
Veri�able Middleware for Secure Agent

Interoperability?
In Proc. 2nd Goddard IEEE Workshop on Formal Approaches to Agent-Based

Systems (FAABS II)
October 28{30 2002. Greenbelt, MD USA.

Dr. Ramesh Bharadwaj

Center for High Assurance Computer Systems
Naval Research Laboratory
Washington DC, 20375

ramesh@itd.nrl.navy.mil

Abstract. There is an increasing need, within organizations such as the
Department of Defense and NASA, for building distributed applications
that are rapidly re-con�gurable and survivable in the face of attacks and
changing mission needs. Existing methods and tools are inadequate to
deal with the multitude of challenges posed by application development
for systems that may be distributed over multiple physical nodes sepa-
rated by vast geographical distances. The problem is exacerbated in a
hostile and unforgiving environment such as space where, in addition,
systems are vulnerable to failures. It is widely believed that intelligent
software agents are central to the development of agile, e�cient, and ro-
bust distributed applications. This paper presents details of agent-based
middleware that could be the basis for developing such applications. We
pay particular attention to the correctness, survivability, and e�ciency
of the underlying middleware architecture, and develop a middleware
de�nition language that permits applications to use this infrastructure
in a scalable and seamless manner.

1 Introduction

There is an increasing need, both within Government and Industry, for methods
and tools to develop highly distributed and robust computer-based systems.
Moreover, software-intensive systems in safety- and mission-critical areas, such
as software for manned and unmanned space missions within NASA, or the
Network-Centric Warfare [6], Total Ship Computing, and FORCEnet initiatives
of the Department of Defense (DoD), are of exceedingly high complexity and
must in addition be dependable, robust, and adaptive. A recent Department
of Defense (DoD) report to Congress [10] identi�es the lack of secure, robust
connectivity and interoperability as one of the major impediments to progress
in Network Centric Warfare.

? This work is sponsored by the O�ce of Naval Research

green
Text Box
NRL Release Number 03-1221.1-0626

2 Why Software Agents?

It is widely acknowledged that intelligent software agents are central to the
development of the capabilities required to write robust, recon�gurable, and
survivable distributed applications. This is because agents are an e�cient, ef-
fective, and survivable means of information distribution and access. Agents are
e�cient because only relevant information needs to be passed along. Agents are
e�ective because they allow local control over updates and the dissemination of
data. Agents are survivable because their control is distributed. This new tech-
nology, which includes both autonomous and mobile agents, addresses many of
the challenges posed by distribution of applications and is capable of achieving
the desired quality of service especially over unreliable, low-bandwidth commu-
nication links. However, agents technology carries with it associated security
vulnerabilities. Distributed computing in general carries with it risks such as
denial of service, Trojan horses, information leaks, and malicious code. Agents
technology, by introducing autonomy and code mobility, may exacerbate some
of these problems. In particular, a malicious agent could do serious damage to
an unprotected host, and malicious hosts could damage agents or corrupt their
data. Such threats become very real in a distributed computing environment, in
which a malicious intruder may be actively trying to disrupt communications.

The Secure Agents Middleware (SAM) is being designed to provide the re-
quired degree of trust in addition to meeting a set of achievable security re-
quirements. Such an infrastructure is central to the successful deployment and
transfer of agents technology to industry because security is a necessary pre-
requisite for distributed computing. To make agent-based systems economically
viable, it is imperative that their development, upgrade, integration, testing,
certi�cation, and delivery be rapid and cost-e�ective. However, immense and
profound challenges of software trustworthiness remain. Methods and tools for
software development that are available commercially are not su�cient to meet
the challenges posed by the distribution of processing functions, real-time and
non-real-time integration, multi-level security, and issues characteristic of COTS
products, such as malicious code, viruses, worms, and Trojan horses.

3 Requirements for Secure Mobile Agents

Security is a fundamental concern in SAM. By building security from the
ground up into SAM, we gain e�ciency by identifying and dealing with potential
bottlenecks early, i.e., at the design state. SAM provides an e�cient architecture
and ensures security by eliminating unnecessary and/or insecure communication
among agents and hosts. Our classi�cation of requirements for secure mobile
agents is from FGS961. For the initial release of SAM we shall assume a degree
of trust among the participants. This is reasonable in a large organization such
as the DoD or NASA where it may be assumed that other policing methods and

1 \Security for Mobile Agents: Issues and Requirements," William N. Farmer, Joshua
D. Guttman, and Vipin Swarup, The MITRE Corporation, Bedford, MA.

techniques for intrusion detection and tolerance will identify and sift out casual
intruders and eavesdroppers or programs carrying malicious payloads. However,
we plan to address this very important research issue in greater detail in the
later stages of this e�ort.

This project addresses the following security requirements:

{ The author and sender of an agent are authenticated.
{ The correctness of an agent's code is checked.
{ Privacy is maintained during transmission by encrypting agent data.
{ Hosts protect themselves against malicious agents by �rst authenticating an
agent and checking that its proposed activities are authorized.

{ Host safety is ensured by created agents in a language SOL [2] that promotes
the development of safe programs.

{ Senders have control over their agents, e.g., they may restrict or increase an
agent's authorization in particular situations.

{ By equipping each agent with a state appraisal function, hosts can ensure
that an agent is always in a safe state.

{ Senders have control over which hosts have the authority to execute an agent.

4 A Brief Introduction to SOL

Agents are created in a special purpose synchronous programming language
called Secure Operations Language (SOL) [2, 4, 1]. A SOL application comprises
a set of agent modules, each of which runs on a given host. The host executes
an agent module in compliance with a set of locally enforced security policies.
A SOL multi-agent system may run on one or more hosts, spanning multiple
networks and multiple administrative domains.

A module is the unit of speci�cation in SOL and comprises variable decla-
rations, assumptions and guarantees, and de�nitions. The assumptions section
typically includes assumptions about the environment of the agent. Execution
aborts when any of these assumptions are violated by the environment. The
required safety properties of an agent are speci�ed in the guarantees section.
The definitions section speci�es updates to internal and controlled variables.

A variable de�nition is either a one-state or a two-state de�nition. A one-
state de�nition, of the form x = expr (where expr is an expression), de�nes the
value of variable x in terms of the values of other variables in the same state. A
two-state variable de�nition, of the form x = initially init then expr (where
expr is a two-state expression), requires the initial value of x to equal expression
init; the value of x in each subsequent state is determined in terms of the values
of variables in that state as well as the previous state (speci�ed using operator
PREV). A conditional expression, consisting of a sequence of branches \[] guard
! expression", is introduced by the keyword \if" and enclosed in braces ("{"
and "}"). A guard is a boolean expression. The semantics of the conditional
expression if f []g1 ! expr1 []g2 ! expr2 : : : g is de�ned along the lines of
Dijkstra's guarded commands [7] { in a given state, its value is equivalent to
expression expri whose associated guard gi is true. If more than one guard is true,

deterministic reactive module SecureRead {

interfaces

string file_read(string filename, int position, int size);

void send(string address, string data);

internal variables

{no_reads, read_performed} status;

definitions

status = initially no_reads then

case PREV(status) {

[] no_reads ->

if {

[] @send -> PREV(status)

[] @file_read -> read_performed

}

[] read_performed ->

if {

[] @file_read -> read_performed

// @send illegal!

}

}; // end case

} // end module SecureRead

Fig. 1. A SOL agent module that implements safe access to local �les.

the expression is nondeterministic. It is an error if none of the guards evaluates to
true, and execution aborts. The case expression case expr f []v1 ! expr1 []v2 !
expr2 : : : g is equivalent to the conditional expression if f [](expr == v1) !
expr1 [](expr == v2) ! expr2 : : : g. The conditional expression and the case
expression may optionally have an otherwise clause with the obvious meaning.

5 Enforcement Automata

In this section, we shall examine how enforceable safety and security policies [11]
are expressed in SOL as enforcement automata (also known as security agents

[3]). The enforcement mechanism of SOL works by terminating all executions of
a program for which the policy being enforced no longer holds. For reasons of
readability and maintainability, we prefer to use explicit automata for enforcing
safety properties and security policies, although any language that allows ref-
erences to previous values of variables may su�ce. Unlike assertions, where no
additional state is maintained, SOL enforcement automata may include addi-
tional variables that are updated during the transitions of the automata.

5.1 Security Automata

We use the example from [11] to illustrate how we may implement a security
policy that allows a software agent to send data to remote hosts (using method

send) as well as read local �les (using method file read). However, invocations
of send subsequent to file read are disallowed. It is di�cult, if not impossible,
to con�gure current systems to implement such a policy. For example, it cannot
be implemented in the \sandbox" model of Java [8] in which one may either
always or never allow access to a system resource. As shown in Figure 1, this
policy is easily implemented in SOL.

6 Formal Semantics of SOL

State Machines A SOL agent module describes a state machine [2]. A state ma-

chine � is a quadruple (V; S;�; �), where V = fv1; v2; : : : ; vng is a �nite set of
state variables; S is a nonempty set of states where each state s 2 S maps each
v 2 V to its range of legal values; � : S ! boolean is a predicate characteriz-
ing the set of initial states; � : S � S ! boolean is a predicate characterizing
the transition relation. We write � as a logical formula involving the names of
variables in V . Predicate � relates the values of the state variables in a previous
state s 2 S to their values in the current state s0 2 S. We write � as a logical
formula involving the values of state variables in the previous state (speci�ed
using operator PREV) and in the current state.

SOL Predicates Given a state machine � = (V; S;�; �) we classify a predicate
p : S ! boolean as a one-state predicate of � and a predicate q : S�S ! boolean

as a two-state predicate of �.
More generally, SOL predicate refers to either a one-state or two-state predi-

cate, and SOL expression refers to logical formulae or terms containing references
to current or previous values of state variables in V .

Reachability Given a state machine � = (V; S;�; �), a state s 2 S is reachable
(denoted Reachable�(s)) if

(i) �(s) or
(ii) 9s0 2 S : Reachable�(s

0) and �(s0; s)

Invariants A one-state predicate p is a state invariant of � if and only if

8s : Reachable�(s)) p(s)

A two-state predicate q is a transition invariant of � if and only if

8s; s0 : (Reachable�(s) ^ �(s; s0))) q(s; s0)

More generally, a SOL predicate x is an invariant of � if x is a state invariant
or transition invariant of �.

Veri�cation For a SOL agent module describing a state machine �, and a set
of SOL predicates X = x1; x2; : : :, veri�cation is the process of establishing that
each SOL predicate xi 2 X is an invariant of �.

7 SOL Agent Modules

A SOL agent module describes both an agent's environment, which is usually
nondeterministic, and the required agent behavior, which is usually determin-
istic [5, 9]. A SOL agent module describes the required relation between moni-

tored variables, environmental quantities that the agent monitors, and controlled

variables, environmental quantities that the agent controls. Additional internal
variables are often introduced to make the description of the agent concise. In
this paper, we only distinguish between monitored variables, i.e., variables whose
values are speci�ed by the environment, and dependent variables, i.e., variables
whose values are dependent on the values of monitored variables. Dependent
variables include all the controlled variables and internal variables of an agent
module. In the sequel, we assume that variables v1; v2; : : : ; vI are an agent's mon-
itored variables, and that variables vI+1; vI+2; : : : ; vn are the agent's dependent
variables. The notation NC(v1; v2; : : : ; vk) is used as an abbreviation for the
SOL predicate (v1 = PREV (v1))^ (v2 = PREV (v2))^ : : :^ (vk = PREV (vk)).

Components of the state machine � = (V; S;�; �) are speci�ed in the section
definitions of a SOL agent module. The initial predicate � is speci�ed in terms
of the initial values for each variable in V , i.e., as predicates �v1; �v2; : : : ; �vn,
so that � = �v1 ^ �v2 ^ : : : ^ �vn. The transition relation � is speci�ed as a set
of assignments, one for each dependent variable of �, i.e., as SOL predicates
�vI+1; �vI+2; : : : ; �vn, each of which is of the form:

vi =

8><
>:

e1 if g1
e2 if g2
...

where 1 � i � n, and e1; e2; : : : are SOL expressions, and g1; g2; : : : are SOL
predicates. To avoid circular de�nitions, we impose an additional restriction on
the occurrences of state variables in these expressions as below:

De�ne dependency relations Dnew, Dold, and D on V � V as follows:
For variables vi and vj , the pair (vi; vj) 2 Dnew i� vj occurs outside a
PREV () clause in the SOL expression de�ning vi; the pair (vi; vj) 2 Dold

i� PREV (vj) occurs in the SOL expression de�ning vi; and D = Dnew[
Dold. We require D+

new, the transitive closure of the Dnew relation, to
de�ne a partial order.

7.1 Composition of SOL Agent Modules

Consider two SOL agent modules describing the state machines�1 = (V1; S1; �1; �1)
and �2 = (V2; S2; �2; �2). We de�ne the composition of the two SOL agents
� = (V; S;�; �) as � = �1k�2 where

V = V1 [V2

� = �1 ^�2

� = �1 ^ �2

Each s 2 S maps each v 2 V to its range of legal values

provided that there is no circularity in the occurrences of variables in �. Also in
practice, it is the case that �1 and �2 de�ne disjoint sets of state variables.

8 Conclusions

We plan to continue the development of design and analysis tools for SOL agents,
and veri�cation tools such as automatic invariant generators and checkers, the-
orem provers, and model checkers. We currently have a compiler for SOL which
generates Java code suitable for execution on multiple hosts. Planned extensions
to the compiler include support for �ne-grained security and problems associated
with survivability such as fault-tolerance, load balancing, and self-stabilization.

The goal of the NRL secure agents project is to develop enabling technology
that will provide the necessary security infrastructure to deploy and protect
time- and mission-critical applications on a distributed computing platform. Our
intention is to create a robust and survivable information grid that will be capable
of resisting threats and surviving attacks. One of the criteria on which this
technology will be judged is that critical information is conveyed to principals in
a manner that is secure, safe, timely, and reliable. No malicious agencies or other
threats should be able to compromise the integrity or timeliness of delivery of
this information.

References

1. R. Bharadwaj. SINS: a middleware for autonomous agents and secure code mobil-
ity. In Proc. Second International Workshop on Security of Moble Multi-Agent Sys-
tems (SEMAS-02), First International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS'02), Bologna, Italy, July 2002.

2. R. Bharadwaj. SOL: A veri�able synchronous language for reactive systems.
In Proc. Synchronous Languages, Applications, and Programming, ETAPS 2002,
Grenoble, France, April 2002.

3. R. Bharadwaj. An infrastructure for secure interoperability of agents. Technical
report, Naval Research Laboratory, Washington, DC, To appear.

4. R. Bharadwaj et al. An infrastructure for secure interoperability of agents. In Proc.
Sixth World Multiconference on Systemics, Cybernetics, and Informatics, Orlando,
Florida, July 2002.

5. R. Bharadwaj and C. Heitmeyer. Model checking complete requirements speci�-
cations using abstraction. Automated Software Engineering, 6(1), January 1999.

6. A. K. Cebrowski and J. J. Garstka. Network-Centric Warfare: Its origin and future.
In Proc. United States Naval Institute, January 1998.

7. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
8. L. Gong. Java Security: Present and near future. IEEE Micro, 15(3):14{19, 1997.
9. C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and R. Bharadwaj. Using abstraction

and model checking to detect safety violations in requirements speci�cations. IEEE
Transactions on Software Engineering, 24(11), November 1998.

10. Secretary of Defense et al. Network centric warfare. Technical report, Department
of Defense, www.c3i.osd.mil/NCW, July 2001.

11. F. B. Schneider. Enforceable security policies. ACM Transactions on Information
and System Security, 3(1):30{50, February 2000.

