
Proving Correctness of the Basic TESLA Multicast

Stream Authentication Protocol with TAME �

Presented at WITS '02, Portland, OR, January 14-15, 2002

Myla Archer

Code 5546, Naval Research Laboratory, Washington, DC 20375
E-mail: archer@itd.nrl.navy.mil

The TESLA multicast stream authentication protocol is distinguished from other
types of cryptographic protocols in both its key management scheme and its use of
timing. It takes advantage of the stream being broadcast to periodically commit to
and later reveal keys used by a receiver to verify that packets are authentic, and it
uses both inductive reasoning and time arithmetic to allow the receiver to determine
that an adversary cannot have prior knowledge of a key that has just been revealed.
While an informal argument for the correctness of TESLA has been published, no
mechanized proof appears to have previously been done for TESLA or any other
protocol of the same variety. This paper reports on a mechanized correctness proof
of the basic TESLA protocol based on establishing a sequence of invariants for the
protocol using the tool TAME, an interface to PVS specialized for proving properties
of automata. It discusses the organization and process used in the proof, and the
possibilities for reusing these techniques in correctness proofs of similar protocols,
starting with more sophisticated versions of TESLA.

1. Introduction

Much attention is paid to the design of protocols; in fact, the majority
of papers encountered when searching through the protocol literature describe
designs for new protocols. Belief in the correctness of these protocols is usually
based on informal arguments. However, formal analysis of protocols has often
revealed problems: see, e.g., [8]. Thus, formal analysis of protocols is important
in providing better assurance of their correctness.

Several types of tools have been applied to the automated analysis of pro-
tocols. The NRL Protocol Analyzer [10] and the HOL-based AAPA2 [4] are
special purpose tools for protocol analysis. The analysis done in [8] used FDR,
a model checker for CSP, which has been successfully used in the analysis of
several protocols. In addition, methods have been developed for applying several
general purpose theorem provers to proving correctness properties of protocols:
e.g., NuPrl in [7], PVS in [5] and [11], and Isabelle in [12]. These tools and meth-
ods are generally designed to make the analysis as automatic as possible, though
some user guidance can be required.

In the TESLA protocol for multicast stream authentication [13], authenti-
cation is based on the absolute timing of the publication of keys and the indirect
relation of each new n-th key to an original key commitment. This kind of de-

�This work is funded by the O�ce of Naval Research.

1

green
Text Box
NRL Release Number 01-1221.1-2440

2 Myla Archer / Proving TESLA with TAME

pendence on time and indexing distinguishes TESLA from other cryptographic
protocols. Protocols that publicly reveal keys at strategic times can be expected
to have analogous correctness arguments, and hence a formal and mechanically
checked proof of one such protocol is expected to be useful for guiding the de-
velopment of correctness proofs for similar protocols. To our knowledge, no one
has previously produced a mechanized proof for a protocol of this class. Given
the complexity of this class of protocols, it is unlikely that any tool can prove the
correctness of such a protocol totally automatically (i.e., without user guidance).
Model checking this kind of protocol is not feasible because an in�nite state sys-
tem is required to represent the inductive relationship between an arbitrary n-th
packet and the initial packet. Mechanical theorem proving without user guid-
ance is also problematic because the timing computations involve nonlinear real
arithmetic, for which there are no decision procedures.

Reference [13] describes the basic TESLA protocol and several increasingly
sophisticated variants. This paper reports on a mechanically checked proof of the
correctness of the basic TESLA protocol using the tool TAME [3,2]. TAME is an
interface to PVS that simpli�es specifying and proving properties of automata.
The basic TESLA correctness proof is based on the method demonstrated in [6]:
1) model the system being studied as a Lynch-Vaandrager (LV) timed automa-
ton [9], 2) express any desired system property as a state invariant, and 3) es-
tablish the validity of the state invariant by developing auxiliary invariants that
support its proof. (The method also includes re�nement or simulation proofs be-
tween automata, but these were not needed for TESLA.) The mechanized proof
for basic TESLA bears a clear relationship to the informal proof in [13] but �lls
in missing details.

The paper is organized as follows. Section 2 describes the basic TESLA pro-
tocol. Section 3 describes how TAME supports specifying and proving properties
of LV timed automata. Section 4 describes how the basic TESLA protocol was
modeled as an LV timed automaton in TAME. Section 5 describes how the ba-
sic TESLA correctness property was formulated as a state invariant and proved
using a set of auxiliary invariants. Section 6 describes the use of TAME in estab-
lishing the correctness of basic TESLA. Finally, Section 7 discusses the manner
in which the speci�cation and proof of basic TESLA can likely be recycled to
produce correctness proofs of more sophisticated TESLA versions.

2. The Basic TESLA Protocol

Every variant of the TESLA multicast stream authentication protocol as-
sumes a single sender who is broadcasting a more or less continuous stream of
packets. Because new packets are continually arriving, a receiver can use informa-
tion in later packets to authenticate earlier packets. Each packet contains a MAC

(message authentication code) used by the receiver to authenticate the packet.

Myla Archer / Proving TESLA with TAME 3

The MAC is a value computed by applying a MAC function known to the receiver
to the remainder of the packet content and some encryption key. Thus, when
the receiver learns the key, he can compute the proper value of the MAC from the
packet content and determine whether it matches the MAC value sent with the
packet. In the case of a match, the receiver can consider the packet authentic
provided there is assurance that an adversary could not have used the proper key
to create a forged packet.

The receiver obtains the key k needed to compute the MAC of a packet as part
of the content of some later packet. To ensure that the packet being authenticated
has not been forged by an adversary using the key k, k is required to be a fresh
key revealed only after the receiver is expected to have received the packet being
authenticated. Further, by requiring that the sender must also have included a
commitment to use k in a packet previous to the packet to be authenticated, the
adversary is prevented from fooling the receiver by simply choosing a fresh key
k0, sending a forged packet, and then revealing k0 in a later forged packet. The
commitment to k is computed by applying a pseudo-random function, known to
the receiver, to k; thus, the receiver can check when it receives k that k is the
key committed to.

Since a pseudo-random function is e�ectively impossible to invert, the key k

cannot be computed from the commitment to k. The MAC function is likewise
designed to be e�ectively impossible to invert. Therefore, neither broadcasting
the commitment nor broadcasting the MAC value reveals k. The informal justi�-
cation for the correctness of the protocol is that the key to the MAC of a packet
p from the sender is never known to an adversary at the time p is received by
a receiver, and therefore cannot have been used by the adversary to create an
acceptable MAC to include in a forged substitute for p.

Of course, every key commitment needs to be in an authenticated packet
not forged by an adversary. Thus, the whole authentication scheme in TESLA
must be bootstrapped by guaranteeing that the initial packet is authentic. This
is assumed to be done by the sender using the more expensive method of digitally
signing the �rst packet.

Basic TESLA is the simplest version of the protocol. In basic TESLA, the
encryption key for the MAC of the i-th packet is committed to in the (i � 1)-st
packet and revealed in the (i + 1)-st packet. To allow the receiver to determine
whether the i-th packet arrives before the (i + 1)-st packet has been sent, the
packets are sent at regular intervals of length I. A typical packet from the sender
in basic TESLA contains:

1. the message to be delivered,

2. a commitment to the key to be used to encode the MAC of the next packet,

3. the key that was used to encode the MAC of the previous packet from the
sender, and

4. the MAC of the current packet.

4 Myla Archer / Proving TESLA with TAME

Two exceptional packets are the initial packet, which is assumed to be digitally
signed and serves only to commit to the key for the second packet, and the second
packet, which need not reveal a key. Thus, all packets carry a key commitment,
and every packet from the third packet on reveal a key.

Under basic TESLA, a receiver can authenticate the i-th packet p when:

� p has been received;
� either p is the digitally signed initial packet, or else the preceding packet p1
and succeeding packet p2 have been received, and the following hold:
� applying the MAC function to the key revealed in p2 and the content (other
than the MAC) of packet p yields a value equal to the MAC component of p,

� the key revealed in p2 is the key committed to in p1,
� p1 can be authenticated, and
� ArrTi < Ti+1, where ArrTi is the receive time of the i-th packet p and Ti+1

is the (earliest possible) send time of the (i + 1)-st packet p2, as measured
on the receiver's clock.1

3. Reasoning about LV Timed Automata in TAME

TAME [3,2] is an interface to PVS [14] that simpli�es specifying and proving
properties of automata. To make it simpler to specify automata, TAME provides
speci�cation templates for various classes of automata, including LV timed au-
tomata. To make it simpler to prove properties of automata, TAME provides
a set of proof steps, implemented as PVS strategies, that mimic typical steps
used in hand proofs of automata properties. The TAME proof steps go a long
way towards relieving the user from low-level reasoning in verifying state invari-
ants. However, the rich type system of PVS, which permits predicate subtypes,
can result in type correctness conditions (TCCs) being produced both when a
speci�cation is type checked and when instantiations of quanti�ed variables are
performed during proofs. In the case of TESLA, proving these type correctness
conditions can require the user to guide the prover through basic reasoning about
non-emptiness of lists and about nonlinear arithmetic. This will be discussed fur-
ther in Section 6.

Lynch-Vaandrager timed automata [9] are transition systems de�ned by a
set of states, a distinguished subset of start states, and a set of actions that cause
state transitions. The basic part of each state is represented by the values of a set
of state variables. Each state s also has associated timing information: a current
time now(s), and time bounds first(s)(a) and last(s)(a) on each action a which
describe the next time interval in which a must execute. If there is no particular
schedule for a, these time bounds are 0 and1. The time bounds for any a can be
reset by other actions. Associated with each action is a precondition describing
when it is enabled, and an e�ect describing the resulting change in state. There
is always a special time-passage action �(�t) which causes time to advance by

1 This condition is formulated slightly di�erently than in [13] but is equivalent; see Section 4.

Myla Archer / Proving TESLA with TAME 5

amount �t. The TAME template for LV timed automata contains declarations
of all of the above automaton features, together with any standard parts of their
de�nitions.

4. Modeling Basic TESLA in TAME

Most protocols, including TESLA, can be modeled by an automaton whose
initial state is modi�ed by the actions of the participants. Because the TESLA
protocol depends on measuring time passage, it is natural to model it as a timed
automaton. The participants in a multicast stream authentication protocol in-
clude the sender, one or more (intended) receivers, and one or more possible
adversaries. Adversaries in TESLA are assumed to have full power over the net-
work [13]: they can allow packets to go through as sent and in a timely fashion,
but they can also delay or block packets, modify or replace packets, or
ood the
network with packets. Thus, TESLA provides no guarantees against denial of
service; it is only intended to provide a means for guaranteeing authenticity of
packets.

This section discusses the assumptions made about the power of the adver-
sary and other issues in the TAME model of basic TESLA and how the basic
TESLA actions, states, and timing constraints are represented in the model. The
actual TAME speci�cation of TESLA can be found in [1].

Assumptions made in the model. In modeling TESLA in TAME, several simpli-
fying assumptions were made. First, because collusion among adversaries does
not lead to additional power, and because receivers act independently of one an-
other, only one adversary and one receiver are modeled. Second, rather than com-
puting packet receive time on the receiver's clock and send time on the sender's
clock as in [13], both receive time and send time are computed on the receiver's
clock, with the receiver always assuming the worst case (earliest) possible send
time consistent with synchronization information. Third, we omit use of the sec-
ond pseudo-random function used in [13] to compute a \secret key" for the MAC

from the revealed key, as we fail to see how this provides any additional security.
Because the receiver must know the indices of the various packets received

to authenticate a packet, another assumption is that the index of the packet is
part of its content. The initial packet, digitally signed by the sender, is assigned
index 0. The value 0 is not considered a valid index, but is used only to identify
the initial packet for purposes of proof. The initial 0-th packet is assumed to be
sent at time T0 = 0.

Further assumptions clarify the power of the adversary. The adversary is
assumed to send well-formed packets containing a valid message index (i.e., not
0), a message body, a key commitment, a key, and a MAC computed from some
key and the message body. The sender and the adversary are assumed to start
o� with non-overlapping sets of keys which they know and can use. The keys

6 Myla Archer / Proving TESLA with TAME

available to the adversary are assumed to be only the adversary's initial set of keys
plus any keys that have been revealed by the sender, and any key commitment
available to the adversary is either a commitment already sent by the sender or
a commitment computed from some key available to the adversary. As noted in
Section 2, key commitments are created by applying a pseudo-random function
to the key being committed to; like any receiver, the adversary is assumed to
have knowledge of this pseudo-random function.

Finally, the usual assumptions are made that events of very low probability
are actually impossible. These assumptions are represented in TAME in two
ways. First, the precondition of every adversary action prevents the adversary
from using a key committed to but not sent by the sender, meaning the adversary
is unable to invert the pseudo-random function. Second, axioms state that both
the pseudo-random function used to compute key commitments and the MAC
function are uniquely invertible, which implies that the adversary cannot use
substitute keys to create matches to encrypted authentication information used
by the sender.

TESLA actions in TAME. Each participant in TESLA performs actions char-
acteristic to the role of that participant. The sender sends packets at regular
intervals, the adversary sends packets at will, and the receiver may receive any
packet sent by either the sender or the adversary. In TAME, these actions are
represented as parameterized automaton actions in which the parameters are
used to construct or designate packets sent or received. The precondition of the
sender action is used to enforce the protocol by guaranteeing that the compo-
nents of the packet to be sent by the sender bear the correct relationship to the
previous sender packets and that the key commitment of the new packet is for a
fresh key. The precondition of the adversary action captures the restrictions on
the adversary's power to use keys and key commitments. The e�ects of actions
of the participants on the state are described below.

In addition to the three types of action performed by the participants, there
is also the standard time-passage action nu, parameterized by the amount of time
that has passed. This amount is constrained to be at most the amount of time
remaining until the sender will send the next packet.

TESLA states in TAME. Abstractly, a state of TESLA embodies the current
history of events: the packets sent, who sent them, when they were sent, and when
(if ever) they were received. This information can all be represented as a set of an-
notated packets, each being a record consisting of a sender, a send time, a receive
time (which may be 1 for a packet never received), and a packet (or its con-
tents). This set is represented in TAME by the state variable SentPacket part.
However, to simplify retrieval of information about the current state, some of this
information is represented redundantly in separate state variables. A small set of
special state invariants was proved to con�rm that the redundant state variables

Myla Archer / Proving TESLA with TAME 7

contain the expected information with respect to the abstract state.
The sender and adversary actions both cause SentPacket part to be up-

dated by adding an appropriate annotated packet with receive time 1. The
sender action also updates the redundant state variables appropriately. The re-
ceiver action can \receive" any packet that appears as an annotated packet in
SentPacket part with receive time 1. Receipt of sp causes a new packet csp to
be added to SentPacket part that is identical to sp except that its receive time
is set to the time of the receive action.

Representing TESLA timing properties in TAME. The basic TESLA scheme
has only one special timing property: that the sender sends packets at regular
intervals. This property is guaranteed in TAME by using the first and last

components of the state, which map each action to the earliest and latest times
of the time interval in which it must occur. The sender action begins with first

and last set to 0, and each execution of the sender action advances both of these
times by the �xed amount of time I. The adversary and receiver actions always
have first and last set to 0 and 1|that is, they are unrestricted as to when
they may occur.

The timing condition ArrTi < Ti+1 is captured in the formal de�nition of
the authentication condition from Section 2.

5. Overview of the Correctness Proof

Correctness for (any version of) TESLA means that if the receiver can verify
the authentication condition of TESLA for a packet, then the packet was indeed
sent by the sender. The basic TESLA authentication condition in Section 2 is
formalized in TAME as a predicate Authenticated(sp:SentPacket,s:states),
where SentPacket is the type of annotated packets. Because in basic TESLA
the authenticity of the (i + 1)-st packet depends on the authenticity of the i-th
packet, the de�nition of Authenticated is recursive. Because Authenticated is
formalized in terms of annotated packets, it uses sp1, sp, and sp2 in place of p1,
p, and p2 from the informal de�nition in Section 2.

Given the predicate Authenticated, the correctness property for basic
TESLA can be formulated as the following state invariant, Inv A(s:states):

(FORALL (sp:SentPacket): Authenticated(sp,s) => Sender(sp) = S);

This formulation uses the notation S for the sender from the TAME model of
TESLA (the adversary is A). The proof that Inv A is an invariant is based on
the following informal argument: If the sender of sp is A, then the key used to
encode the MAC of sp must have been a sent key or one of A's keys at the time sp
was received. However, since sp was received before the sender revealed this key,
the key was not a sent key. Moreover, the key is not one of A's keys, because it
was a fresh key committed to by S. Hence, the sender must have been S.

8 Myla Archer / Proving TESLA with TAME

18

17 16 15 14 10

1 13 12

4 2 8 9 11

3 7 5 6

A

New

Figure 1. Dependencies among the TESLA invariants.

In all, nineteen auxiliary invariants were used in proving the invariance of
Inv A. The dependency relationships among these invariants are shown in Fig-
ure 1. The labels in the graph abbreviate the invariant names; thus, \A" stands
for the invariant Inv A. Because the de�nition of Authenticated is recursive on
the index of the packet being authenticated, the proof �rst had to be cast as
a proof by mathematical induction over this index. This was done by slightly
reformulating the invariant Inv A as Inv 18:

(FORALL (n:nat): (FORALL (sp:SentPacket):

Id(sp) = n & Authenticated(sp,s) => Sender(sp) = S));

Inv 18 holds trivially when n is 0. In the case n > 0, one may assume that the
sender of the packet sp1 in the de�nition of Authenticated is S in proving that
the sender of the packet sp being authenticated is also S. Inv A clearly follows
immediately from Inv 18.

The informal argument that Inv 18 is an invariant is the same as that for
Inv A. In formalizing this argument, one must �rst notice that the argument is
implicitly reasoning about some state ŝ in which sp has been received and in
which the key Key(sp2) used to compute its MAC has been committed to by S
but has not yet been revealed by S. But when Authenticated(sp,s) holds, a
packet sp2 revealing Key(sp2) has been received (and may have been sent by S).
Hence, one cannot take ŝ to be s. That ŝ exists follows from Inv 15, which states
that if the annotated packets sp and sp1 have been sent in state s, the sender
of sp1 is S, and sp was received before the key k committed to in sp1 was to be

Myla Archer / Proving TESLA with TAME 9

revealed by S, then there exists a reachable state ŝ whose current time now(ŝ)

is before k is to be revealed, in which sp is has been received, and in which sp1

has been sent by S. The reachability of ŝ is important to establish, since it allows
other auxiliary state invariants to be applied to ŝ.

The three major invariants that support applying the informal argument
outlined above to state ŝ are Inv 10, which says that a packet sent by A must
use a sent key or a key not belonging to S to encode the MAC, Inv NEW, which
says that a key committed to in a packet sent by S must be one of S's keys, and
Inv 14, which implies that the key committed to in packet sp1 was not a sent
key at the time sp was received. For the precise formulation of all the invariants,
see [1].

6. Mechanizing the Correctness Proof in TAME

Constructing the TAME proof for basic TESLA required a substantial
amount of thought regarding both the model of TESLA and the set of auxiliary
invariants su�cient to support the proof that Inv A is an invariant. Although
the description of basic TESLA in [13] did not explicitly mention including the
packet index in a packet, this detail was added in the TAME model because it
was hard to see how a receiver could reason e�ectively about authenticity without
this additional information (given that the adversary can insert arbitrary num-
bers of intermediate packets). Looking ahead at other kinds of information one
would probably need in the reasoning led to including some redundant variables
in the state. For example, the state variable SenderPacketList part, which
accumulates the list of packets sent by S, was included to make retrieval of the
most recently sent packets direct. The simplest method for retrieving the most
recent packet with SentPacket part alone would be to deduce the index of the
latest packet from the current time and prove and use an invariant to the e�ect
that for each index n, if the time is at least n*I, then there is a unique annotated
packet in SentPacket part whose index is n.

Two invariants were especially important to discover because they express
details too obvious to include in the informal correctness argument. One of these
invariants, Inv 15, was described in Section 5; it partially captures the \obvious"
fact that any given state s has a predecessor state with an earlier time stamp in
which events earlier than that time stamp have occurred. Another such invariant
is Inv 13, which states that if packet sp was sent by S at time n*I and the current
time is less than (n+2)*I, then sp is one of the two most recent packets sent by
S. These invariants provided the needed \glue" to connect previously established
invariants into the proof for Inv A.

The proof of Inv 13 is interesting in that it is the only one requiring some
help from the user with respect to reasoning about nonlinear arithmetic: the user
must directly apply the cancellation law to derive a needed equality of the form

10 Myla Archer / Proving TESLA with TAME

iii
TAME Strategy Purposeiii

AUTO_INDUCT Set up a structural induction proofiii
DIRECT_PROOF Set up a non-induction proofiii
DIRECT_INDUCTION Set up a mathematical induction proofiii
APPLY_SPECIFIC_PRECOND Introduce the specified preconditioniii
APPLY_GENERAL_PRECOND Introduce the timing constraintsiii
APPLY_IND_HYP Apply the inductive hypothesisiii
APPLY_INV_LEMMA Apply an invariant lemmaiii
APPLY_LEMMA Apply any general lemmaiii
SUPPOSE Do a case split and label the casesiii
COMPUTE_POSTSTATE Compute the poststate of the current transitioniii
SKOLEM_IN Skolemize an embedded quantified formulaiii
INST_IN Instantiate an embedded quantified formulaiii
TRY_SIMP Try to complete the proof automaticallyiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 2. TAME strategies needed in the basic TESLA proof.

n = i from a hypothesis of the form n*I = i*I. Further study of the invariants
and proof show that this need goes away if Inv 13 is restated to replace the
hypothesis that sp was sent by S at time n*I by the hypothesis that the index
of sp is n. The only invariant whose proof relies on Inv 13 is Inv 14, whose
invariance proof can be slightly modi�ed to use this new formulation of Inv 13.

The other places in which nonlinear real arithmetic complicates the complete
TESLA proof are TCCs, both for the TESLA speci�cation and in the proofs of
some invariants. These TCCs arise when time is de�ned to be a nonnegative
real number or 1, and their proofs typically require the user to supply the
information that the product of two nonnegative numbers|e.g., n and I|is
nonnegative. Changing the de�nition of time to allow it to be an arbitrary real
number or 1 eliminated all of these TCCs. Thus, a combination of two changes
in the speci�cation of basic TESLA and its invariants allows complete avoidance
of any special guidance from the user about nonlinear real arithmetic.

Figure 2 summarizes the TAME steps that were required in the proof. Most
of these proof steps require appropriate arguments. Some of their e�ectiveness
comes from the fact that they both maintain and use labels that correspond to the
semantics of formulae in subgoals. For example, INST IN and SKOLEM IN can
be directed to instantiate or skolemize with respect to an appropriate embedded
quanti�er in the inductive hypothesis. All of the proof steps in Figure 2 have been
used in earlier TAME applications. Most have been used many times, but this is
only the second application where DIRECT INDUCTION has been needed: it
is used to perform the combination of mathematical induction followed by direct
reasoning about the automaton that is needed in the proof of Inv 18.

In addition to the TAME steps, the PVS step EXPAND (for expanding
de�nitions) is also needed in the TESLA proof. When the speci�cation and proof
are not modi�ed as described above to eliminate user guidance for reasoning

Myla Archer / Proving TESLA with TAME 11

about nonlinear arithmetic, a few additional direct PVS steps are required for
this reasoning.

7. Conclusions

One expected bene�t from the development of a correctness proof for an
example protocol of the class of TESLA is a model that can provide guidance
in the construction of correctness proofs for analogous protocols. The guidance
that can be expected from the example proof described in this paper is in the
form of the high-level features of the speci�cation of the protocol and the nature
of the set of auxiliary invariants that will be needed in the proof.

A very simple example of proof adaptation occurred during the develop-
ment of the TESLA proof described in Section 5. The original formulation of
basic TESLA in TAME allowed the adversary A less power: instead of having an
initial set of known keys disjoint from the keys known to the sender S, A was as-
sumed not to know any keys, and to have to use only keys revealed by the sender.
The proof of correctness constructed for basic TESLA under these stronger re-
strictions on the adversary used almost the same structure of auxiliary invariants
shown in Figure 1: only Inv New was missing. Inv 10 was stronger, saying that
a packet sent by A had to use a sent key. Modifying the set of auxiliary invari-
ants needed for the case when A has more power required only the weakening
of Inv 10, the addition of Inv New to compensate for this weakening, and minor
modi�cations in the proof of Inv 18. Modifying the speci�cation of basic TESLA
in TAME required only adding a declaration of the set of keys known to S and
the appropriate weakening of the precondition on the adversary action.

Of course, the degree of similarity of the proof of an analogous protocol to
the proof of basic TESLA will depend on the degree of di�erence of this protocol
from basic TESLA. However, one can expect it to remain appropriate to model
the state of the protocol using a set of annotated packets and some form of list
of the packets sent by the sender, to capture the details of the protocol in the
precondition of a sender action, and to capture assumed restrictions on the power
of the adversary in the precondition of an adversary action. One can also predict
that certain invariants or their analogues will be needed for particular roles in
the proof. For example, the \informal correctness argument" will be similar, and
will be formalized, as in the basic TESLA proof, using analogues of Inv 10 and
Inv 14 in the manner described in Section 5. There will almost certainly have
to be an analogue of Inv 15 establishing the existence of a predecessor state to
which the analogues of Inv 14 and Inv 10 can be applied.

For other variants of TESLA described in [13], one can make more precise
predictions. For example, the simplest of these variants di�ers from basic TESLA
only in using each i-th key as the commitment to the (i + 1)-st key. The timing
properties are unchanged, and thus Inv 4, which says that the sender sends the

12 Myla Archer / Proving TESLA with TAME

n-th packet at time n*I will remain the same. A more complex variant ties
packets and the keys to their MACs to time intervals rather than to packet indices.
For this variant, some more sophisticated analogue of Inv 4 referring to the time
at which the n-th key (rather than the n-th packet) is sent is likely to be needed.

The above predictions will be tested in future work to adapt the basic
TESLA proof to these more sophisticated variants.

Acknowledgments

I thank Catherine Meadows for introducing me to this problem. I also thank
Catherine, E. Leonard, R. Bharadwaj, and C. Heitmeyer for helpful comments.

References

[1] M. Archer. Proving correctness of the TESLA multicast stream authentication protocol
with TAME. Draft report.

[2] M. Archer. TAME: Using PVS strategies for special-purpose theorem proving. Annals of
Mathematics and Arti�cial Intelligence, 29(1-4), 2000. Published February, 2001.

[3] M. Archer, C. Heitmeyer, and E. Riccobene. Using TAME to prove invariants of automata
models: Case studies. In Proc. 2000 ACM SIGSOFT Workshop on Formal Methods in
Software Practice (FMSP'00), August 2000.

[4] S. H. Brackin. Using checkable types in automatic protocol analysis. In Proc. 15th Annual
Computer Security Applications Conference (ACSAC '99), pages 99{108. IEEE Comp. Soc.
Press, December 1999.

[5] A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a partitionable group
communication service. ACM Trans. on Computer Systems, 19(2):171{216, May 2001.

[6] C. Heitmeyer and N. Lynch. The Generalized Railroad Crossing: A case study in formal
veri�cation of real-time systems. In Proc., Real-Time Systems Symp., San Juan, Puerto
Rico, Dec. 1994.

[7] J. Hickey, N. Lynch, and R. V. Renesse. Speci�cations and proofs for ensemble layers. In
Tools and Algorithms for the Construction and Analysis of Systems (TACAS '99), volume
1579 of Lect. Notes in Comp. Sci., pages 119{133. Springer-Verlag, December 1999.

[8] G. Lowe. Breaking and �xing the Needham-Schroeder public-key protocol using FDR. In
Tools and Algorithms for the Construction and Analysis of Systems (TACAS '96), volume
1055 of Lect. Notes in Comp. Sci., pages 147{166. Springer-Verlag, December 1996.

[9] N. Lynch and F. Vaandrager. Forward and backward simulations { Part II: Timing-based
systems. Information and Computation, 128(1):1{25, July 1996.

[10] C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Programming,
26(2):113{131, 1996.

[11] J. Millen and H. Rue�. Protocol-independent secrecy. In 2000 IEEE Security and Privacy
Symposium, pages 110{119, Oakland, CA, May 2000. IEEE Computer Society.

[12] L. C. Paulson. The inductive approach to verifying cryptographic protocols. J. Computer
Security, 6:85{128, 1998.

[13] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. E�cient authentication and signing of
multicast streams over lossy channels. In Proc. of IEEE Security and Privacy Symposium
(S&P2000), pages 56{73, May 2000.

[14] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. The PVS prover guide.
Technical report, Computer Science Lab., SRI Intl., Menlo Park, CA, 1998.

