Export 75 results:
Title [ Type(Desc)] Year
Filters: Author is David W Aha  [Clear All Filters]
Conference Proceedings
L. K. McDowell and Aha, D. W., Semi-Supervised Collective Classification with Hybrid Label Regularization, Proceedings of the 29th International Conference on Machine Learning. Omnipress, Edinburgh, Scotland, pp. 975-982, 2012. Download PDF (376.34 KB)
Journal Article
I. Guyon, Dror, G., Lemaire, V., Silver, D. L., Taylor, G., and Aha, D. W., Analysis of the IJCNN 2011 UTL Challenge, Neural Networks, vol. 32, pp. 174-178, 2012. Download PDF (669.65 KB)
M. Klenk, Aha, D. W., and Molineaux, M., The case for case-based transfer learning, AI Magazine, vol. 32, no. 1, pp. 54-69, 2011. Download PDF (1.26 MB)
L. K. McDowell, Gupta, K., and Aha, D. W., Cautious Collective Classification, Journal of Machine Learning Research, vol. 10, pp. 2777-2836, 2009. Download PDF (513.36 KB)
D. W. Aha, Molineaux, M., and Klenk, M., Goal-Driven Autonomy, 2011 NRL Review, pp. 164-166, 2011. Download PDF (356.07 KB)
M. Klenk, Molineaux, M., and Aha, D. W., Goal-Driven Autonomy for Responding to Unexpected Events in Strategy Simulations, Computational Intelligence, vol. 29, no. 2, pp. 187-206, 2013. download PDF (1.15 MB)
D. W. Aha, Gupta, K., and Auslander, B., Maritime threat detection, NRL Review, pp. 123-125, 2012. Download PDF (396.38 KB)
D. C. Uthus and Aha, D. W., Multiparticipant chat analysis: A survey, Artificial Intelligence, vol. 199-200, pp. 106 - 121, 2013. Download PDF (433.18 KB)
O. L. Georgeon and Aha, D. W., The radical interactionism conceptual commitment, Journal of Artificial General Intelligence, vol. 4, no. 2, pp. 31-36, 2013. Download PDF (286.45 KB)
R. A. Rossi, McDowell, L. K., Aha, D. W., and Neville, J., Transforming graph data for statistical relational learning, Journal of Artificial Intelligence Research, vol. 45, no. 1, pp. 363-441, 2012. Download PDF (989.1 KB)
M. Pickett and Aha, D. W., Using cortically-inspired algorithms for analogical learning and reasoning, Biologically Inspired Cognitive Architectures, 2013. Download PDF (2.06 MB)
Report
B. Williams, Uthus, D. C., and Aha, D. W., Automated chat generator, Naval Research Laboratory, Navy Center for Applied Research in Artificial Intelligence, Washington, DC, AIC-12-131, 2012. Download PDF (465.79 KB)
M. Wilson, McMahon, J., and Aha, D. W., Bounded expectations for discrepancy detection in goal-driven autonomy, AAAI, Quebec City, Canada, WS-01-14, 2014. Download PDF (680.04 KB)
M. Chua, Aha, D. W., Auslander, B., Gupta, K. M., and Morris, B., Comparison of object detection algorithms on maritime vessels, Naval Research Laboratory, Navy Center for Applied Research in Artificial Intelligence, AIC-14-041, 2014. Download PDF (401.63 KB)
D. W. Aha and Schneider, A., The DARPA Deep Learning Program’s broad evaluation plan, Naval Research Laboratory, Navy Center for Applied Research in Artificial Intelligence, Washington, DC, AIC-11-003, 2010. Download PDF (1.07 MB)
M. Molineaux, Aha, D. W., and Kuter, U., Efficiently explaining deterministic exogenous events in partially observable environments, Naval Research Laboratory, Navy Center for Applied Research in Artificial Intelligence, Washington, DC, AIC-12-081, 2012. Download PDF (181.8 KB)
B. A. W. Jensen, Karneeb, J., Borck, H., and Aha, D. W., Integrating AFSIM as an internal predictor, Naval Research Laboratory, Navy Center for Applied Research in Artificial Intelligence, Washington, DC, AIC-14-172, 2014. Download PDF (415.56 KB)
B. Morris, Aha, D. W., Auslander, B., and Gupta, K., Learning and leveraging context for maritime threat analysis: Vessel classification using Exemplar-SVM, Naval Research Laboratory, Navy Center for Applied Research in Artificial Intelligence, Washington, DC, 2012. Download PDF (12.44 MB)
M. Molineaux and Aha, D. W., Learning models for unknown events, University of Maryland, College Park, Department of Computer Science, College Park, MD, CS-TR-5029, 2014. Download PDF (323.53 KB)
T. S. Anderson, Vattam, S., and Aha, D. W., NI-DiscoverHistory: Meta-narrative for explanation bounding, Naval Research Laboratory, Navy Center for Applied Research in Artificial Intelligence, Washington, DC, AIC-14-188, 2014. Download PDF (287.13 KB)
S. Kelly, Byers, J., and Aha, D. W., RAPTOR technical report, Naval Research Laboratory, Navy Center for Applied Research in Artificial Intelligence, Washington, DC, AIC-15-031, 2014. Download PDF (808.33 KB)
D. W. Aha, Review of the 2008-2009 Joint chat conferences, Naval Research Laboratory, Navy Center for Applied Research in Artificial Intelligence, Washington, DC, 2010. Download PDF (325.43 KB)
S. Snodgrass and Aha, D. W., System Model Formulation Using Markov Chains, Naval Research Laboratory, Navy Center for Applied Research in Artificial Intelligence, Washington, DC, AIC-14-170, 2014. Download PDF (842.18 KB)
B. Auslander, Molineaux, M., and Aha, D. W., Towards research on goal reasoning with the TAO Sandbox, Naval Research Laboratory, Navy Center for Applied Research on Artificial Intelligence, Washington, DC, AIC-09-155, 2009. Download PDF (277.69 KB)
L. K. McDowell, Gupta, K., and Aha, D. W., Using caution to explain and improve collective classification, Naval Research Laboratory, Navy Center for Applied Research in Artificial Intelligence, Washington, DC, AIC-09-140, 2009. Download PDF (183.34 KB)

Pages