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Abstract shows that people switch between looking at the graph
and the axes in order to comprehend the visualization.
We propose that current models of graph comprehension ~ This scheme seems to work very well when the graph
do not adequately capture how people use graphs and contains all the information the user needs (i.e., when the
ggamnggﬁé&’g‘gg“szs?gr?g} -Srgilenr:/t?sstgguasti?] t.h's.%%’gt‘ﬁg('jsvwe information is explicitly represented in one form or an-
ology. We found that in order to obtaingiﬁfré)rmation from other_)_. 'I_'hus, Wh_en an undergraduate is asked to extract
their graphs, scientists not only read off information di- ~ Specific information from a bar-graph, the above process
rectly from their visualizations (as current theories pre- seems to hold. However, graph usage outside the labo-
?\;\fgc r?‘diethc?has'sgti‘?ﬁ?aﬁs?éﬁiﬁﬁﬁéff Vfcg”t?é ifgsagzr%/ ratory is probably not simply a series of information ex-
extension to thepcurrent model of visuélizatign (E)ompre- tractions. For example, Whe_n looking at a stock market
hension and usage to account for this data. graph, the goal may not be just to determine the current
or past price of the stock, but perhaps to determine what
the price of the stock will be sometime in the future. A
Introduction v.veayher forecaster I_ooking ata meteorological visuaIi;a—
tion is frequently trying to predict what the weather will
If a person looks at a standard stock market graph obe in the future, as well as what the current visualization
a meteorologist is examining a complex meteorologicalshows (Trafton, Kirschenbaum, Tsui, Miyamoto, Ballas,
visualization, how is information extracted from these & Raymond, 2000). A scientist examining results from
graphs? The most influential research on graph and visua recent experiment can not always display the available
alization comprehension is Bertin’s (1983) task analysisinformation in a way that perfectly shows the answer to
that suggests three main processes in graph and visualer hypotheses.
ization comprehension: How do current theories of graph comprehension hold
1. Encode visual elements of the display: For exam-up when a graph or visualization does not contain the
ple, identify lines and axes. This stage is influenced byexact information needed? Unfortunately, the theories
pre-attentive processes and is affected by the discrimeo not say anything about this situation. In fact, there are
inability of shapes. no specifications in any theory of graph comprehension
2. Translate the elements into patterns: For exampleabout how information could or would be extracted from
notice that one bar is taller than another or the slope o# visualization where that information is not represented
a line. This stage is affected by distortions of perceptionin some form. If a graph does not contain the information
and limitations of working memory. needed by the user, the graph is often labeled “bad” or
3. Map the patterns to the labels to interpret the spe“useless” (Kosslyn, 1989; Pinker, 1990).
cific relationships communicated by the graph. For ex- Current graph comprehension theories do not have a
ample, determine the value of a bar graph. great deal to say about what to do when a graph does
Most of the work done on graph comprehension hamot explicitly show the needed information for a variety
examined the encoding, perception, and representatioof reasons. The main reason is probably that most graph
of graphs. Cleveland and McGill, for example, have comprehension studies have used fairly simple graphs for
examined the psychophysical aspects of graphical pemhich no particular domain knowledge is required (e.g.,
ception (Cleveland & McGill, 1984, 1986). Similarly, Carter, 1947; Lohse, 1993; Pinker, 1990). However, in
Pinker's theory of graph comprehension, while quitereal-world situations, people use complex visualizations
broad, focuses on the encoding and understanding dhat require a great deal of domain knowledge, and all
graphs (Pinker, 1990). Kosslyn’s work emphasizes thehe needed information would probably not be explic-
cognitive processes that make a graph more or less diffitly represented in the graph. This study will thus try to
cult to read. Kosslyn’s syntactic and semantic (and to aanswer two questions about graph comprehension. Do
lesser degree pragmatic) level of analysis focuses on erexpert users of visualizations ever need information that
coding, perception, and representation of graphs (Kosss not on a specific graph they are using? If so, how do
lyn, 1989). Recent work by Carpenter and Shah (1998}hey extract that information from the graph?



There are several possible things that users could do Method

when trying to extract information from a graph. Inthe | order to investigate the issues discussed above, we
simplest case, the information is explicitly available, andnaye adapted Dunbar’s in vivo methodology (Dunbar,
they can simply read off the information from the visu- 1995 1996; Trickett, Trafton, & Schunn, 2000b). This
alization. What do they do when information they needapproach offers several advantages. First, it allows the
is not available on the visualization? They could createypservation of experts, who are thus able to use their do-
a Completely new visualization that does show the |nf0r'main know'edge to guide their Strategy Se'ection_ Sec-
mation. They could also collect more data or consult anpnd, it allows the collection of on-line” measures of
other source. They could create an explicit plan to lookthinking, which allow the investigation of the scientists’
for more data or run another experiment. reasoning as it occurs (Ericsson & Simon, 1993). Fi-

What do they do when the visualization is all they havenally, the tasks (experiment design, data analysis, etc.)
to work with? What kind of mental operations could conducted by the scientists, as well as the tools they use,
users perform on graphs and visualizations in order tcre fully authentic.
extract information that is not explicit? One possibility ~ Two sets of scientists were videotaped while conduct-
is that people use some sort of visual imagery to extractnd their own research. All the scientists were experts,
information that is not explicitly represented on a graphhaving earned their Ph.D.s more than 6 years previously.
or visualization. For example, a weather forecaster mayn the first set, two astronomers, one a tenured profes-
mentally imagine a front moving east over the next sev-Sor at a university, the other a fellow at a research in-
eral days (Trafton et al., 2000), or a stock analyst maystitute, worked collaboratively to investigate computer-
mentally extend a line on a graph and think that a stockgenerated visual representations of a new set of observa-
will continue to rise. We have developed a frameworktional data. At the time of this study, one astronomer had
for coding and working with these kinds of graphs andapproximately 20 publications in this general area, and
visualizations calle@patial Transformationghat willbe  the other approximately 10. The astronomers have been
used to investigate these issues. We will argue that sp&ollaborating for some years, although they do not fre-
tial transformations are a fundamental aspect of compleguently work at the same computer screen and the same
visualization usage. time to examine data.

In the second dataset, a physicist with expertise in
omputational fluid dynamics worked alone to inspect
he results of a computational model he had built and

transformations are mental rotation (e.g., Shepard 8?un. Two related sessions were recorded with this sci-

Metzler, 1971), creating a mental image, modifying gptist over consecutive days. He works as a research
that mental image by adding or deleting features to or,

h A . 9 scientists at a major U.S. scientific research facility, and
from it, animating an aspect OT a V|suaI|'za_t|on (Hegarty,had earned his Ph.D. over 20 years previously. He had
1992) time series progression prediction, mentally.

X biect T formi 2D Vi inspected the data previously but had made some adjust-
moving an object, mentally transiorming a 2D VIW pantq 1 the physics parameters underlying the model
into a 3D view (or vice versa), comparisons between

. . and was therefore revisiting the data.
different views (Kosslyn, Sukel, & Bly, 1999; Trafton, ot ; ;
Trickett, & Mintz, 2001). and anything else a scientist Both sets of scientists were instructed to carry out their

; T work as though no camera were present and without ex-

.mentally'does to a V|sual|;at|on in order to underSt"?mdplanation to the experimenter (Ericsson & Simon, 1993).

it or facilitate problem solving. Also note that a spatial T,o 1ejevant part of the astronomy session lasted about
transtfolrnjatmn can be d(t)ne clm. either an internal (;:;?'53 minutes, and the two physics sessions each lasted ap-
mental) image or an external image (i.e., a scientific roximately 15 minutes. All utterances were later tran-

visualization on a computer-generated image). Whal ey and segmented according to complete thought.
all spatial transformations have in common is that they, | seqments were coded by 2 coders as on-task (pertain-
involve the use of mental imagery. A more complete

description of spatial transformations can be found a'interruptions, etc.). Inter-rater reliability for this coding

hitp:/fiota.gmu.edufusersftrafton/405st.ntml was more than 95%. Off-task segments were excluded
We will examine the number of times that usersfrom further analysis. On-task segments (N = 649 for

needed information from a visualization. If all or most the astronomy dataset and N = 189 for the first physics

of the information is available explicitly on the visualiza- dataset and N = 176 for the second physics dataset) were

tion, we should see primarily read-offs (Kosslyn, 1989; further coded as described below.

Pinker, 1990). If, however, a particular visualization does

not explicitly display particular information that a scien- 1he Tasks and the Data

tist wants, we will examine how the scientist goes aboutAstronomy The astronomical data under analysis were

obtaining that information. We expect that in complex optical and radio data of a ring galaxy. The astronomers’

visualizations, there is a great deal of information that ishigh-level goal was to understand its evolution and struc-

needed in addition to what is displayed, and we expecture by understanding the flow of gas in the galaxy. In or-

scientists to use spatial transformations to retrieve thatler to understand the flow of gas, the astronomers must

information. make inferences about the velocity field, represented by

Spatial Transformations are cognitive operations tha
a scientist performs on a visualization. Sample spati

ing to data analysis) or off-task (e.g., jokes, phone call



Figure 2: An example of the kind of visualizations ex-
amined by the physicist.

Figure 1: An example of the kind of visualizations ex- understanding of the underlying theory. Although the
amined by the astronomers. physicist had been in conversation with the experimen-
talist, he had not viewed the empirical data, and in this
session he was investigating only the results of his com-
contour lines on the 2-dimensional display. The asPutational model. However, he believed the model to be

tronomers’ task was made difficult by two characteris-corrECt (i.e., he had strong expectations about what he

tics of their data. First, the data were one- or at best ZyVOUId see), and in this sense, this session may be con-

dimensional, whereas the structure they were attemptinaIderEd conﬂrma.tory. . .
to understand is 3-dimensional. Second, the data were | € data consisted of two different kinds of represen-

noisy, and there was no easy way to distinguish betweelftion of the different modes, shown over time (nanosec-
noise and real phenomena. Figure 1 shows a screen snaf2ds)- The physicist was able to view either a Fourier
shot of the type of data the astronomers were examinind€C0MPosition of the modes or a representation of the
In order to make their inferences, the astronomers used 2V data. .

different types of image, representing different phenom- Figure 2 shows an example of the physicist's data. He
ena (e.g., different forms of gas), which represent dif-could choose from black-and-white or a variety of color
ferent information about the structure and dynamics offepresentations, and could adjust the scales of the dis-
the galaxy. Some of these images could be overlaid oRlayed image, as well as some other features. He was
each other. In addition, the astronomers could choos@ble to open numerous views simultaneously.

from images created by different processing algorithms, ]

each with advantages and disadvantages (e.g., more §0ding Scheme

less resolution). Finally, they could adjust different fea_Our goals in this research are first, to determine if com-

tures of the display, such as contrast or false color. A lex visualizations contain all the information needed b
more complete description of this dataset can be foun y

in Trickett, Fu, Schunn, and Trafton (2000a) and Trick- he scientists, and, if not, to_investigate what happens
ett. Trafton. and Schunn (2000b) when they do not have all the information they need. We

propose that spatial transformations are a major portion
Physics The physicist was working to evaluate how of extracting information from a visualization when the
deep into a pellet a laser light will go before being re- data is not explicitly represented. Consequently, we iden-
flected. His high-level goal was to understand the fundatified every situation where a scientist wanted to extract
mental physics underlying the reaction, an understandingnformation from a visualization. Next, we coded what
that hinged on an understanding of the relative importhe scientist did to extract information, including read-
tance and growth rates of different modes. The physicising off the information directly from the graph, spatial
had built a model of the reaction; other scientists had intransformations, changing the visualization, plans or dis-
dependently conducted experiments in which lasers wereussions about getting more data, and abandoning their
fired at pellets and the reactions recorded. A close matchttempt to get the information. We now describe and pro-
between model and empirical data would indicate a goodiide examples of this coding scheme in detail.



Example Explanation

After all, it is ten to the Scientist is looking at a line
minus six.. . and extracting the y-axis valu
I mean, the fact you see such a strorjgScientist is reading off the
concentration of gas in the ring, um. | .amount of gas in the ring
That’s about 220 km/sec, which is the Scientist is reading off
velocity spread of a normal galaxy. | the velocity spread

D

Table 1: Examples of information that is read off the visualizations.

Spatial Transformation | Example Explanation
Create Mental Image | | mean, in a perfect, in a perfect | Scientist is creating a mental

world, in a perfect sort of image of a spider diagram; there
spider diagram... is no spider diagram displayed.

Modify Image So that [line] would be below Scientist is adding a new
the black line (hypothesizied) line to a

current visualization

Modify Image If there was no streaming Scientist has imaged a previous
motion or sort of piling of mental image and is now removing
gas the streaming motions from his mental image

Comparison: Maybe it's a projection effect, Scientist is comparing a
although if that’s true, there shouldcurrent image to a previously
be a very large velocity dispersion.created mental image.

Table 2: Examples of spatial transformations.

Desire to extract information A scientist would fre-  to a Fourier mode display). Alternatively, the scientists
guently want to extract some amount of information from could “tweak” the current representation (from black and
a visualization. Comments varied from the very generalwhite to color, for example). We coded the visualiza-
(“What do we see?”) to the very specific (“Let’s see, howtion changes where the scientists were looking for addi-
does oh-three versus three-oh [look]?”). tional information. If they simply made a mistake and

tweaked the visualization, we did not count that visual-
Read-Off A scientist would be able to read-off infor- jzation change. For example, while looking at a particu-
mation directly from the graph. Information that was |arly compressed visualization, one of the scientists said
read off a visualization was explicitly on the graph and“Where’s three-oh at? Don't see three [oh]. That's what
the scientist simply had to read-off a particular value. For| figured, | was gonna get spaghetti. Let’s do a re-plot.”
every utterance, we evaluated whether a value was reaghd then replotted the data with a reduced dataset.
off the visualization. Table 1 shows several examples of
information that was read off of the visualization.

Plans to gather more data Occasionally, the scientists
Spatial Transformations As discussed earlier, spatial wanted or needed to gather more data. We coded every
transformations are cognitive operations that a scientistime they made a plan to gather more data. For example,
performs on a visualization. For every utterance in eactone scientist said “So that means that this guy is in fact
protocol we evaluated whether there was a spatial trandsetween him and him, which is exactly what the exper-
formation. Spatial transformations were further codedimentalist believes he saw. Now, somewhere along the
as Create Image, Modify Image, or Comparison. Ta-line | have to get their results.”
ble 1 shows examples of each category of spatial trans-
formation (note that these utterances are independent of
one another and do not represent a sequence). TableAbandoning their attempt to get information ~ Some-

shows several examples of spatial transformations thaimes the scientists either could not decide what data to
were used by the scientists. get or simply abandoned their quest for a specific infor-

mation. We coded every time the scientists abandoned
Changing the Visualization The scientists were using their attempt to get information. For example, one scien-
their own tools and were able to change the visualizatiortist, unable to explain a particular feature after extensive
to a completely different representation. For example, anvestigation of the image, said “Yeah well, [let's] gloss
scientist could change the data display from the raw dataver it.



Results General Discussion
Our two goals in this paper are to explore whether scien-

tists are able to directly extract the amount of informa- E:Bertin, 1983; Kosslyn, 1989; Pinker, 1990 E:Carpenter & Shaw, 1998
tion they need from the visualizations they examine and m \[34
if not, to explore how they do get the information that is .
Encode Visual Translate Map patterns
needed. Elements of  |—> elementsinto  —>; plpb I
Display patterns to labels

How often is needed information directly
available?

Of the 1014 total utterances in the three sessions, almost o i, 1983: Lohse, 1903

half (481) involved some form of information gathering. Sparrow, 1989
As Figure 3 shows, approximately half of those infor-

mation gathering instances were read-off, suggesting that

the scientist did use the visualization a great deal to ex-

tractinformation. However, there were many times when

the scientists needed information from a visualization but Traratial

it was not available directly from the visualization. Thus,

the visualizations seem to be good, but far from perfect

from an information gathering point of view.

Info

Read-Off Available?

E:Current Paper
Usage of
information . _ £-Trafton et al., 2000

25

Figure 4: Our current theoretical model of complex visu-
alization usage. The “E:” shows evidence for each stage
of the model.

20
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We have conducted a detailed analysis of expert sci-

Percentage of On-Task Utterances

10 entists at work in their own laboratories, analyzing data
that they have collected themselves. Our results show
5] that these scientists do extract a great deal of information
from the visualizations. However, these visualizations do

0- Spaial Vis not provide the scientists with all the information they
Read-Off Transformations - Changes Plans Abandon need to answer their questions. We found that when they

Information Explicitly Available Information not Explicitly Available needed information that was not exp||C|t|y provided by

on Visualization on Visualization

the visualization, they tended to perform spatial transfor-

; ) : mations to answer their questions.
Figure 3: The number of read-offs, spatial transforma It is interesting that the scientists did not simply

tions, vigqalization changes, plans to collect future datachange the visualization more frequently to get the
and decisions to abandon the attempt to get more data fQfgeded information. There was some evidence in the
all datasets. protocols that it was not easy to create new visualiza-
tions. For example, some of the visualizations had to be
How was needed information extracted if it was not'e-done because of an error that was made in the display
S|mp|y read off? As Figure 3 shows, the vast majority of (I.e., needed data was not included in the p|0t or the p|0t
information that was not read off was gathered by usingvas not presented logarithmically when it should have
spatial transformations. In fact, there was no statisticaPeen). However, this problem did not seem to have pre-
difference between the number of times that the scientist¢ented the scientists from trying to make the changes:

read off information directly from the graph and the num- there were no instances of a scientist saying the visual-
ber of spatial transformationg?(1) = 1.21, p > .20. ization tool was too complicated or difficult to work with

Additionally, scientists chose to use a spatial (though these tools could no doubt be improved). Thus,
transformation to get needed information from the scientists’ use of spatial transformations do not seem
a visualization rather than changing the visual-to be a substitute for “bad” graphs, but rather a strategy
ization, x?(1)=12225p<.001, making plans O understand the data more thoroughly.

to gather more datay?(1) = 18419, p<.001, or As suggested earlier, current theories of graph com-
abandoning their attempt to answer their questionfrehension can not account for this pattern of results.
x2(1) = 20402, p < .0011 Current theories (e.g., Bertin, 1983; Kosslyn, 1989;

- Pinker, 1990) deal primarily with how users extract in-
LAll x2's used the Bonferroni adjustment. formation that is explicitly available on a graph or vi-



sualization. In this study, we have shown that users do of insight (pp. 365—-395). Cambridge, MA: MIT
not simply extract information that is explicitly shown on Press.

a visualization; rather, they extract information and use I _— .
mental imagery to create )s/imilar visualizations, modify Punpar. K. (19d96). How SIC'(;”“StS think: Onllnle '(I:'reB_
those mental images, and compare their mental results 3\5'\"3/ asn h(ﬂ:crg:eg;’;‘ua&csange(jln Isztgence. tr'] - B
to on-screen results. These spatial transformation seem tth 'ht'. An Inr\T/]ést’i atioﬁ oafl Cc()nczn)tcurgﬁé\{[(rauc—
to be used for a variety of reasons, including hypothesis turesgaﬁd Process $g 461-493) V\?ashin ton
testing and understanding their own mental representa- DC- APA Press ££0p. : gton,
tion through a process of aligning various mental images ' '

(Trafton et al., 2001). Ericsson, K. A., & Simon, H. A. (1993)Protocol anal-
How can we integrate these new results into current ysis: Verbal reports as datgRevised edition).
theories? We believe that the current theoretical model Cambridge, MA: MIT Press.

should be expanded to include spatial transformations as S . .
part of the cognitive processes that users go through t6'€92ry, M. (1992). Mental animation: Inferring motion
interpret and use visualizations. Figure 4 shows our cur-  1om static displays of mechanical systendsur-

rent model of graph comprehension, along with evidence nal of Experimental Psychology: Learning, Mem-
that supports each stage of this model. ory and Cognition18(5), 1084-1102.

We believe, as Figure 4 shows, that when people usRosslyn, S. M. (1989). Understanding charts and graphs.

graphs or visualizations, they initially go through a pro- Applied Cognitive Psycholog$, 185-226.
cess to understand the graph itself. Then, when they need

to extract information, they can either read off that infor- Kosslyn, S. M., Sukel, K. E., & Bly, B. M. (1999).

mation directly from the visualization or, if that informa- Squinting with the mind's eye: Effects of stimu-
tion is not available, perform a spatial transformation to lus resolution on imaginal and perceptual compar-
get the needed informatidnFinally, that information is isons.Memory and Cognitior27(2), 276-287.
actually used by the user. _ Lohse, G. L. (1993). A cognitive model for understand-
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