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The optical interferometry community has discussed the possibility of using adaptive optics (AO) on
apertures much larger than the atmospheric coherence length in order to increase the sensitivity of an
interferometer, although few quantitative models have been investigated. The aim of this paper is to
develop an analytic model of an AO-equipped interferometer and to use it to quantify, in relative terms,
the gains that may be achieved over an interferometer equipped only with tip–tilt correction. Functional
forms are derived for wavefront errors as a function of spatial and temporal coherence scales and flux and
applied to the AO and tip–tilt cases. In both cases, the AO and fringe detection systems operate in the
same spectral region, with the sharing ratio and subaperture size as adjustable parameters, and with the
interferometer beams assumed to be spatially filtered after wavefront correction. It is concluded that
the use of AO improves the performance of the interferometer in three ways. First, at the optimal
aperture size for a tip–tilt system, the AO system is as much as �50% more sensitive. Second, the
sensitivity of the AO system continues to improve with increasing aperture size. And third, the signal-
to-noise ratio of low-visibility fringes in the bright-star limit is significantly improved over the tip–tilt
case. © 2007 Optical Society of America

OCIS codes: 010.1080, 010.1330, 110.5100, 120.3180.

1. Introduction

Extending the imaging capabilities of optical inter-
ferometry, either to fainter objects or to the low-fringe
visibilities that characterize detailed structure, re-
quires larger apertures. Making use of larger aper-
tures depends in turn on adaptive optics (AO) of a
higher order than the tip–tilt correction used on cur-
rent interferometers. In this paper, we model the
application of AO to optical interferometry (OI) in
order to obtain a quantitative estimate of the im-
provement in sensitivity that can be achieved in an
AO-equipped interferometer over a tip–tilt-equipped
interferometer. We have also started an experimen-
tal program [1] to evaluate the combination of AO
and OI at the Navy Prototype Optical Interferometer
(NPOI).

The key results of our modeling are, first, that com-
bining AO and OI produces a significant gain in sen-
sitivity over tip–tilt correction, even at aperture sizes
D of �3 to 4 times the atmospheric coherence length
�r0� where the performance of a tip–tilt system peaks
[2] and, second, that the sensitivity of AO-corrected
OI continues to improve as the aperture size grows,
rather than declining as in the case of tip–tilt correc-
tion. The first of these results agrees with the con-
clusion of Baldwin and Haniff [3] that combining AO
and OI should produce a factor of 2 increase in sen-
sitivity for D � 3r0, but the second result demon-
strates that the benefits of applying AO to OI can be
significantly greater. A third result, which follows
from the first two, is that low-visibility fringes from
bright, resolved stars are also significantly improved
by the use of AO.

Optical interferometry is limited by the spatial and
temporal dimensions of atmospheric turbulence,
characterized by r0, the coherence length defined by
Fried [4] and t0, the atmospheric coherence time (we
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adopt the definition advocated by Buscher [5]). Once
the collecting aperture or the integration time ex-
ceeds a few times r0 or t0, the interference fringe
signal-to-noise ratio S begins to decrease. AO is sub-
ject to the same limitation; we need to correct the
wavefront over lengths that scale with r0 and over
times that scale with t0. Because the number of pho-
tons needed for tracking fringes is comparable to the
number needed to correct the wavefront, the sensi-
tivity of the two techniques, i.e., the minimum num-
ber of photons N per coherence volume t0r0

2 needed to
reach a given signal-to-noise ratio for wavefront or
fringe sensing, should be approximately equal. This
is the essence of Baldwin and Haniff’s claim that the
benefits of combining AO and OI are limited.

However, this argument misses a key point: The
number of photons needed to track fringes is gathered
from the whole aperture, not just an approximately
r0-sized patch. Thus increasing the overall aperture
size decreases the demand for fringe-tracking pho-
tons from each subaperture, making more photons
available for AO for each subaperture. In a more
qualitative vein, the occurrance of a maximum in
fringe sensitivity at a modest multiple of r0 clearly
indicates that those photons are not being used in an
optimum way. Increasing the aperture increases the
number of photons available for tip–tilt sensing but
decreases wavefront quality, so some of the photons
allocated for tip–tilt should be used for sensing
higher-order aberrations instead.

Our AO � OI model, although based in part on
numerical simulations of tip–tilt errors, expresses
the dependence of sensitivity on such factors as flux,
AO servo bandwidth, and AO subaperture size in
analytic terms. Although not as accurate as a numer-
ical approach with more error terms, an analytic
model favors intuitive understanding. This approach
also has the advantage of clearly showing what as-
sumptions we made and where approximations were
used. To keep the model reasonably uncoupled from
assumptions about the source and instrument, we
assume that the interferometer and the AO operate
in the same spectral region, with a fraction f of the
flux sent to the AO system and the rest passed to
the fringe-detection system. Although having the
AO and OI work in different spectral regions will
affect the absolute sensitivity, it should have no
effect on the point of the paper, which is the qual-
itative behavior of sensitivity as a function of aper-
ture size.

We break the modeling into several pieces. In Sec-
tion 2, we start by quantifying the dependence on
subaperture size, integration time, and servo band-
width of the wavefront variance for an AO system
based on a Shack–Hartman wavefront sensor. We
then discuss, in Section 3, optimizing the wavefront
by varying subaperture size and integration time. In
Section 4, we consider the application of AO to inter-
ferometry. Under the assumption that the AO and
fringe detection systems share the same wavelength
range, we determine how the optimal division of light

between the two systems varies with N. We then
calculate the resulting overall sensitivity, including
the effect of spatially filtering both interferometry
beams after wavefront correction. For comparison, in
Section 5 we examine the case of an interferometer
with only tip–tilt correction. We finish with a discus-
sion in Section 6, including systems in which f or the
number of subapertures across the telescope diame-
ter cannot be varied, and a summary in Section 7.

2. Adaptive Optics: Modeling Wavefront Variance

We start by modeling the propagation of a wavefront
through an AO system on a single aperture of diam-
eter D, operating with subapertures of diameter A
and a servo time constant ts. We generate a wavefront
using a standard Kolmogorov representation of the
atmosphere, in which the variance of the phase dif-
ference (in radians) between two points separated by
B is given by [4]

�2�B� � 6.88�B�r0�5�3. (1)

Our conceptual AO system uses a Shack–Hartman
sensor for each subaperture to detect local tilt and to
drive a tip–tilt controller for that subaperture. We
assume that continuity of the deformable mirror will
control differential piston effects between subaper-
tures.

After the AO correction, the wavefront is not per-
fectly flat. The remaining variations are attributable
to three contributions: a residual tilt error within
each subaperture, distortion at higher spatial fre-
quencies within each subaperture after tilt and pis-
ton terms are removed, and time evolution of the
wavefront between measuring the errors and apply-
ing the corrections. We will assume that these errors
are independent and add their variances. Our decom-
position of the errors is similar to the approach taken
by Angel [6], although that work is in the high-Strehl-
ratio regime.

Our model is not perfect. First, it neglects correla-
tions between the three sources of error. Second, it
lacks any treatment of scintillation. We argue that
scintillation is unimportant here: Areas in the wave-
front that contribute few photons to the AO also con-
tribute few photons to the interferometry. Including
the effects of scintillation is important for modeling a
high-Strehl-ratio system but not for the low-Strehl-
ratio system we describe here. We next describe each
of the terms in sequence.

A. Residual Tilt Error

The sensor for each subaperture is a quad cell. De-
termining how the variance of the position measure-
ment depends on flux entailed generating simulated
wavefronts and calculating the resulting images
through a subaperture of size A�r0. For each of 1000
simulations, we calculated the variation dQ�dx of the
error signal Q due to an angular error x. This proce-
dure was repeated for a range of values of A�r0. These
simulations give a residual tilt variance �Q

2, in radi-
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ans, that is well fit over the range 0 � A�r0 � 5 by

�Q
2 � ��

A�2 Q1 � Q2�A�r0�2

n , (2)

with Q1 � 1.39 and Q2 � 0.29, where n is the number
of photons in the integration.

To convert �Q into a phase variance, consider a
circular aperture of diameter A centered at the origin
of the x, y plane. A tilt of � rad along the x axis
produces a delay error across the aperture equal to
x�. The mean delay error is zero. The delay variance
is given by

�d
2 � ��A�2

1
4��� x2dxdy � ��A

4 �2

, (3)

where the area of the integral is bounded by the unit
circle. Replacing � with �Q and noting that the phase
variance �tt

2 � �2����2�d
2, we find that

�tt
2 � �2�

� �2�A
4�2

�Q
2, (4)

� ��

2�2 Q1 � Q2�A�r0�2

n . (5)

The number of detected photons should be normal-
ized to a standard integration time and aperture. We
will use the coherence time and length, t0 and r0, for
these standards. Using N for the number of photons
per coherence volume t0r0

2 gives

n � N� t
t0
��A

r0
�2

. (6)

For our purposes, t � ts, the servo time constant,
giving

�tt
2 � � �2

4N��ts

t0
��1�Q1�A

r0
��2

� Q2	. (7)

B. Higher-Order Distortion

Because the AO takes out the low-spatial-frequency
variations, the variance of the higher-order distor-
tions for the entire aperture is the same as the vari-
ance for a single subaperture. Noll [7] calculates
these partially corrected wavefront variances. For
the case in which piston, tip, and tilt are completely
removed, the relevant variance is 	3 from Noll’s
Table IV:

�ho
2 � 
�A

r0
�5�3

, (8)

with 
 � 0.134.

C. Wavefront Evolution

The AO system generates a wavefront correction for
wavefront errors corresponding to the middle of the
integration. By the time this correction is applied, it
is out of date by approximately ts, the servo time
constant, and the wavefront has evolved. However, it
is only the evolution of the tip–tilt of the subaperture
that matters; piston has no effect on the AO, and the
higher-order variations are not corrected. All three
change the wavefront, but only tip–tilt changes alter
the variance.

For the sake of having a closed-form expression,
we replace the tip–tilt power spectrum for the sub-
aperture with the power spectrum ���� for the phase
difference between two points separated by the
subaperture diameter A. This form has the correct
total power but somewhat overestimates the high-
frequency contribution, a conservative assumption;
the exact form falls off as ��11�3 at high frequencies [8]:

�2��� � p0t0
�5�3��8�3 for �  �a (9)

� p0t0
�5�3�0

�2��2�3 for � � �a, (10)

where

�a �
dr0

At0
, (11)

the frequency corresponding to spatial scales compa-
rable to A. The constant d � 0.062 is derived from
Buscher et al. [5] while p0 is 8�2 times the value in
Buscher et al., which converts it to units of radians2�
Hz for a one-sided, rather than two-sided, power spec-
trum.

The effect of a first-order servo with time constant
ts on the tip–tilt power can be approximated by mul-
tiplying the power spectrum by ��ts�2 for frequencies
less than 1�ts. For �ats � 1, the power that is not
corrected by the angle tracking servo is the integral of
this filtered power spectrum and accounts for the
time evolution term, given by

�E
2 � ��ts

t0
�5�3

� ��A
r0
��1�3�ts

t0
�2

, (12)

with � � 18p0�5 and � � 18p0d
1�3�7.

Finally, we combine the three contributions to the
wavefront variance. To simplify the notation, we de-
fine a � A�r0, � � ts�t0, q1 � �2Q1�4, and q2 �
�2Q2�4. The values work out to be q1 � 3.43,
q2 � 0.716, 
 � 0.134 (as above), � � 0.081, and
� � 0.023. Then

�2 �
q1

Na2�
�

q2

N�
� 
a5�3 � ��5�3 �

��2

a1�3. (13)
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3. Minimizing Wavefront Variance

In this section we solve the problem of adjusting � and
a to produce a minimum variance wavefront at a
given N, the number of photons per coherence vol-
ume. We start with the partial derivatives of Eq. (13):

��2

��
� �

q1

Na2�2 �
q2

N�2 �
5
3 ��2�3 � 2

��

a1�3, (14)

��2

�a � �
2q1

Na3�
�

5
3 
a2�3 �

1
3

��2

a4�3. (15)

Setting these two partials equal to zero produces two
equations in three unknowns, i.e., N and the optimal
values of a and �:

q1

Na2 �
q2

N �
5
3 ��8�3 � 2

��3

a1�3, (16)

q1

Na2 �
5
6 
a5�3� �

1
6

��3

a1�3. (17)

These can be solved for �(N) and a(N). We first define
� � ��a, where � and a are at their optimal values. We
then solve for N���; the algebraic details can be found
in Appendix A. We find that

N3 � 63
q2

7

q1
4

�5
� � ��3�4

�10��8�3 � 5
� � 13��3�7 (18)

�
0.499

�3

�1 � 0.0341�2�4

��1 � 1.205�5�3 � 0.443�2�7. (19)

Although we do not have an exact inversion of this
equation,

� � 0.6677N�0.333 � 1.114N0.0078 (20)

gives N to better than 1% for N � 250. Figure 1 shows
the fit.

The optimal subaperture size and the integration
time can be found by inverting Eq. (16) to yield

a � � N
6q1

�5
� � ��3�	�3�14

, (21)

� 2.083
N�� � 0.0341�3���3�14. (22)

From this expression, we determine the normalized
servo time constant, �, from a and the definition of �.
The optimum subaperture and integration time as a
function of N are shown in Fig. 2.

The final step is to calculate the minimum phase
variance across a subaperture from Eq. (13) using the
optimal values of a and �. The result is plotted in Fig.
3. It is clear that AO can be useful with only a few

Fig. 1. Variation of � � ��a as a function of N, the number of photons delivered to the adaptive optics system. The points are the evaluation
of Eq. (18). The curve is the approximation of Eq. (20).
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detected photons per coherence volume. We show the
dependence of the wavefront variance on departures
from the optimum values for a and � in Fig. 4.

To simplify the computations in the next section,
we approximate the variance with

�2 � �0
2 � bN�c, (23)

� 0.0449 � 1.261N�0.450, (24)

where the parameters �0, b, and c are defined by the
first line. This form fits the exact expression to better
than 2% for N � 250.

4. Interferometry Model

In this section, we apply our wavefront variance re-
sults to our model interferometer in order to derive
the best value of f, the fraction of incoming light that
is sent to the AO system, and to calculate the func-
tional form of the sensitivity of the interferometer.

Our model interferometer has two apertures, each
of diameter D, each collecting N photons per coher-
ence volume, and each with perfect spatial filtering.
In everything that follows, we will assume that the
integration time for the interferometer, tI, is equal to
the atmospheric coherence time t0. Changing this as-
sumption does nothing but multiply the right-hand
side of Eq. (25) by a factor that may depend on the
spectrum of the star. This factor has no effect on the
functional form of performance versus star bright-
ness and so does not change the main point of this
paper.

We will also assume that the fringe-detection sys-
tem is photon-noise limited, and that it is in the

photon-rich regime �NIV
2  10, where NI is the num-

ber of photons delivered to the beam combiner). Note
that the photon-rich-regime assumption is consistent
with the results of the previous section, in which we
conclude that AO can be beneficial with only a small
number of photons per coherence volume, because
the fringe-detection system receives light from sev-
eral AO subapertures.

The result of the photon-noise-limit and photon-
rich-regime assumptions is that the fringe amplitude
signal-to-noise ratio S � �1���V�NI, where the factor
1�� is the normalization for four-bin fringe sampling.
Thus we have

S2 �
2

�2 V2N�1 � f��tI

t0
���D2

4r0
2�e��2, (25)

in which the leading 2 is from the two apertures, and
the factor e��2 reflects the effect of spatial filtering,
which converts wavefront irregularities in the two
interferometer beams into flux variations. The phase
variance in each beam is �2, so in the absence of
spatial filtering the phase variance between beams
would be 2�2, which would reduce V2 in the combined
beam, and thus S2, by a factor of e�2�2. Spatial filter-
ing instead reduces the flux in each beam, and thus
the value of S2, by a factor of only e��2.

The performance of the AO system is identical to
that derived in the previous section except that the
number of photons per coherence volume N is re-
placed with fN. Equation (23) becomes

�2 � �0
2 �

b

�fN�c, (26)

Fig. 2. Optimum values for a  A�r0 and �  ts�t0 as a function of the number of photons per coherence volume N delivered to the adaptive
optics system.
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so

d�2

df � �
bc

Ncf c�1. (27)

Maximizing S2 with respect to f (and assuming the
star is unresolved so V � 1) yields

dS2

df � �
N
2��tI

t0
��D

r0
�2

e��2
�

N
2��1 � f��tI

t0
��D

r0
�2

e��2 d�2

df ,

(28)

� 0, (29)

which leads to

Nc

bc �
1 � f

f c�1 . (30)

The optimal fraction f is plotted versus N in Fig. 5.
Once again, an exact inversion is lacking, but

f � 0.448 � 0.202 log�N� � 0.0177 log2�N�
� 0.00341 log3�N� (31)

is accurate to better than 1% over the relevant range
of N.

We are finally in a position to evaluate the sensi-
tivity of an AO-equipped OI as a function of aperture
size. Start by returning to Eq. (25) with tI � t0 and
note that �2 depends on fN [Eq. (26)], and f depends

only on N [Eq. (31)]. Thus S�D depends only on N. We
assume a minimum value of S � 5 for fringe tracking,
calculate S�D, then calculate the value of D needed to
achieve our assumed value of S.

The results of this procedure are plotted in Fig. 6,
but before discussing these results, we will calculate
the sensitivity of OI in some comparison cases—the
most important being that of tip–tilt correction
only—using the same assumptions as in the AO case.

5. Optical Interferometry with Tip–Tilt Only

A system with only tip–tilt correction is the most
important comparison case since most current inter-
ferometers operate in this mode. In this case, the
fringe tracking signal-to-noise ratio is still governed
by Eq. (25), but now D�r0 is replaced by a. Again
taking tI � t0, we have

S2 �
N
2��1 � f�a2e��2. (32)

Since there is no optimization for subaperture size in
this case, we have to examine the behavior of �2 by
returning to Eq. (13) and replacing N with fN. Max-
imizing S2 with respect to f and � now gives

�S2

��
� �

N
2��1 � f�a2e��2 ��2

��
,

� 0, (33)

and

Fig. 3. Phase variance �2 across a subaperture as a function of the number of photons per coherence volume N delivered to the adaptive
optics sensor for the case in which a and � are optimized.
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�S2

�f � �
N
2�

a2e��2
�

N
2��1 � f�a2e��2 ��2

�f ,

� 0, (34)

where

��2

��
� �

q1

fNa2�2 �
q2

fN�2 �
5
3 ��2�3 � 2

��

a1�3, (35)

��2

�f � �
q1

f 2Na2�
�

q2

f 2N�
. (36)

Equation (33) reduces to ��2��� � 0 and can be rear-
ranged to give

fN �
q1 � q2a

2

a2� �5
3 ��5�3 �

2��2

a1�3 ��1

, (37)

while combining Eqs. (34), (33), and (35) gives

1
f � 1 � �5

3 ��5�3 �
2��2

a1�3 ��1

. (38)

We solved this set of equations iteratively for N(a),
the number of photons per coherence volume needed

to attain the target value of S for a fixed value of a.
First, for the given value of a, we guess a value of �
and use Eqs. (37) and (38) to calculate f and N. We use
these values in Eq. (32) to find S. We then adjust the
value of � and repeat the process until we obtain the
desired value of S. As with the AO case, the results
are plotted in Fig. 6.

6. Discussion

Figure 6 shows the photons per coherence volume
needed to obtain a signal-to-noise ratio S � 5 with an
optical interferometer for both the adaptive optics
and tip–tilt cases. Two important points should be
made.

The first point is that the sensitivity for the tip–tilt
case has a peak; for larger apertures, sensitivity ac-
tually decreases. Our calculations give D�r0 � 3.9 for
the aperture size at peak sensitivity. This result is
not new; the literature cites values in the range of 3
to 5r0 for the optimal aperture size [2,9].

The second point to be made is that the sensitivity
of an AO-endowed system does not peak at some
value of D�r0 but continues to improve as the aper-
ture size increases. This behavior may seem surpris-
ing at first, but it can be explained by considering
that a larger aperture can devote a larger fraction of
its photons to wavefront correction while continuing
to gather the total number of photons needed for
fringe detection. The fact that sensitivity continues to

Fig. 4. Phase variance across a subaperture normalized to the variance at the optimal values of a and �. (a) Normalized variance is plotted
as a function of a, the subaperture size in units of r0, normalized to its optimal value, aopt. The curves, from upper to lower, are calculated
for N � 100, 10, and 1. (b) Normalized variance is plotted as a function of �, the AO servo time constant in units of t0, normalized to its
optimal value, �opt. The curves, from upper to lower, are calculated for N � 1, 10, and 100.
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increase with aperture size is important for the de-
sign of future interferometers.

Note also that the AO-equipped system is up to
50% more sensitive than the tip–tilt system at the
optimal tip–tilt aperture size. Consider a tip–tilt

system with the optimal aperture diameter, so that
the sensitivity does not vary with a small change in
aperture, or equivalently with a small change in the
number of detected photons. This lack of depen-
dence of the sensitivity on photon rate implies

Fig. 5. The fraction of light to send to the adaptive optics system that optimizes the interferometric signal-to-noise ratio as a function of
the number of photons per coherence volume presented to the whole system (full curve). For comparison, we plot the same quantity for
the tip–tilt case with D�r0 � 3.9, the value for maximum sensivity (dashed curve).

Fig. 6. Photons per coherence volume needed to obtain a fixed signal-to-noise ratio with an optical interferometer, as a function of
aperture size, for an adaptive-optics equipped interferometer and for an interferometer with tip–tilt correction only.
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that we are not using those photons in an optimal
way.

In fact, looking at the contributions to the wave-
front variance bears that conclusion out. The tip–tilt
error, the only contribution to the variance that de-
pends on the number of photons, is only approxi-
mately one third as large as the contribution from
higher-order aberrations at low flux �N � 4� and
signal-to-noise ratio �S � 1�, and is smaller still at
higher flux levels. We should expect that using more
photons to estimate higher-order aberrations, reduc-
ing �ho

2 at the expense of increasing �tt
2, should im-

prove system performance.
The advantages of an AO-equipped interferometer

do not depend critically on the ability to adjust f or a
to match conditions. For instance, if f remains fixed at
0.2, roughly the optimal value for faint sources, the
sensitivity is within a few percent of the optimal AO
result. If the AO system has as few as four subaper-
tures across the telescope diameter, the sensitivity at
the faint limit is within �10% of the fully adjustable
system.

Our discussion has centered so far on the question
of the faintest source that can be observed with an
interferometer in the fully adjustable AO and tip–tilt
cases. However, for stars that are bright enough for
either system, it is still advantageous to use AO. The
benefit comes in the improved signal-to-noise ratio,
which leads directly to more accurate visibility mea-
surements. Highly accurate visibilities are important
for precise angular diameter measurements and are
critical for limb-darkening and surface structure ob-
servations.

To make the comparison for this limit, we examine
the performance of the two systems at a fixed value of

N. As before, the starting point is Eq. (25):

S2 �
NV2

2� �1 � f��D
r0
�2

e��2. (39)

For the tip–tilt case, the choice of N determines �2.
We follow the same procedure as in the faint-star
limit, using Eqs. (37) and (38) to find an equation for
N�a, ��. We then invert this equation to find � for fixed
values of N and a, and use Eq. (39) to determine S.
For the AO case, we determine f as before from Eq.
(31). Again using the fact that f and �2 can be ex-
pressed as functions of N alone, we calculate S
directly from Eq. (39). Figure 7 shows the signal-
to-noise ratio of the two systems at fringe visibility
V � 1.

To evaluate the sensitivity of the two systems to
low visibilities, we inverted Eq. (39) to find V(S, N).
The overall picture is very similar to the faint-star
limit: The optimal aperture size for the tip–tilt case is
�4r0, the AO-equipped system outperforms the tip–
tilt system, and S continues to increase with D�r0 for
the AO case.

7. Summary

This paper presents an analytic model for assessing
the performance of an optical interferometer fitted
with adaptive optics (AO), and uses the model to
compare the performance of an AO-equipped inter-
ferometer with one using only tip–tilt correction.

The AO-equipped interferometer performs better
for all aperture sizes larger than approximately 0.5r0,
where r0 is the coherence length of the atmosphere.
The best performance of the tip–tilt corrected system
is at aperture sizes near 4r0, but even for those ap-

Fig. 7. Signal-to-noise ratio at V � 1 as a function of aperture size in the bright-star limit.
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erture sizes, the AO-equipped system is superior by
a factor of approximately 2. In addition, the AO-
equipped system continues to gain in sensitivity with
increasing aperture size, asymptotically approaching
a maximum in performance. At aperture sizes of 10r0,
the AO-equipped system is �10 times as sensitive as
the tip–tilt system’s sensitivity at �4r0, where it per-
forms best. For bright stars, those within reach of
both systems, the AO-equipped system has signifi-
cant advantages in fringe signal-to-noise ratio and in
the smallest detectable visibility.

These results are preliminary; clearly the model
can be improved by including parameterization based
on both detailed numerical analysis and experimen-
tal values. Nevertheless, it is clear that adding AO to
an OI can significantly improve its limiting magni-
tude, as well as its ability to measure visibilities with
high precision.

Appendix A. Derivation of Optimization of � and a

To find the integration time � and subaperture size a
that minimize the wavefront variance �2, we start
with Eqs. (16) and (17):

q1

Na2 �
q2

N �
5
3 ��8�3 �

2��3

a1�3 , (A1)

q1

Na2 �
5
6 
a5�3� �

��3

6a1�3, (A2)

which can be solved for �(N) and a(N). First eliminate
q1 from Eq. (A1):

q2

N �
5
6 
a5�3� �

13
6

��3

a1�3 �
5
3 ��8�3. (A3)

Set � � ��a and eliminate � from Eqs. (A2) and (A3):

q1

N � a14�3�5
6 
� �

1
6 ��3�, (A4)

q2

N � a8�3�5
3 ��8�3 �

5
6 
� �

13
6 ��3�. (A5)

Now eliminate a:

�q1

N�3�14�q2

N��3�8

� �5
6 
� �

1
6 ��3�3�14�5

3 ��8�3 �
5
6 
�

�
13
6 ��3��3�8

, (A6)

and solve for N:

N9�56 �
q2

3�8

q1
3�14�5

6 
� �
1
6 ��3�3�14�5

3 ��8�3 �
5
6 
�

�
13
6 ��3��3�8

(A7)

N3 � 63
q2

7

q1
4

�5
� � ��3�4

�10��5�3 � 5
� � 13��3�7. (A8)
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