NRL Researchers Discover Technique to Improve Solar Cell Technology


10/11/2011 - 125-11r
Contact: Donna McKinney, (202) 767-2541


A multi-disciplinary team of scientists at the Naval Research Laboratory has discovered a way to tailor nanostructures that could result in low-cost, high efficiency solar cells. The research appears in the August 10, 2011 issue of the journal Nano Letters.

Drs. Joseph Melinger, Paul Cunningham, Joseph Tischler and Matthew Lumb next to a two-color femtosecond laser pump-probe apparatus used to measure the efficiency of multiple exciton generation in PbSe semiconductor nanocrystals and nanorods.

The technology behind optoelectronic devices currently in use has been limited by the fact that a single photon absorbed by a semiconductor results in the creation of a single electron-hole pair, or exciton. The NRL researchers have found that changing the shape of PbSe (lead selenide) nanostructures enhances a down conversion process known as multiple exciton generation. To accomplish this, the team uses elongated (cigar-shaped) nanorods instead of spherically symmetric (ball-like) nanocrystals.

Unlike the current optoelectronic technology that relies on a single electron-hole pair per photon, in multiple exciton generation the excess energy of the "hot" exciton is used to excite a second electron across the band gap resulting in the creation of two or more excitons per photon. The NRL team's discovery that this process is significantly more efficient in the elongated nanorod structures provides a new pathway to increasing the efficiency of solar cells over current state-of-the-art devices.

These elongated structures are the most efficient photon energy down converters known. As a result, this material system provides a way of harvesting solar energy extremely efficiently. In addition, the synthesis process is low cost, which would make these solar cells very inexpensive, and the materials are compatible with solution processing of devices on flexible substrates. Possible future applications emerging from this technology besides photovoltaic cells could include ultra-sensitive photodetectors, high-speed electronics, light emitting diodes, lasers, and biological labels.

Drs. Edward Foos, Janice Boercker, and Anthony Smith in the nanomaterial synthesis laboratory.

The research team consists of Drs. Paul Cunningham, Janice Boercker, Matthew Lumb, Joseph Tischler, and Joseph Melinger from NRL's Electronics Science and Technology Division; and Drs. Edward Foos and Anthony Smith from NRL's Chemistry Division.



Get NRL News: RSS


About the U.S. Naval Research Laboratory

The U.S. Naval Research Laboratory is the Navy's full-spectrum corporate laboratory, conducting a broadly based multidisciplinary program of scientific research and advanced technological development. The Laboratory, with a total complement of approximately 2,500 personnel, is located in southwest Washington, D.C., with other major sites at the Stennis Space Center, Miss., and Monterey, Calif. NRL has served the Navy and the nation for over 90 years and continues to meet the complex technological challenges of today's world. For more information, visit the NRL homepage or join the conversation on Twitter, Facebook, and YouTube.

Comment policy: We hope to receive submissions from all viewpoints, but we ask that all participants agree to the Department of Defense Social Media User Agreement. All comments are reviewed before being posted.