NRL has a broad portfolio of technologies and over 1300 active patents or patent applications that are available for license. Below is a list of links to more information for a number of NRL technologies that have potential commercial applications.


ADCIRC Toolset

The Naval Research Laboratory (NRL) has developed the NUMCAT™ suite of powerful, easy-to-use tools to support application of the open source ADvanced CIRCulation (ADCIRC) model. ADCIRC simulates currents, water level, storm surges, temperature, and salinity in the coastal ocean including regions of shallow shelf waters, estuaries, and rivers. The NUMCAT™ tools can be modified to support other finite element based models. The NUMCAT™ toolset is currently in use by the Naval Oceanographic Office to support prediction of coastal currents and water levels.

Hydrographic Unmanned Semi-Submersible (HUSS)

NRL and its industry partner have developed the Hydrographic Unmanned Semi-Submersible (HUSS), customized for port, harbor, channel, and near-shore surveying. Its unique design combines the key benefits of both a small surface craft (speed, endurance, maneuverability, navigation safety, real-time communications, command and control, sensor payload, navigation accuracy) and an Unmanned Underwater Vehicle (UUV) (stability for sensors, easy launch and recovery, autonomy, energy efficiency, human safety) while yielding a threefold or better increase in productivity than either a small surface craft or a UUV.

River Simulation Tool

NRL has developed a river simulation tool (RST) that performs automated extraction of riverine features from imagery. The extractions include water/land edge locations, water point locations, and obstacle and hazard locations. Processing within the RST also includes processing of shoreline and bathymetry data for mesh generation as well as automated configuration of an unstructured mesh of the river using image-derived data.

Bio-Optical Physical Pop-Up Environmental Reconnaissance System (BOPPERS)

NRL has developed a shallow water environmental profiler the autonomously measures physical and optical properties of the water column at periodic, user-specified intervals over an extended time period (weeks to months). Data are collected and stored on-board, and can be transmitted in near-real-time to a land station when the profiler surfaces. The patent-pending NRL system, equipped with advanced instrumentation, includes the capability to simultaneously collect measurements of physical and bio-optical properties.

Environmental Cell Environmental Cell

NRL has developed a tool to facilitate the quantification of compressive strength of soft materials, such as clays, biopolymer-clay mixtures, food items, tissues, cells and similar materials. The specific goal of this device is to facilitate compressive tests for biopolymers (i.e. natural or synthetic compounds that consist of large molecules made of many chemically bonded smaller identical molecules, e.g. starch and nylon, produced in living organisms) and sediments.

Fig. I. Examples of cloud shadow detection using the CSDI technique. Left panel: HICO image acquired over Virgin Islands on December 20, 2009 (image size: 270 x 400 pixels); (a) true color image, (b) corresponding IV image, and (c) corresponding CSDI image. Right panel: HICO image acquired over Samoa on October 2, 2010 ' (image size: 260 x 260 pixels); (d) true color image, (e) corresponding IV image and (f) corresponding CSDI image. The clouds are shown in white on both CSDI and IV images, the shadows are Cloud Shadow Detection Index (CSDI)

A cloud shadow detection technique called the Cloud Shadow Detection Index (CSDI) for optical imageries acquired over water by satellite/airborne sensors. This technique does not require any angular information (viewing or solar), or any estimation of clouds vertical heights. It is entirely based on measurements in the optical channels. This approach is for homogeneous water bodies such as deep waters where shadow detection is very challenging due to the relatively small differences in the brightness values of the shadows and neighboring sunlit or some other regions.