of biology, it may be worth bringing forward 

a framework from biology for understanding how new representations come about. In biology, 

the new representations are external physiological changes in a species, or creations of new 

species. In our case, the new representations are new internal representations with developing 

expertise. The symbolic problem-solving framework corresponds to the biological notion of 

adaptation: new representations are developed by adapting existing representations to the current 

task structure (Kaplan & Simon, 1990; Schunn & Klahr, 1996, 2000). The embodied problem-

solving framework corresponds to notions of an analog (rather than homolog). Analogs are 

structures that arise from a different evolutionary source but serve similar functions, whereas 

homologs are structures that arise from similar evolutionary sources. The internal representation 

in the embodied problem-solving framework is thought to be at some level a copy of input or 

output representations, selected from a different neural substrate to serve a similar function (i.e., 

an analog). By contrast, the neurocomputational problem-solving framework corresponds to 

notions of exaptation (Gould & Vrba, 1982). Under this account, internal representations that 

were developed over evolutionary time for one set of tasks can become co-opted or exapted to a 

new use as new tasks occur. To be more specific, the human problem solver is born with internal 

representational abilities that were there to support very traditional tasks shared with other 

mammals (e.g., object recognition, object manipulation, navigation, etc). The human problem 
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solver must make use of those fixed set of representational abilities to build representations for 

the range of modern tasks that humans now become expert in. 

Following this line of argument further, we can then move to understanding the influence of 

neurocomputational constraints on the choice of particular representations for a particular task, 

not just on the set of possible representations. The trick is to focus on notions of efficiency or 

affordances, as do the abstract and embodied problem solving frameworks. Different 

neuropsychological representational systems represent information in different ways in order to 

support different tasks (Previc, 1998; Ungerleider & Mishkin, 1982), implying that some 

computations are accurately or more quickly performed with some representational systems than 

with others. Therefore, as with exaptation in biology, we can predict that expert problem-solvers 

will tend to select the internal representation system whose neurocomputational abilities best 

support the expert's task at hand. For example, if the task requires the expert to represent 

themselves at the center of a full 360 degree space of mental objects placed around them, and if 

only one neural system supports representations in the full 360 (rather than just a frontal 120 or 

180), then this approach would predict in a rather straightforward fashion that the problem solver 

would use that neural system for internal representations of this task. We will say more about 

different possible human neural systems and their neurocomputational abilities in a later section. 

Comparison of Representational Predictions 

Table 1 presents a comparison of the general predictions made about internal representation 

under the three theoretical camps. All three camps agree that affordances should matter in that 

experts will choose internal representations that best match the cognitions that need to be 

performed, and that different representations have different affordances. At some level, all three 

camps agree with the basic characterization provided originally by the symbolic camp that the 
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story of affordances is best cast in computational terms—affordances reduce necessary 

computations by the problem solver. 

The camps do differ in exactly how the affordances are described. More specifically, they 

differ in the objects against which affordances are primarily defined. This focus brings us to the 

second dimension of comparison, the issue of whether the external world matters. The symbolic 

camp is somewhat neutral on this point. The external world may or may not influence internal 

representation choice, depending upon whether there are features of the external world that are 

particularly helpful. In other words, if the structure of the external world is not useful for the 

problem solver, then the problem solver may choose to work entirely within an internally 

constructed representation that has little to no relationship to the external world. One can point to 

characterizations of insight problems in these terms: one core trick in solving the insight problem 

is to move away from the salient details of the external world and develop a new representation 

(Kaplan & Simon, 1990; Perkins, 1994). 

By contrast, the embodied problem solver camp predicts that the external world will have a 

strong role in influencing internal representations. The reason is that the embodied problem 

solving perspective assumes that experts organize their external worlds such that they can make 

heavy use of the external world to guide their problem solving (Hutchins, 1995a). In other words, 

there is a belief that real world tasks are typically embedded in complex socio-technical systems 

that are influenced by the individual expert problem solver (in which parts of their rich 

environment they chose to use) and by collections of expert problem solvers (in influencing the 

construction of artifacts). Expert problem solvers thereby make it possible for their internal 

representations to have a close affinity to the external world around them, simplifying the 

translation between internal and external, and yet still have very successful problem solving. 
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The neurocomputational problem solver chooses a more nuanced and complex stance on the 

role of the external world on internal representation choice. The human perceptual system 

involves a division and modulation of separate perceptual features along with some integration 

across perceptual modalities. For example, vision can be processed separately from sound, and 

even within vision, color can be processed separately from orientation, and object identity can be 

processed separately from object location. At the same time, the brain can also integrate across 

very different senses, building, for example, a spatial map of the environment from visual, 

auditory, and tactile cues (Previc, 1998). Attention adds another layer, by being able to reduce or 

even remove the processing of certain streams of information (Broadbent, 1957; Pylyshyn, 1994; 

Treisman, 1969). The bottom line is that the neurocomputational perspective assumes that the 

external world has a strong influence on internal representation choice because our internal 

representational machinery makes heavy use of perceptual processing systems, but that the 

problem solver has the ability to ignore certain perceptual inputs. Thus, only perceptually 

segmentable aspects of the external environment that need to be processed for the task at hand 

will influence internal representation choice. The perceptually segmentable constraint on what 

can be treated separately depends upon the neurophysiological limits of our perceptual system. 

What is segmentable is a complex story that we cannot fully unpack here, but it is sufficient for 

our purposes here to say that some features can be processed separately whereas others cannot 

(Wolfe, 1994).  

The final dimension of comparison is the space of possible choices of internal 

representations. For the symbolic and embodied problem solving camps, essentially anything, in 

theory, is possible. For the symbolic problem solving perspective, the set of likely choices are 

likely to be mostly symbolic in one way or another, although a mixture of symbolic and analog is 
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possible (Larkin & Simon, 1987; Tabachneck-Schijf, Leonardo, & Simon, 1997). For the 

embodied problem solver perspective, the choices are obviously heavily influenced by the 

external world, but essentially anything in the external world could be mimicked internally, at 

least in theory. The perspective that is most distinctive on this dimension is the 

neurocomputational problem solving perspective. The neurocomputational perspective holds that 

the problem solver can only use a very fixed set of representational schemes. This fixed set is 

instantiated as human brain systems and is heavily determined by evolutionarily important tasks. 

Testing the Theoretical Camps 

No simple set of experiments can easily test between very different theoretical paradigms 

because of the all the additional assumptions required to account for a particular experimental 

situation. However, we can ask how useful the different paradigms are for explaining internal 

representational choice in a few cases. In this chapter, we describe two studies designed to look 

at internal representations of experts, and the situations of these experiments were chosen such 

that the different theoretical camps would make different concrete predictions for internal 

representation choice. In particular, we examined representation choice in how experts deal with 

uncertainty while analyzing complex visual/spatial data. We realize that we cannot generalize 

from these studies to the utility of the different theoretical camps overall. However, these studies 

do provide a concrete example of how one can empirically test between the utility of the 

different paradigms. 

Both studies examine one very particular aspect of representation: how people represent 

visual/spatial information. The world is 3-dimensional, but most information sources that experts 

in complex domains interact with are 2-dimensional (e.g., paper and computer screens). The 

world exists relative to the problem-solver in egocentric terms, but information sources often 
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present visual/spatial data in exocentric terms. The world is life-sized (again by definition), but 

expert information sources often present scaled versions, either much larger (e.g., via 

microscopes) or much smaller (e.g., satellite images). Given this diversity of reality and input, 

how will the problem solver represent their problem solving states internally?  

The symbolic camp tells us to conduct a task analysis. Find out what strategies and 

representations are possible, and which are most efficient for the task at hand. The embodied 

problem solving camp suggests that representations will match either the form of the external 

input or the external reality of the problem. What about the neurocomputational problem solver? 

Here the devil is in the details—in order to develop predictions, we need to select an account 

(among several competing accounts) for how the brain represents visual/spatial information. We 

have selected the ACT-R/S theory, and explain it with just enough detail so that the predictions 

can be made for our current needs. 

 Brief Overview of ACT-R/S 

ACT-R/S (Harrison & Schunn, 2001) is a neurocomputational theory of the visual/spatial 

representational and computational abilities of the human mind. It integrates current 

neuroscientific understanding of how the human brain represents visual/spatial information into 

the ACT-R 5.0 (Anderson, Bothell, Byrne, & LeBiere, 2002) view of how the mind achieves 

complex problem solving through a rich mixture environment encoding, memory retrievals, and 

skill applications through goal-directed behavior. In particular, ACT-R/S posits that there are 

three different visual/spatial representations (see Figure 1), which we call buffers. The three 

representations make use of different neural pathways, tend to get used for different kinds of 

basic perceptual/motor tasks, have fundamentally different ways of representing space, and have 
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different strengths and weaknesses. Note that these buffers are multimodal in that they integrate 

spatial information coming from vision, audition, touch, locomotion, and joint sensors. 

The first representation is the Visual Buffer. It is used for object identification and 

represents information primarily around the region that they eyes are attending to, and represents 

information in approximate shape terms and approximate size and location. Historically, this 

buffer has been called the "What" visual pathway. Its representation of the world is primarily a 2-

dimensional world, with objects occupying space in the fronto-parallel plane (i.e., like on a 

computer screen or chart on the wall in front of you). That is, there are approximate above/below 

and left/right relationships, but no strong distance and exact orientation information. 

The second representation is the Manipulative Buffer. Historically, it has been called the 

"Where" visual pathway. It is used for grasping objects and tracking of moving of objects, 

representing information close to within reach, but also all the way around the person. It 

represents spatial information in highly accurate metric terms, which is required for object 

manipulation, and in a true 3-D fashion. It is not good at figuring out what objects are, but it 

knows exactly where they are and what there component shapes are. 

The third representation is the Configural Buffer. It is used for navigation in small and 

large spaces, figuring out where you are, where you want to go, and how to get there. It 

represents information in terms of egocentric range vectors to blobs (e.g., the desk is 

approximately so far away, with the left and right side being at such and such angles from me). 

Locations are configurations of such vectors (e.g., I am at the location that is so far away from 

the door and such distance from the window, with a given angle between the two).  
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Complex-Problem Solving, Representation choice, and ACT-R/S 

The strong assumption in ACT-R/S is that these three representations are the only 

representations (other than verbal) that a novice or expert can use for problem solving. In other 

words, an expert cannot invent a new visual/spatial representation that does not use one (or 

more) of these three representations, and that there representations will be limited 

computationally in the same ways as novices based on the properties of these three visual/spatial 

representation systems. That is, people are assumed to be fundamentally limited by their 

neurobiology. 

ACT-R/S assumes that people can translate between the three representations. In fact, for 

many tasks, translation and simultaneous activation of different representations is necessary. For 

example, in order to figure out one's location (a Configural task), one needs to identify what the 

landmarks are (a Visual task). This ability to translate between representations in general is what 

makes much of cognitive psychology so difficult because the internal representation can differ 

dramatically from the input form and can vary substantially across individuals, and the choice of 

internal representation fundamentally influences performance. For example, people can have 

visual representations of auditory stimuli, producing visual confusions rather than auditory 

confusions. In the case of ACT-R/S, a person can take arrangements of distant objects 

presumably only representable in the Configural space and translate it into a miniature 3D model 

in the manipulative space, or a flat visual map representation in the Visual space. The way that 

the person is internally representing the objects will then strongly determine how spatial features 

are encoded, and thus an important determiner of performance. 

The choice of which representation is used will be influenced by input: things in flat 

displays will tend to start out as Visual; things within reach will tend to start out as Manipulative, 
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and things out in the distant will tend to start out as Configural. However, the choice of 

representation will also be influenced by functional factors. ACT-R, the parent theory, assumes 

that people make procedural choices on the basis of past experiences of success and amount of 

effort with the choices. In other words, it predicts that people will tend to select choices that led 

more often in the past to successful attainment of goals, but also taking into account how much 

effort (primarily in amount of time) was required to achieve those goals. There are more formal, 

mathematical instantiations of the choice process and the learning of preferences, but the general 

understanding of this point will suffice for here. ACT-R/S, then, assumes that people will tend to 

move towards representations that have been generally more functional for the goal task at hand. 

Because the three different representations have very different basic representational form and 

computational abilities, the match of representation to task should be a strong influence on 

representation choice. Because this choice preference is embedded in a learning theory, the 

prediction is that this preference for a particular representation will be more pronounced with 

increasing expertise in a task. 

Uncertainty Predictions from ACT-R/S 

 With all that theoretical background on ACT-R/S and how it might apply to complex 

problem solving, we can now come full circle back to the issue of visual/spatial representations 

in complex problem solving with uncertainty. The three different spatial systems have varying 

degrees of match to spatial certainty. All things being equal, ACT-R/S then predicts that problem 

solving, especially in disciplines with complex visual displays, will vary as a function of spatial 

certainty levels of the scientist doing the data analysis: Manipulative representations will be used 

when spatial certainty levels are the highest because the Manipulative space represents spatial 

location and features in very precise terms; Visual representations will be used when spatial 
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certainty levels are the lowest because the Visual space represents spatial location and features in 

very approximate terms; and the Configural representation sits somewhere in between, with 

precise angles, but approximate distance and very approximate shape information. 

 Of course, all things are not often precisely equal. Input of information will come in a 

particular form. The particular goals of the data analysis will influence the functional relevance 

of different representations, as well. Expertise will play a role here, too, as experts may be more 

sensitive to functional relevance and less sensitive to initial input form. 

 In sum, ACT-R/S makes a variety of predictions for how experts will represent 

visual/spatial information during data analysis, and one of those predictions involves relative 

uncertainty levels. We thought of this uncertainty prediction as a very novel prediction to the 

psychology of problem solving, in clear contrast to the predictions of the symbolic and embodied 

problem solving camps. The symbolic problem solving framework makes relatively few 

predictions about internal representation choice, and the embodied problem solving framework 

predicts a match of internal representations to either input or action external representations; 

neither make a predictions about the relationship of internal representation choice and 

uncertainty levels. We examine two studies of complex problem solving in a several domains to 

see which perspective could successfully predict (not just explain) observed (although somewhat 

indirectly by necessity) internal representation choices. 

Study 1: Expert/Novice Comparisons in a Traditional Submarine Task 

Overview 

This study examined expert, intermediate, and novice representations of 3-Dimensional space 

while solving the complex spatial task of finding an enemy submarine using a simplified 

computerized environment of a traditional submarine sonar setup. We carefully examine 
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participant spontaneous gestures as an indicator of how they are internally representing spatial 

locations during problem solving. 

Participants 

In this study, 16 submarine officers total participated: six students, six instructors, and four 

commanders. The students were recent graduates of the Submarine School’s Submarine Officers’ 

Basic Course (SOBC). The instructors were Junior Officers who were teaching those courses at 

the time of the study. The commanders were Commanding Officers (COs) and Executive 

Officers (XOs), three of whom were active-duty and one who was retired. In the US Navy, the 

most expert individuals are considered too valuable to spend time teaching, and thus the 

instructors are the intermediate level participants. 

Procedure 

The procedure involved two simulated scenarios in Ned, a simulation environment built in a 

previous project for studying the expertise of determining a solution (see Materials). First, the 

participant was familiarized with the ways to gather information about potential contacts in the 

simulation environment. Then the participant was asked to think aloud as he solved the problem. 

Each officer worked for approximately 20 minutes to determine the location of an enemy 

submarine (called a solution). Once a solution was found, the experimenter initiated a 

retrospective interview. This procedure of problem solving and retrospective interview was then 

repeated for a second scenario. 

During the retrospective interview, the participant gave a general summary of the scenario. 

Next, the participant was cued to explain specific moments in the simulation he just completed. 

Cued by predetermined screen shots or short clips of the screen at different moments in the 

scenario, he was asked to talk about what he was thinking, what the problem was that he was 
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addressing, and what happened just after this moment. The participant responses were video-

taped. The experimenter asked the participant to view the screen once, and then once he was 

ready to answer, turn away from the screen to speak to the experimenter. This physical 

manipulation of the screen and the participant was intended to ensure that the participant used 

hand gestures when he wanted to convey spatial elements and not vague points or gestures to the 

screen to convey explanations. In addition to the preset screen shots and clips, we generated 

questions opportunistically during a session, for example, when we wanted to clarify a 

participant’s explanation.  

Materials 

Ned is a small-scale submarine control room simulation (Ehret, Gray, & Kirschenbaum, 

2000). While it provides the functionality to perform all the functions necessary to locate a 

contact, all of the data on the contact are simulated. They are not represented by a high-fidelity 

model, but rather by noise plus the true values for key parameters. The interface that Ned uses is 

a composite of common submarine display content without being a copy of any specific 

deployed system. As it is generic to all contemporary systems, submariners will be familiar with 

these displays and their functionality. 

Ned was developed with four scenarios, two of which were randomly assigned to each 

participant. All scenarios have two contacts—a rather noisy merchant and a quieter enemy 

submarine. In two of the scenarios, the subsurface contact is moving at a constant course and 

speed and in the other two it is maneuvering every ten minutes, on average. The merchant ship 

appears at the beginning of the scenario, and after about one minute the submerged contact 

appears. In some scenarios, when the sub appears, it is dead ahead of own-ship, necessitating a 

speedy maneuver on the part of own-ship to avoid the possibility of a collision and get into a 
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more advantageous position relative to the sub. In the other scenarios, the submerged contact 

appears ahead of own-ship, but in not as dangerous a position, still requiring own-ship to 

maneuver but not as quickly as in the dead-ahead scenarios. Eventually, the submerged contact 

drives toward the merchant and trails it, giving the impression that the sub is threatening the 

merchant. Also, as the scenario progresses, the spatial relationships of the two contacts become 

complicated and critical as the two ships get closer to one another. 

Figure 2 presents two sample screen shots from Ned. The left half of the top screen shot 

presents a diagram showing the presence of certain sound frequencies1 at different angles of 

input. The right half shows information on different sound 'tracks' that the problem solver has 

chosen to follow. The bottom screenshot shows a geosituational view. 

Predictions 

Note that none of the input in Ned shows the equivalent of a view out of a window although 

there is a bird’s-eye-view with own ship in the center and lines of bearing to other platforms, and 

current solution, if available. The visual/spatial displays are all 2-dimensional, complex displays. 

At the same time, the real world being reasoned about is a very, very large, 3-dimensional world. 

How will problem solvers represent this situation internally? 

The symbolic perspective predicts that problem solvers will select whatever representation 

minimizes mental workload and maximizes accuracy—in this complex task, we had no idea what 

that would be, and thus felt that no predictions were being made by the symbolic perspective 

other than whatever internal representation is most correlated with high performance within 

groups would be more likely to occur in experts. The embodied problem solving perspective 

predicts that problem solvers will use either 2D display-based reasoning (the input) or large-scale 
                                                
1 Because true frequencies are classified, the values used in Ned are made-up and the convention 
used was explained to the participants during training. 
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3D (configural) reasoning (the real world). By contrast, the neurocomputational perspective 

suggests that problem solvers will move from a display or configural representation to a 

manipulative (small 3D) representation because 1) configural or display representations are more 

appropriate for weak initial knowledge of location and distance, and 2) manipulative 

representations are more appropriate when location and distance are more accurately known. The 

neurocomputational perspective is the only one that very clearly predicts a change in internal 

representation choice for this task over time. 

Gesture Coding 

Visual-spatial representations were coded from the spontaneous gestures. Configural gestures 

were made with the hand or arm such that the fingers are pointing in a direction without 

attempting to pick up or place or otherwise manipulate imaginary objects. These were usually 

one-handed gestures and one-dimensional, but some were two-handed when they have a quality 

of pointing into the distance. They can represent limited motion, for example in a single 

direction, but again only if it seems the motion is in far-space and not being manipulated in 

curves and complex dimensions. See Figure 3 for an example of a two-handed configural gesture 

in which the hands represent the angle at which the target is at relative to the heading of own-

ship.  

Manipulative gestures placed objects and activity in a nearby space, such that the participant 

can actually manipulate or place the imaginary objects. Gestures include two-handed gestures 

showing two contacts and the relative motion involved or changes in bearing and curves in paths 

or course. Gestures in which the hand-shape suggests placing or holding as opposed to strictly 

pointing were also coded as manipulative. Figure 4 presents an example in which a student 

represents the submerged contact in a stationary position and own-ship moving forward and then 
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turning left to follow behind the other hand (the sub). This gesture represents relative positions, 

motion and a complex path for own-ship. 

Display-based gestures would have been gestures that involved gestures that place objects 

and activity on a flat surface in the fronto-parallel plane. However, in this study, those kinds of 

gestures did not occur, and thus are not mentioned further. There were also uncertainty-based 

gestures, in which participants shrugged or wiggled their hands indicating uncertainty about the 

situation, but those gestures do not directly indicate spatial representations and thus are not 

discussed further in this chapter. 

Reliability of the coding was between 84% and 92% agreement depending upon the category 

and was established with a second rater coding a randomly selected 20% of the data. The 

analyses reported here focus on the gestures made during the first and last maneuvers of both 

scenarios to show change in representations during problem solving (in addition to changes with 

expertise). 

It is important to note that spontaneous gestures are an indirect measure of internal 

representation, and that they are likely to have biases as such a measure. For example, the 

gestures may be influenced by communication goals (McNeill, 1992). However, this measure of 

internal representation is no worse on that issue than any other measure, and gestures are 

particularly well suited to capturing visual-spatial representations. 

Results 

Figure 5 presents the proportion of gestures that were manipulative and configural broken 

down by time (first vs. last maneuver within each scenario) for each expertise group. We see the 

same pattern of results of change with time within each expertise group: a decrease in the 

proportion of configural gestures and an increase in the proportion of manipulative gestures. This 
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pattern is exactly what was predicted by the neurocomputational account: participants would go 

from a representation that is appropriate for times of high uncertainty about location (configural) 

to a representation that is appropriate for times of lower uncertainty about location 

(manipulative). 

As there were no gestures about the 2D input in this situation, part of what the embodied 

problem solving perspective would predict did not come true. One could argue that the presence 

of configural representations, especially in early problem solving episodes, is consistent with the 

embodied problem solving focus on the external reality. It is interesting that the configural 

gestures relative to manipulative gestures were the lowest in the experts, suggesting an especially 

strong movement away from external reality in experts. 

Of course, all of these conclusions are very tentative, as we have only examined performance 

in one situation and the results can be partially explained by each of the camps (not to mention 

various other ad hoc possible explanations of this simple pattern). It will be important to examine 

spatial representations in other tasks to see whether the neurocomputational perspective provides 

genuine insight. 

Study 2: Expert/Novice Comparisons in Modern Submarining and fMRI Data Analysis 

Overview 

This study followed (group 1) cognitive neuroscientists at different expertise levels analyzing 

Functional Magnetic Resonance Imaging (fMRI) data and (group 2) submarine experts doing 

similar problem solving as in Study 1, but with a more modern interface that better affords 

display-based problem solving. The purpose of group 1 was to see whether we could predict 

representation choice in a very different domain, with a small rather than large external reality, 
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for example. The purpose of group 2 was to explore what role external input had on problem 

solving by using a different external input for the same basic task as in Study 1. 

In the Submarine domain, we had problem solvers go through one complex scenario, as in 

Study 1. In the fMRI domain, we observed experts, intermediates, and novices analyzing their 

own data. In both domains, after 30-60 minutes of problem solving, we then stopped the data 

analysis activities, and showed the problem-solvers several one-minute videotape segments of 

their problem solving and asked them to explain what they knew and didn't know at that point in 

time, so that we could examine how they were representing their data spatially and what their 

uncertainty levels were. We examined the speech and gestures produced by problem solvers 

during those cued recall segments to measure their uncertainty levels and the way they 

represented their data spatially (acknowledging all along the potential dangers of relying on 

retrospective reports to measure internal representations). We then looked at uncertainty levels 

and representation choice as a function of each other as well as time and expertise. 

fMRI Domain 

The goal of fMRI is to discover both the location in the brain and the time course of 

processing underlying different cognitive processes. Imaging data is collected in research fMRI 

scanners hooked to computers that display experimental stimuli to their human subjects. 

Generally, fMRI uses a subtractive logic technique, in which the magnetic activity observed in 

the brain during one task is subtracted from the magnetic activity observed in the brain during 

another task, with the assumption that the resulting difference can be attributed to whatever 

cognitive processes occur in the one task but not the other. Moreover, neuronal activity levels are 

not directly measured, but rather one measures the changes in magnetic fields associated with 

oxygen-rich blood relative to oxygen-depleted blood. The main measured change is not the 
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depletion due to neuronal activity but rather the delayed over-response of new oxygen-rich blood 

moving to active brain areas, and the delay is on the order of 5 seconds, with the delay slightly 

variable by person and brain area. Data is analyzed visually by superimposing color-coded 

activity regions over a structural image of the brain (see Figure 6a), looking at graphs of mean 

activation level by region and/or over time (see Figure 6b) or across conditions (see Figure 6c), 

or looking at tables of mean activation levels by region across conditions (see Figure 6d). 

Elaborate, multi-stepped, semi-automated computational procedures are executed to produce 

these various visualizations, and given the size of the data (gigabytes per subject), many steps 

can take up to several minutes per subject. Inferential statistical procedures (e.g., t, ANOVA) are 

applied to confirm trends seen visually. Note that, as in the submarine domain, the input displays 

are very 2-dimensional, even though the underlying reality (activation in brain regions) is 3-

dimensional. Unlike the submarine domain, however, the underlying reality takes place in a very 

small space (smaller than a breadbasket, relatively nearby) whereas in the submarine domain, the 

real space is many miles in every direction, with objects being the size of medium-sized 

buildings. 

More Realistic Submarine Interface 

While the basic task of finding other submarines using passive sonar remains fundamentally 

the same very difficult task, computational algorithms and visual displays designed to help the 

submariner have improved significantly. Figure 7 presents the more realistic interface that used 

in Study 2. It runs on a high-end Windows© personal computer, and is an unclassified 

simulation environment used in engineering development and training situations. It closely 

mirrors the actual displays used in modern US Navy submarines. Explaining all the displays 

found in Figure 7 is beyond the scope of this chapter, but suffice it to say that it includes both 
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egocentric and geosituational views, as well as alphanumeric best-guesses on target location, and 

that it includes explicit representations about the uncertainty in possible values of angle, 

distance, course, and speed of the target. Thus, in contrast to the Ned simulation used in Study 2, 

this environment affords better displayed-based problem solving, and thus we may see more 

display-based representations of space than in Study 1. 

Participants 

Submarine. There were 5 submarine experts who participated in Study, with similar expertise 

levels as the experts in Study 1. 

fMRI. There were 10 fMRI participants, ranging from beginning graduate students to 

postdoctoral researchers. This study focused on naturalistic analysis of data, and faculty in this 

domain tend not to be directly involved in analysis of fMRI data, and instead work with students 

and postdocs after analyses have been carried out. We divided the participants into three 

expertise levels based on the number of studies they had carried out: 4 participants classified as 

Experts had carried out 4 or more fMRI studies, 4 participants classified as Intermediate has 

carried out between 2 and 3 studies, and 2 participants classified as Novices had carried out only 

1 study. Since postdocs in this domain typically had earned their PhD with a technique other than 

fMRI, not all the postdocs were classified Experts and some of the graduate students were 

classified Experts. Although our fMRI Experts did not have the 10 years of focused practice that 

is typically required for world-class expertise, we are interested in expertise as a relative 

continuum, not as absolute categories. 

Coding 

The coding of gestures in Study 2 followed a similar procedure as in Study 1, although in this 

case we focused on gestures made during the various 'interesting minutes' cued responses rather 
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than on just first and last maneuvers, and we coded much more prevalent display-based gestures. 

Display-based gestures are gestures that described spatial relations in the discussed data, but 

occurred in a flat vertical (usually fronto-parallel) space, in contrast to manipulative gestures, 

which also took place in nearby space but gestured with 3-dimensional depth in object placement 

and/or size and shape, and in contrast to configural gestures, in which the hands were not 

representing the objects themselves but were merely pointers to objects off in a distance space. 

Figure 8b presents an example display-based gesture in which the participant takes about brain 

activation of two different spatial regions in terms of a flat bar-graph representation spatial 

region being represented one-dimensionally on the x-axis. By contrast, Figure 8a shows what a 

manipulative gestures looks like in this domain.  

As in Study 1, we coded for uncertainty gestures (like shrugs and hand wiggles), but do not 

focus on those results here. Other gestures that were coded but not included in the current 

analyses were metaphorical gestures (in which space represented non-spatial dimensions like 

time), beating gestures (which simply keep time with speech or indicate points of emphasis in 

speech), and deictic gestures (point to the screen or a notebook on a desk, which is ambiguous 

about underlying spatial representations). 

Predictions 

As in Study 1, the symbolic perspective does not make obvious predictions—the adopted 

representation, especially by experts, could be anything, and all will depend upon what 

representations best support problem solving. The embodied problem-solving perspective makes 

the following predictions. First, fMRI scientists should use manipulative (real-world) and 

display-based (input) representations. Second, submariners should use configural (real-world) 

and display-based (input) representations. The neurocomputational perspective makes different 
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predictions. In fMRI, the end goal is not precise location, so the problem solvers should move to 

less precise representations (e.g., display-based representations). In submarining, the end goal is 

precise location, and thus the problem solvers should move to more precise representations (e.g., 

manipulative). 

Results 

Domain Differences in Expert Representations 

Because we only collected data from experts in the submarine domain, to properly compare 

domain differences, we must focus on the expert data in the fMRI domain as well for a 

comparison across domains. Accordingly, Figure 9 presents the number of configural, display, 

and manipulative gestures for experts only in the fMRI and submarine domains.  

Comparing the two domains, we can suggest several conclusions about expert 

representations. First, the underlying reality appears to matter a little. There were no configural 

gestures in the fMRI domain (to a large or distant brain) but there were some (although relatively 

few) configural gestures in the submarine domain. Second, the interface appears to matter. There 

were many display-based gestures in both domains, reflecting the input problem solvers received 

on the screen. Moreover, comparing to the results from Study 1, changing the interface to a more 

modern interface appears to impact the experts in that we now see a significant presence of 

display-based gestures. Third, the data from the submarine domain suggest that 

neurocomputational factors appear to matter a lot, because the most common representation 

(manipulative) corresponds to neither input nor external reality.  

The diversity of representations within each group suggest that an account like ACT-R/S, in 

which there can be multiple spatial representations, is useful for highlighting representational 

variability. It is also the case that some participants used few spatial gestures overall. We do not 
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think they were not thinking spatially, but rather there are large individual differences in how 

much and what type of gestures people use. The majority who used at least three gestures had 

both manipulative and display gestures, suggesting the diversity does reside within individuals 

rather than reflecting individual choice of a single representation to use throughout problem 

solving. 

Expertise Effects of Representation 

 Focusing in on the fMRI data, we can now turn to differences in preferred representation 

type as a function of expertise. Figure 10 presents the ratio of display to manipulative gestures 

(large numbers indicate relatively more display gestures). We can use this ratio in this domain 

because there were no configural gestures. We see a gradual increase in the use of display rather 

than manipulative representations with expertise. This difference is consistent across 

participants: 3/4 experts use more display than manipulative gestures, whereas 0/4 intermediate 

and 0/2 of novices use more displays than manipulative gestures). 

 Were these representation preferences held throughout problem solving, indicating that 

experts 'saw' different things in their data from the start, or was there a more complex pattern 

over time?  We divided the cued minutes for each participant into early and late minutes. 

Unpacked by early/late, we see that experts start out the scenario with manipulative gestures but 

move to display-based gestures (see Figure 11). Thus, experts, like intermediates and novices, 

begin data analysis thinking about a three-dimensional brain (even though they are literally 

seeing 2-D slices of a 3-D brain). With problem solving, experts, unlike intermediates and 

novices, are better able to move to a more abstract 2D spatial representation: in the end, their 

question is not where in the 3D brain were there regions of activity, but rather how did functional 
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regions in the brain (which are more easily compressed into a single ordinal dimension) differ in 

their activity levels (by task or by time). 

General Discussion 

The goals of this chapter were to draw attention to a major weakness in theorizing in 

cognitive science (how can we predict representation choice), providing a new theoretical 

framing of the issue (by drawing out and contrasting predictions from the three major theoretical 

camps in cognitive science), and to provide some initial examinations of real world cognition in 

a complex domain to see how well the various predictions bear out.  

Although the evidence is currently from only a two cases and a small number of participants, 

our data suggest the following directions. First, it appears that the external world (reality and 

input) does have some influence on internal representation choice. Moreover, it appears that 

reality primarily matters in novices and early in problem solving. Second, expert representations 

are best predicted by the match of task goals to neurocomputational constraints—experts appear 

to exapt particular, existing visual/spatial systems for problem solving on the basis of how well 

the computational abilities of those systems support the current needs/features of the given task. 

In particular, we have shown how spatial informational uncertainty is related to the selection of 

internal visual/spatial representations. 

Of all the areas of psychology, research in complex, real-world problem solving seems most 

removed from all the excitement and breakthroughs in cognitive neuroscience of the last 15 to 20 

years. This lack of change in research on higher-level cognition is not arbitrary or representative 

of stubbornness by a particular research community. Instead, it reflects the difficulties in bring 

neuroscience methodologies to studying something so complex as higher-level cognition, which 

almost by definition, influences the integration of many brain regions and brain systems in 
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complex ways. We hope that the work described in this chapter can show a different way in 

which neuroscience can bring new insights to the study of higher-level cognition: bringing in 

theoretical constraints on core components of the problem-solving system based on neuroscience 

data and theories. We hope that we have also made some progress in convincing researchers of 

complex cognition that we need to move beyond relying solely on our old theoretical friends of 

task structure, memory constraints, and embodied cognition to understand complex problem 

solving. 

Caveats 

It is important to acknowledge that the current story is just the beginning of the story. Much 

further empirical work must be done to establish the value of the current story over various 

alternative explanations of our presented data. As we argued in the beginning of the chapter, the 

measurement problem for internal representations is a very difficult one. Consequently, we do 

not know for sure that gestures cleanly correspond to internal representations. Instead, the 

representations that we observed might only correspond to a subset of the representations that the 

problem solvers were entertaining, and perhaps the subset that was easiest to communicate to the 

listener. Moreover, the act of communication may drive representation choice more than the 

basic task itself, and the pragmatics of spatial communication by gesture may be important here. 

Further work with other measures of internal representations, in addition to collecting more data 

from more participants and in more domains, should be done to strongly validate the story that 

we are telling about our data. 

Contributions of Different Perspectives—Building the Computational Story 

What have the different perspectives contributed to our current understanding of how 

problem solvers choose internal representations? We argue that each perspective has built upon 
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the previous, elaborating the computational story of cognition. The symbolic perspective began 

by showing us that computational rather than physical properties per se matter—the structure of 

the problem space matters much more than the particular physical device with which we interact. 

The embodied cognitive perspective has shown us that many of our computations are performed 

on external objects or are grounded in knowledge about the world, so input and reality matters in 

specifying the nature of the computations. Finally, the neurocomputational perspective has 

shown us that our choice of representations and their computational properties are strongly 

influenced by our neurobiology. Thus, a complete computational account of problem solving in a 

domain includes the task, the environment, and the computational abilities of the problem solver. 

Back to Uncertainty in Data Analysis 

Linking back to data analysis and uncertainty themes in this volume, our work suggests that 

uncertainty has perhaps more roles in problem solving that others have discussed. First, it is an 

object in itself to detect. Uncertainty varies across situations, and the problem solver needs to be 

able to detect the situations in which uncertainty levels are especially high. It is this role of 

uncertainty that much work in statistics lies (including the work in this volume). Second, 

uncertainty is an object to problem solve about. When one moves into real problem solving 

applications, uncertainty has valence (i.e., it is bad for problem solving), and the problem solver 

must engage in activities to reduce uncertainty. The work by Trickett et al. in this volume 

discusses this aspect of uncertainty. Third, uncertainty is an object that influences basic 

representation choice, and that basic representation choice will influence many other aspects of 

problem solving. It is this third role that has perhaps not been discussed previously, although we 

suspect it maybe an interesting lens even in basic statistics course problem solving. 
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Table 1. Comparison of general predictions about representational choice from each the three 

theoretical camps. 

Theoretical Camp Use Affordances? External Matters? Internal Choices? 

Symbolic √ Maybe Anything 

Embodied √ Yes Anything 

Neurocomputational √ Aspects that are processed Fixed set, Exaptation 
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 Figure 1. Three visual/spatial representation systems posited in ACT-R/S, the size and location 

of space they cover, and the basic tasks they typically support. 
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Figure 2. Two sample screen shots from the Ned submarine simulation environment used in 

Study 1. 
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Figure 3. A participant's configural gesture produced during his think-aloud protocol “…bearing 

around course oh three five, our own-ship course is about three five seven, we’ll be 

about…here”. 
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Figure 4. A participant's manipulative gesture produced during a hotwash, saying “I should’ve 
gone left…come left and gone behind him…”. 
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Figure 5. Proportion of gestures that were manipulative and configural gestures for the first and 
last maneuver of each scenario for novice (students), intermediates (instructors), and experts 
(commanders) in Study 1.
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c) d) 
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Figure 6. Kinds of visualizations examined in analysis of fMRI data: a) degree of activation 
indicated with a color scale superimposed over a gray-scale structural brain image in three 
different planar slices and a surface cortex map; b) graph of percent signal change in a brain 
region as a function of time relative to a stimulus presentation in two different conditions (red 
and green); c) graph of number of activated voxels in an area as a function of various condition 
manipulations; and d) table of number of activated voxels in different brain areas (Regions of 
Interest) as a function of different conditions.  
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Figure 7. Modern submarine display used in Study 2. 
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a)       b) 

  

Figure 8. Example spatial gestures from the fMRI domain. a) a manipulative gesture, "… if you 

have, like, this massive thing, the peak is really in there…", and b) an example display-based 

gesture, "...I found out that, it looked like there's a difference between frontal and hippocampal 

activation..." 
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Figure 9. For experts only in study 2, the number of configural, display, and manipulative 

gestures found in each domain. 
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Figure 10. For fMRI scientists in Study 2, the ratio of display to manipulative gestures in each 

expertise group. 
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Figure 11. For fMRI scientists in Study 2, the ratio of display to manipulative gestures in each 

expertise group, split by the first half vs. second half of cued minutes. 
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