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Introduction: Many wave propagation problems 
in the geosciences involve a nearly stratified wave-
guide. When lateral variations in the medium (ocean, 
solid Earth, or atmosphere) are sufficiently gradual, 
outgoing energy dominates backscattered energy, and 
solutions can be obtained using an approximate wave 
equation that only accounts for outgoing waves.1 This 
approach, which is known as the parabolic equation 
method, often improves efficiency by several orders 
of magnitude with no significant loss in accuracy. 
For example, outgoing solutions can be obtained in 
minutes for global-scale ocean acoustics problems2 that  
would be out of the question to solve in terms of the 
full-wave equation. 

	
Improved Techniques: The extension of the 

parabolic equation method to problems involving solid 
layers has been an area of great interest for nearly 30 
years. Solid layers are governed by the elastic-wave 
equation and support two types of body waves and 
interface waves. This vector equation is more compli-
cated than the scalar equation that governs acoustic 
waves, and the solutions are more prone to instabili-
ties. Due to these difficulties, it was nearly 20 years 

between the introduction of the parabolic equation 
method into ocean acoustics and its first successful 
application to problems involving elastic layers.3 

For the past decade, there has been a focus on 
improving the accuracy of parabolic equation solutions 
when there are lateral variations in solid layers. One 
of the key developments in this area was to rederive 
the elastic parabolic equation in terms of a new set of 
dependent variables.4 In order to facilitate the deriva-
tion of the parabolic-wave equation from the full-wave 
equation, it is necessary to choose the dependent vari-
ables so that they have certain symmetry properties. 
Otherwise, it is impossible to derive a parabolic-wave 
equation. The first derivations were based on an uncon-
ventional choice of variables. The fact that one of the 
variables is not continuous makes it difficult to handle 
interfaces between solid layers. The new formulation 
is also based on an unconventional choice of variables, 
but both of the variables are continuous, and this has 
made it possible not only to handle arbitrary layering, 
but also to handle lateral variations more accurately. 

We have considered two approaches for handling 
lateral variations, and both of them have produced 
promising results. One of the approaches is based on 
rotating coordinates so that one of the coordinates is 
aligned with the interface. This approach has proven 
to be effective for handling a sloping ocean bottom, 
which is an important and difficult case. Appearing 
in Fig. 6 is a problem involving two types of interface 
waves that was solved with this approach. In this 
example, a Scholte wave propagates along the ocean 
bottom and onto the beach, where it becomes a Ray-
leigh wave. We are also developing approaches based 

FIGURE 6
Propagation of a Scholte wave along 
the ocean bottom. This interface wave 
becomes a Rayleigh wave beyond the 
beach.
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FIGURE 7
Elastic wave propagation in a 
medium with complex layering. 
This plot only shows the com-
pressional wave energy.
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FIGURE 8
Comparison between 
model results (dashed 
curve) and tank data (solid 
curve) along a line at con-
stant depth. The frequency 
is 225 kHz.
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on the original coordinate system that can handle a 
larger class of lateral variations. These approaches are 
based on making corrections to the field as the proper-
ties of the waveguide vary with range. Appearing in Fig. 
7 is a seismic problem involving complex layering that 
was solved with this approach. 

Comparison with Data: When possible, we 
compare parabolic equation solutions with solutions 
obtained by other means. Since such solutions are very 
limited, we have also made comparisons with data 
from tank experiments. Appearing in Fig. 8 is a com-
parison of the parabolic equation solution with data 

taken in a carefully controlled experiment involving a 
slab of poly vinyl chloride (PVC) that was suspended 
in a tank of water to model a sloping, elastic ocean 
bottom (Fig. 9).
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FIGURE 9
Geometry of the tank experiment. 
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