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ABSTRACT
Atmospheric turbulence is a major impediment to ground-based optical interferometry. It causes fringes to move
on ms time-scales, forcing very short exposures. Because of the semi-random phase shifts, the traditional approach
averages exposure power spectra to build signal-to-noise ratio (SNR). This incoherent average has two problems:
(1) A bias of correlated noise is introduced which must be subtracted. The smaller the visibility/the fainter the
target star, the more difficult bias subtraction becomes. SNR builds only slowly in this case. Unfortunately, these
most difficult small visibility baselines contain most of the image information. (2) Baseline phase information is
discarded. These are serious challenges to imaging with ground based optical interferometers. But if we were able
to determine fringe phase, we could shift and integrate all the short exposures. We would then eliminate the bias
problem, improve the SNR, and we would have preserved most of the phase information. This coherent averaging
becomes possible with multi-spectral measurements. The group delay presents one option for determining phase.
A more accurate approach is to use a time-dependent model of the fringe. For the most interesting low-visibility
baselines, the atmospheric phase information can be bootstrapped from phase determinations on high-visibility
baselines using the closure relation. The NPOI, with 32 spectral channels and a bootstrapping configuration,
is well-suited for these approaches. We will illustrate how the fringe modeling approach works, compare it to
the group-delay approach, and show how these approaches can be used to derive bias-free visibility amplitude
and phase information. Coherent integration provides the highest signal-to-noise (SNR) improvement precisely
in the situations where SNR builds most slowly using incoherent averaging. Coherent integration also produces
high-SNR phase measurements which are calibration-free and thus have high real uncertainties as well. In this
paper we will show how to coherently integration on NPOI data, and how to use baseline visibilities and calibrate
coherently integrated visibility amplitudes.

1. INTRODUCTION

In this paper we are going to show how to coherently
integrate in post-processing on data obtained with the
Navy Prototype Optical Interferometer1 (NPOI). In-
terferometry at visible and near-infrared wavelengths
is complicated by the atmosphere. The combined ef-
fect of atmospheric turbulence and vibrations in the
interferometer causes fringes to shift on short times-
scales, sometimes as short as several milliseconds. These
shifts are large compared to the fringe spacing, and
limits integration times to only a few milliseconds. In
that short time it is not possible to obtain a complete
measurement on a typically faint star. Therefore, we
must record many such short exposures and combine
them in post-processing. The conventional approach to
this post-processing is the so-called incoherent average,
which averages fringe Fourier power. When the fringe
contrast is small or the count rate is small, which cov-
ers most of the most interesting measurements, a large

bias is introduced which limits the signal to noise ratio
achievable. An alternative approach, which has been
discussed by several authors in the past2–6 is coher-
ent integration. In the next section we will describe
what coherent integration is, then how to determine the
phases needed for coherent integration in section 3. In
section 4 we briefly outline why coherent integration is
necessary. In section 5 we will discuss some of the issues
that need to be overcome when coherently integrating,
including the introduction of phase terms, whose solu-
tion is presented in section 6, and a reduction of the
amplitude of the coherently average, whose solution is
presented in section 7. Then we present a section dis-
cussing the coherent bias, and finish with a discussion of
some implications and observations regarding coherent
integration.
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2. INTRODUCTION TO COHERENT
INTEGRATION

From individual short exposures, we can estimate the
complex visibility X + iY . On the NPOI, we use a dis-
crete Fourier transform as the estimator. This complex
visibility is rotated by atmospheric and other phase
variations by some phase −θ relative to the true source
phase. Therefore it is not possible to improve SNR
by simply averaging many individual measurements,
X + iY . The traditional incoherent average bypasses
this problem by instead averaging the square modulus,

〈(X + iY ) (X + iY )∗〉 (1)

As we shall see, this process makes poor use of the SNR
inherently present in the data.

In coherent integration, we instead form the average

〈(X + iY ) eθ〉 (2)

This process preserves far more of the SNR inherently
present in the measured data. In order to carry out
this process we need however to determine the phase,
θ, by which to rotate the individual complex visibilities
measurements before adding them.

3. PHASE TRACKING

In order for the coherent integration approach to work,
we must have a method of determining the correct
phase to apply to rotate each single-frame complex vis-
ibility before adding. There are in principle many ways
of doing this. The most well-known method for fringe
tracking is the group-delay method. In this method the
phase as a function of wavelength is assumed to take
on the form,

θ (λ) =
2πd

λ
+ φ (3)

where d is a vacuum path delay (the fringe-tracking
error), and φ represents other phase terms, including a
crude approximation of the atmospheric dispersion.

The visibilities at each wavelength are coherently
added after rotation by this phase, and the power com-
puted. The maximum of the power is found as a func-
tion of d, and the appropriate values to use for coher-
ent integration for that measurement are d, and the
negative of the phase of the summed complex quan-
tity. The exact phase reference to use does not matter
much, but it is important that the same phase reference

be used for all measurements. The group delay method
is only an optimal estimator of fringe phase when (a)
the phase is described by equation 3, (b) the count rate
and visibility are constant as a function of wavelength,
and (c) the wavelength channels are linearly spaced in
wave number space. It is also difficult to extend the
group delay method to take into account known frame
to frame variations due to the slow variation of air-path.
For that reason, we have employed a different approach
which provides a more generalized approach to fringe
tracking. The method was developed for the NPOI, but
could be readily adapted to other multi-spectral inter-
ferometers.

In the fringe modeling approach we make a model
of the fringe,

I(λ, x) =
N∑

i=1

Ii +
∑

i,j

√
IiIj Ṽij cos

(
2πkijx

λ
+ θij (λ)

)

(4)

which we fit to the measured fringe pattern. This model
correctly takes into account count-rate and visibility
variation with wavelength, and can use any appropriate
statistics (e.g. Gaussian, Poisson, or any other distribu-
tion). By allowing the parameters to vary with time, we
can also fit a time-dependent model, which improves
SNR. The entire expression is fitted to multiple con-
secutive frames of data simultaneously, and the best fit
tracking phase θij (λ) as a function of wavelength is ob-
tained, for example in a form similar to that used in the
group delay method, equation 3, or some more realistic
variation which also takes into account the dependence
of atmospheric dispersion with wavelength, as well as
the dispersion in the instrument, and in some cases even
phase variations due to the source.

4. IMPORTANCE OF COHERENT
INTEGRATION

The simplest reason why coherent integration is impor-
tant is that it improves SNR. An improvement of the
SNR of visibility amplitudes (or V 2), also results in im-
proving the phase, such that single baseline phases can
become usable, as we shall see in a later section. The
definition of SNR is

SNR =
V 2

σV 2
(5)

Then the incoherent average SNR is7
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Figure 1. Comparison of incoherent (dotted) and coherent (solid) integration SNR for different 100, 101, 102, 103, 104, and 105

combined frames.

SNRi =
1
4

√
M

NV 2

√
1 + 1

2NV 2
. (6)

The coherent SNR is

SNRc =
1
4

MNV 2

√
1 + 1

2MNV 2
(7)

These two functions are plotted in Figure 1. We notice
that when the single measurement SNR is high (right
side of the plot), we do not gain from coherently inte-
grating. When the single measurement SNR is low on
the other hand (left side of the plot), the gains can be
dramatic. For example, when NV 2 = 10−3, it takes 108

measurements to reach a SNR of 1 by the incoherent
method, whereas it takes only 104 frames to reach the
same SNR when coherently integrating. The necessary
observing time is reduced by a factor of 104.

There can be little doubt that coherent integration
is vital to pushing stellar interferometry to increasingly
more detailed measurements requiring pushing the SNR
limit of the data.

5. ISSUES WITH COHERENT
INTEGRATION

Coherent integration does present some issues which
must be dealt with. These include additional phase
terms, which, for example, are not present in triple-
phases, as well as a reduction of the visibility ampli-
tude due to noise in the determination of the correct
tracking phase.

5.1. Extra phase terms

The coherently integrated visibilities, Ṽ , contain phase
terms in addition to the source phase terms. In the
triple-product, these other phase terms are automat-
ically eliminated. However, the coherently integrated
baseline visibilities contain phase terms created by both
the instrument and by the atmosphere in addition to
the source phase terms. There are thus three compo-
nents to the phase,

φ (λ) = φsource (λ) + φinst (λ) + φatm (λ) (8)

Proc. of SPIE Vol. 6268  62681H-3



5.2. Phase noise changes the amplitude

Noise in determining the correct phase to rotate the
individual frame complex visibilities by will cause a re-
duction in the resulting coherently integrated visibil-
ity. If we consider only phase noise, and not amplitude
noise, the visibility reduction factor can be determine
as

γ =
∫ ∞

−∞
ρ (δθ) eiδθδθ (9)

If the phase noise distribution is symmetric, which we
assume that it generally is, then γ is a real-valued quan-
tity which reduces the amplitude of the resulting coher-
ent average.

6. SEPARATING EXTRA PHASE
TERMS

The phase of the coherently integrated visibility con-
tains three components, as shown in equation 8. The
first term is the source phase term, which is the infor-
mation that we are ultimately after. The second term is
an instrumental term, caused by dispersion internal to
the instrument. The third term is an atmospheric term
caused by dispersion in the atmosphere, and the fringe-
tracking loop’s attempt at tracking these variations. For
most common source geometries the source term can be
computed at a parameterized model. The atmospheric
phase term, and associated fringe-tracking error can be
represented by the following three-parameter model,

φatm =
2π [(n − 1) a + d]

λ
+ φ0 (10)

where a represents the air path mismatch between the
two telescope beams forming the baseline, d the fringe-
tracking error (a vacuum path), and φ0 a wavelength-
independent phase offset.

6.1. Determining instrumental phase

The instrumental phase can be determined by observing
a source whose source phase is known to be zero, such as
a unresolved calibration star. Figure 2a shows the phase
of a calibrator star as the solid curve, and the best-
fit atmosphere model, equation 10, as a dashed curve.
Note that this is the best fit in a χ2 sense. If the fit
is optimal, then the instrumental phase is the residual,
or the difference between the measured phase and the
atmosphere model. We repeat this procedure for several
more calibrators (20 altogether) observed on one night,
average all the residuals to obtain the curve plotted in

Figure 2b. It is always risky to fit a model to data which
the model does not perfectly describe, using a χ2 cost
function. In this case the resulting uncertainty of the
fit may be a major contributor to the residuals plotted
in Figure 2c. In the future we will produce a proper
parameterized model for the instrumental phase and fit
all terms together to make a better fit and therefore a
more accurate determination of the instrumental phase.

6.2. Putting it all together

Once we have a description of the instrumental phase,
and a model for the phase of the source, we can combine
those with the atmospheric phase (Equation 10), and
fit the combined model to a measured phase in order
to extract the source parameters. If the instrumental
phase is a constant, as we have modeled it thus far, it
is simplest to subtract it before fitting the source and
atmosphere terms.

6.3. Fitting a binary star

The phase of a binary star relative to its photometric
center can be written as

φbinary = tan−1

(
sin (rβ) − r sin (β)
cos (rβ) + r cos (β)

)
, (11)

where

β =
2π �B · �s
(1 + r)λ

, (12)

and �B is the baseline vector, �s is the relative position
vector of the two stars composing the binary, and r
is the relative brightness of the two stars composing
the binary. Figure 3 shows how we separate the source
terms from the atmospheric and instrumental terms for
a single-baseline measurement on the binary star Mizar.

6.4. Unknown source phase

We can even use this approach in the case of an un-
known source phase, or when we do not have a per-
fect model for the source phase. We will illustrate this
with a single-baseline measurement on Vega. In this
case we observed Vega on three baselines, two short
and one long, and we tracked fringes on the two short
baselines to be able to bootstrap and coherently inte-
grate on the long baseline. The long baseline contains
a visibility minimum. It is not actually a null, because
Vega’s asymmetry causes the phase to rotate smoothly
from 0 to 180◦ as a function of wavelength through the
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Figure 2. (a) phase as a function of wavelength for a calibration star (solid), and best-fit atmosphere phase model (dashed), (b)
average instrumental phase for 20 calibrators, (c) residual for each of 20 calibrators.
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Figure 3. Processing phase information for the binary star Mizar. (a) Measured phase (dotted), and after subtraction of instru-
mental phase (solid). (b) Source and atmosphere phase (solid) and model fit (dotted). (c) Measured phase (dotted), external phase
(atmosphere and instrument) (dashed), source phase (solid). (d) Residual from model fit (solid), scaled instrumental phase (dotted).

minimum. Far from the minimum, the phase is either 0
or 180◦. To avoid having to model the unknown phase
rotation at intermediate wavelengths, we can create a
source model which contains a 180◦ phase jump at in-
termediate wavelengths, and fit this model plus the at-
mosphere to the short and long wavelength data only,
after subtracting the instrumental phase term. The re-
sult is shown in Figure 4.

7. CALIBRATING AMPLITUDE

When coherently integrating, the phase is only deter-
mined to within some uncertainty. This uncertainty,
when averaged over many combined measurements re-
sults in a reduction of the visibility. If we consider only
constant amplitude phasors we can write the coherent
integration problem as
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Figure 4. Extracting the Vega source phase by subtracting the instrumental phase and fitting out the atmospheric phase term.
The dotted curve is the measured phase. The solid curve is the combined atmospheric and source phase (after subtracting the
instrumental phase from the measured phase). The dashed curve represents the atmospheric phase term. The dash-dotted curve
represents the source phase.

γ =
∫ ∞

−∞
ρ (δθ) eiδθdδθ ≈

N∑

i=1

eiδθi (13)

If ρ is a zero-mean Gaussian with standard deviation
σ, then the integral evaluates to

γ = e−σ2
, (14)

where σ is the phase noise. We can determine the phase
noise from the ratio of the incoherent and coherent
squared visibilities,

σ =

√√√√log

(√
〈V 2〉
〈V 〉2

)
, (15)

where 〈V 2〉 is the incoherent average, and 〈V 〉2 is the
coherent average. When bootstrapping baselines, the
phase noise adds in the usual way,

σ2
3 = σ2

1 + σ2
2 (16)

and the coherently integrated squared visibility can be
calibrated as

V 2
calibrated = V 2

bootstrappede4σ2
3 (17)

7.1. Example: Alcaid

We will first illustrate this with a calibration star, Al-
caid. The reason for showing this example is that we
can obtain high-SNR incoherently averaged V 2 on all
baselines so that we know the answer that we are trying
to obtain. Figure 5 shows the three baselines observed
on Alcaid in one observation. In all three panels the in-
coherent average is shown as a dotted curve, obtained
through a simultaneous fit of the fringe power and
bias separately for each wavelength (see Mozurkewich8

for further details). The uncertainties in those fit are
marked as vertical bars. In the first two panels, the
solid curve represents the coherently averaged squared
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Figure 5. Illustration of the calibration of bootstrapped coherently integrated visibilities, using three unresolved baselines forming a
closure triangle on the star Alcaid. Panels (a) and (b) show the tracking baselines, while panel (c) shows the bootstrapped baseline.

visibility (that is, the square-modulus of the coherently
averaged visibility). Because of phase noise, the coher-
ently averaged squared visibility is smaller than the in-
coherently averaged squared visibility, but the SNR on
the coherently integrated squared visibility based on
photon counting statistics is much better. In the third
panel, we bootstrapped the phase-tracking information
from the first two panels. The dashed curve is the co-
herently averaged squared visibility. The solid curve is
the corrected coherently averaged squared visibility, ob-
tained using equation 17. The nature of the factor 4 in
equation 17 is still not clear. It was obtained experi-
mentally using both real and simulated data. It may be
that amplitude noise and not just phase noise, as as-
sumed in equation 13 contributes the additional factor.
In that case, we may have to modify the definition of σ
in the future.

7.2. Example: Vega

It is far more interesting to apply coherent integration
to a situation in which a low-visibility baseline can be
bootstrapped by two high visibility baselines, and suf-
ficient SNR on the low-visibility baseline cannot be ob-
tained using the incoherent integration method. We il-
lustrate this case with an NPOI observation of Vega.
Figure 6 shows the results of bootstrapping and coher-
ently integrating on a baseline which resolves Vega. Fig-
ure 6 corresponds to panel c in figure 5. As before, the
dotted curve is the incoherent integration, the dashed
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Figure 6. Bootstrapping and coherent integration on a Vega
baseline: the dotted curve shows the incoherent integration, the
dashed curve the bootstrapped coherent integration, and the solid
curve the corrected bootstrapped coherent integration.

curve is the bootstrapped coherent integration, and the
solid curve is the corrected bootstrapped coherent inte-
gration. Notice that the visibility reduction factor (the
solid curve divided by the dotted curve) is not as small
as in Figure 5, because Vega is much brighter than Al-
caid, thus having better single-frame SNR, and thus
better phase tracking. It is the phase noise on the track-
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Figure 7. Bootstrapping and coherent integration on a Vega
baseline: the dotted curve shows the standard uncertainty on the
incoherently integrated V 2, and the solid curve shows the stan-
dard uncertainty on the coherently integrated V 2.
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Figure 8. Bootstrapping and coherent integration on a Vega
baseline: the dotted curve shows the SNR on the incoherently in-
tegrated V 2, and the solid curve shows the SNR on the coherently
integrated V 2.

ing baselines which determines the visibility reduction
on the bootstrapped baseline, which is one of the great
advantages of bootstrapping. This is a very important
point which we will go into further, in the following
section.

7.3. SNR of coherently integrated
visibilities

Figure 7 shows the standard deviation of the squared
visibilities derived both through incoherent integration
(dotted) curve, and through bootstrapping and coher-
ent integration (solid curve). We immediately notice
that the two curves look very different, with the stan-
dard deviation of the incoherent integration not going
through the range of variation of the standard devia-
tion of the coherent integration. The minimum value of
the incoherent standard deviation is determined by the
photon counting uncertainty on the bias, whereas the
value of the standard deviation for the coherent aver-
age is primarily determined by the standard deviation
of the incoherent V 2 on the tracking baselines, at least
until the V 2 on the bootstrapped baseline drops to the
photon noise limit. And in this particular case, the pho-
ton noise limit is only reached at the smallest visibilities
in the plot.

Figure 8 shows the same picture, but this time in
more familiar SNR terms. As before, the dotted curve
shows the incoherent average SNR, whereas the solid
curve shows the coherent average SNR. We have added
a third curve, which is the SNR in the coherent average
divided by the SNR in the incoherent average, plotted
as a dashed curve. The picture is reversed from Fig-
ure 7, with the incoherent average SNR being smaller
and having a similar variation to V 2, and the coherent
SNR being large and largely independent of V 2, except
for the smallest values of V 2. The reason is that the
SNR in the incoherent case is dependent on the ratio
of V 2 to the bias, whereas in the coherent average case
the SNR is simply the propagation of the uncertainties
in determining the incoherent averages on the tracking
baselines, and thus the phase noise, plus the photon
noise on the coherent average. It is only when V 2 drops
very far that the photon noise begins to contribute. The
SNR of the coherent average is thus independent of V 2

as long as V 2 is large enough that there are enough
photons in the coherent average. That is the case here
except at the bottom of the V 2 minimum between 0.75
µm, and 0.8 µm.

When the amplitude SNR is high, then the phase
SNR is also high, and conversely, when the amplitude
SNR is low, the amount of information available about
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the phase is also low. The improvement in very low
SNR situations is therefore not just incremental, it is
dramatic, precisely as illustrated in Figure 1.

Let us look again at Figure 8. This plot represents
88 s of data. If we wanted to increase the SNR on the
incoherent average by a factor of 16 to reach the SNR
of the coherent average, we would, according to equa-
tion 6, need to increase observing time by a factor of 256
to 6.25 hours. Using coherent integration therefore also
improves observing efficiency, in this case by a factor of
256. Next, let us suppose that we want to improve the
SNR to 100 in both the coherent and in the incoherent
case. For the coherent case we would need to increase
the observing time by a factor of 7.72 to 679 s. In the in-
coherent case, we would need to increase the observing
time by a factor of 1.1×103 to 27 hours. Of course, even
if we had many hours or days to observe a given star, we
would not be able to incoherently integrate those data
in the usual way because Earth rotation would change
the baselines during that time interval.

But it may not be necessary to integrate for long
periods of time. Most observations today do have very
large inherent SNR, probably enough to perform most
of the analysis that we wish to perform. But it takes
coherent integration to fully exploit this inherent SNR.

8. COHERENT BIAS

When tracking fringes, by any method, the fringe track-
ing is susceptible to fitting noise. Coherently integrating
on the same photons which are used for fringe tracking
will tend to increase the visibility amplitude.

We have not yet derived an expression for the co-
herent bias based on the count rate and visibility in
the different data channels, but Meisner2 suggested an
alternative solution. Fringe track on only some of the
channels and use that information to coherently in-
tegrate the other channels. Meisner2 specifically sug-
gested tracking fringes on three quarters of the chan-
nels and using that tracking information to coherently
integrate on the remaining quarter of the channels, and
then repeating this procedure 4 times. This procedure
does produce an unbiased visibility amplitude, but it
introduces two new problems. First, we are no longer
using all of the available information to track fringes.
This will increase the phase noise, and produce coher-
ent amplitudes with smaller SNR. A second problem
is that the average remaining atmosphere and fringe
tracking error will be different for each quarter of the
data, producing phases with this additional structure.
This in turn means that a separate atmosphere term
(consisting of three parameters) must be removed from

each quarter of the data. These two problem speak for
solving the problem of determining the coherent bias
and subtracting it. We have found experimentally that
using this approach to measure the visibility reducing
phase noise works well because the periodic variation
in the atmosphere and fringe tracking error terms are
small relative to the incoherent average SNR.

For the phases on the other hand, care must be
taken. Slightly different residual air and fringe track-
ing error paths in the fringe tracking of the different
sets of channels will produce slightly different phases
in the different sets of channels, which must be treated
appropriately. If we have four sets of channels, we thus
have four times as many atmosphere parameters.

If we take the approach of maximizing the amount
of information that goes into fringe tracking, we can re-
peat the fringe tracking once for every channel, leaving
out only that channel, and tracking on all other chan-
nels. In the case of NPOI, which has 32 channels, this
would increase the computational burden by a factor
of 31. This may be reasonable for bootstrapping and
amplitude calibration in cases where the SNR is very
low. When we use phases, this approach may not work,
because we now have a situation in which we have a
different atmosphere term for each channel, and insuf-
ficient information to fit for all of those terms. It is
possible that we can remedy this by using information
about the actual fringe tracking terms that were de-
rived for each channel, and include the average phase
relative to a reference channel as part of the description
of the atmosphere term.

9. DISCUSSION

Baselines phase has better SNR than triple phase.
Baseline phases also provide more information than
triple phases in some cases of complex source geometry.
Phases are calibration-free. They are not biased by at-
mospheric conditions in the same way that amplitudes
are. This means that we can take full advantage of the
formal SNR in the measurement, which in many cases
is a small fraction of a degree (for example, in Figure 3)
the formal error is 0.03◦ at the red end of the spectrum,
and 0.2◦ at the blue end of the spectrum). Visibility
amplitudes are biased to smaller amplitudes when co-
herently integrating, due to phase tracking noise. When
bootstrapping we can measure the phase tracking noise
on the tracking baselines by comparing them to the
incoherently averaged V 2 on the same baselines, and
bootstrap the phase noise on the bootstrapped base-
line. The visibility on the bootstrapped baseline can
then be corrected for this reduction.
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Coherent integration is part of the necessary future
advancement in stellar interferometry. It provides bet-
ter SNR, in some cases dramatically so, exactly in the
situation where the incoherent integration method fails
to produce a good SNR. These situations are usually
cases of low visibility because a baseline fully resolves
the target object, or cases in which the target object is
very faint. In the first case the measurement is interest-
ing because it is one which provides information about
the structure of the target object. In the second case
the measurement is interesting because it provides bet-
ter SNR on faint sources and thus opens the possibility
of observing a greater variety of faint sources.

10. CONCLUSION

The takeaway messages of this paper are

1. We can coherently integrate to produce high SNR
complex visibilities.

2. We know how to deal with the additional terms
in the baseline phase.

3. We know how to calibrate the visibility amplitude
when bootstrapping.

4. Phases are calibration free, which means that we
can make the true uncertainty equal to the formal
(photon noise) uncertainty.

5. Bootstrapping and coherent integration provides
high SNR even when the visibility is very small,
which are the most interesting cases, and the cases
where the incoherent method fails.

6. Low SNR measurements have much higher SNR
than we are able to extract using incoherent inte-
gration. However, it takes coherent integration to
fully take advantage of the SNR in those cases.

7. Future interferometers should be built with spec-
tral capability and the ability to observe at least
three baselines simultaneously. This allows both
coherent integration and bootstrapping.
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