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Causality Bubbles to 
the Surface

NRL Investigates Acoustic Causality in Highly Dispersive Bubbly Liquids

The most fundamental property exhibited by any physical system is causality: in essence, 
cause must precede effect. The modern interpretation of causality sprung forth from Albert Ein-
stein’s classic, yet at the time of its publication controversial, work on Special Relativity, wherein 
he postulated that the travel time of any signal cannot exceed the speed of light in a vacuum. The 
same underlying physical and mathematical principles pioneered by Arnold Sommerfeld and Léon 
Brillouin nearly a century ago that were used to quell Einstein’s critics and prove his assertions 
continue to provide essential and intriguing insights into scientific phenomena of vital importance 
to the U.S. Navy: acoustic propagation through highly dispersive subsurface bubbles and bubble 
clouds in the ocean. 

Since the commissioning of NRL’s unique Salt Water Tank Facility in the late 1990s, NRL scientists 
have conducted many experiments designed to investigate different aspects of acoustic propagation 
in bubbly liquids. One of the major accomplishments of this facility in 2008 provided experimental 
verification of an important correction to contemporary theories of acoustic propagation in bubbly 
media. This correction has resulted in a causal self-consistent theory verified by both higher fre-
quency data taken in the Salt Water Tank Facility and historical data. Further observations have 
elucidated some additional features that have significant implications upon acoustic signal propaga-
tion and suggest that despite many decades of scientific investigation, we have only begun to sketch 
out a comprehensive description of the physical phenomena surrounding acoustic propagation in 
the strongly scattering highly dispersive environment of bubbly media.
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C
ausality in nearly all physical systems has been a recurrent subject, often causing apparent paradoxes since 
before the 20th century. Linear acoustic propagation through subsurface bubble clouds in the ocean offers 
an especially challenging physical system within which to investigate issues of causality, and in the past has 

had several competing fundamental theories. Signal travel times and absorption in such a system exhibit enormous 
variations depending on the acoustic signal frequency, bubble size distribution, void fraction, and other ambient 
physical parameters. We have found a correction to some contemporary theories of acoustic propagation in bubbly 
media that has brought these theories into compliance with the physical law of causality. In doing so we have created 
a self-consistent theory that also matches higher-frequency data taken in the NRL Salt Water Tank Facility, as well as 
historical data. We have experimentally investigated this new theory and have observed some additional features that 
have significant implications upon acoustic signal propagation and suggest that we have only begun to scratch the 
surface of providing a comprehensive description of the physical phenomena surrounding acoustic propagation in 
the highly dispersive environment of bubbly media.

introduction

Einstein’s postulate that no physical process can 
travel faster than the speed of light was disputed by 
several leading physicists shortly after its publica-
tion. The main objection to the theory was based on 
studies of existing dispersive metal compounds with 
measured values for their phase velocities, where the 
derived group velocities were greater than the velocity 
of light in a vacuum.1 The erroneous assumption in 
the argument against Einstein’s postulate was based on 
the original work of Stokes that stated the group veloc-
ity, ∂w / ∂k , determined the velocity of propagation of 
wavelike signals in any medium. The argument used to 
object to Einstein’s postulate neglected two important 
and omnipresent suppositions. The first supposition 
was that any signal that can send information is by 
necessity of finite length and, therefore, of infinite fre-
quency extent. The second supposition was concerned 
with the experimental system, based on the interaction 
of electromagnetic waves with metals, which generated 
the data that were used to counter Einstein’s postulate. 
This system had a significant degree of dispersion and a 
highly frequency-dependent dispersion function. This 
manifests itself within the model of electrons in metals, 
which at that time were considered to behave classically 
as damped harmonic oscillators. 

These two points and their physical implications 
were pointed out in a now classic set of companion 

papers published in 1914 by Sommerfeld and Brillouin 
that laid the theoretical groundwork for countless 
developments in physics, information theory, and 
engineering throughout the 20th century.2,3 Their 
resolution to the neglected suppositions was based on 
a detailed analysis of the definition of a wave pulse 
of finite length and the signal’s frequency content for 
a wave travelling in a dispersive medium. Using the 
theory of complex analytic functions, they observed 
that the dispersion formula, and, hence, the Fourier 
integral defining the wave pulse at a future time and 
position separated from the origin of the pulse, could 
be shown to be analytic in the upper half complex 
frequency plane. Thus it could be demonstrated that all 
electromagnetic signals are undetectable until at least 
such a time t = x/c0 has elapsed, where x is the distance 
from source to receiver, and c0 is the velocity of light 
in a vacuum in the infinite frequency limit. Due to the 
nature of the medium, instrumentation of infinite pre-
cision might be needed to detect the incoming signal 
moving at that velocity for a given dispersive medium 
and pulse carrier frequency. This requirement of analy-
ticity led Kramers and Krönig to separately derive their 
now famous relation between the real and imaginary 
parts of the dispersion formula. 

From the standpoint of acoustic wave propagation 
in any fluid, bubbles represent one of the strongest, 
most ubiquitous, and complex extinction mechanisms. 
These mechanisms can be modeled in much the same 
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way as the semi-classical electrodynamics systems used 
to model the propagation of electromagnetic waves 
in metals. Thus we are naturally led to ask if there is 
an equivalent theory of causality, or in effect a “speed 
limit,” of acoustic waves in a continuum mechanical 
system, e.g., dispersive bubbly media, to that of the 
electromagnetic case first investigated over 100 years 
ago. Understanding the complex dynamics of bubbles 
and the acoustic interaction with a bubble field is a 
necessary first step in trying to model and measure the 
propagation of an acoustic signal in or near a bubbly 
medium or when creating new acoustic devices using 
bubbles. 

The ubiquity of bubbles in the ocean can be 
imagined by noting that a single plunging breaker at 
the ocean surface can generate hundreds of millions 
of bubbles. While many of these bubbles are relatively 
large and rise quickly to the surface where the bubble 
wall collapses and the bubble ceases to exist, a signifi-
cant fraction of the bubbles are relatively small, with 
average radii typically between 20 and 50 mm. These 
small bubbles have a small buoyancy and can be mixed 
into the upper surface of the ocean to form larger 
clouds that can persist for many seconds and be forced 
down to depths of 20 m or more by circulation cells. 
The clouds typically have complex shapes and popula-
tion densities with horizontal scales from 1 to 100 m. 

We are thus left with the following complex picture 
of acoustic wave propagation in the upper ocean: the 
acoustic medium is itself a semi-regular collection of 
clouds with complex time-dependent spatial extent. 
Not only does each bubble interact with an incoming 
acoustic wave approximately as a damped harmonic 
oscillator, but the injection of a gas into the liquid fun-
damentally changes the compressibility of the medium 
in and near the bubble/bubble clouds. This changes the 
acoustic phase velocity in and near the clouds, causing 
them to become effective scatterers/resonators and 
in so doing, provide for a broader range of scattering 
scale sizes. Complicating the picture even further is 
the fact that the phase velocity and associated medium 
attenuation are highly dependent on the incident wave 
frequency in a nontrivial and nonlinear way that causes 
significant dispersion to occur. Thus it is imperative 
that the dispersion and the fundamental limits that 
causality places upon any theory of wave propagation 
in a dispersive bubbly acoustic medium be understood 
in full. 

Single Bubble Oscillations

Physically, a bubble exists because of the molecular/
atomic effects of surface tension at an interface between 
two fluids. While large bubbles in water often exhibit 
large fluctuations in the shape of this interface as they 

are deformed due to nonuniform surface drag forces 
in their eventual rise towards the surface, the majority 
of oceanic bubbles (particularly those that persist) are 
small, and small radial pulsations about an equilibrium 
value are by far the most significant mode of oscillation 
of the bubble interface. Furthermore, it has been exper-
imentally demonstrated that even extremely deformed 
bubbles radiate acoustic energy very much as though 
they were spherical, and undergoing a small radial 
oscillation. Thus, the acoustic signature and natural fre-
quency of oceanic bubbles can be well approximated as 
small radial pulsations alone governed by the Rayleigh-
Plessett equation,4,5
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where c0 is the phase velocity of sound in a quiescent 
medium, R(t) is the radius of the bubble as a function 
of time, pB is the static equilibrium pressure inside the 
bubble given by the static quiescent pressure external 
to the bubble and the Laplace pressure pL = (2s)/(R0), 
and P(t) is the driving external pressure (acoustic) field. 
Since the Laplace pressure is inversely proportional 
to the radius of the bubble, it can have a substantial 
impact on the dynamics of small bubbles. This added 
pressure also causes the smaller bubbles to dissolve into 
the solution at an ever-increasing rate, as the leakage of 
the entrapped gas into the liquid is a strong function 
of the internal bubble pressure. This causes the bubbles 
to become smaller yet, increasing the internal pressure 
even more, and hastening their dissolution. The second 
effect is that the bubble’s natural frequency is modi-
fied as the bubble becomes effectively stiffer, effectively 
increasing the apparent resonance frequency. The 
Rayleigh-Plesset equation results in additional first-
order terms in the radial deflection that are complex 
and thus result in energy dissipation. 

The second dissipative effect on the acoustic field 
when it encounters a bubble is the liquid’s viscosity. 
The forced oscillations of the bubble wall necessarily 
deform the liquid around the bubble wall. A volume 
element of liquid near the bubble wall will deform as 
the bubble expands and contracts, becoming thicker 
with less solid angle upon contraction and thinner 
with larger solid angle upon expansion. Energy in 
the process is not conserved, as all deformations of a 
volume element of a viscous liquid demand work. For 
general small radial oscillations, the associated dissipa-
tion can be shown to result in a damping term of the 
form 4pm, where m is the dynamic coefficient of viscos-
ity of the liquid.6
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The third dissipation mechanism of bubble 
dynamics is the thermodynamics of the heat generated 
as a byproduct of expansion and contraction of the gas 
trapped in the bubble volume. This heat is conducted 
from the internal vapor into the greater liquid thermal 
bath (ocean). Early bubble acoustics either assumed 
that the bubble oscillated in either an isothermal 
or adiabatic process depending on the frequency of 
ensonification. However, the actual heat transfer is 
significantly more complicated and has far-reaching 
consequences for acoustic propagation in a bubbly 
liquid. Since the heat conduction takes some time to 
travel to and from the bubble wall, there is a phase 
delay between the total pressure field and the bubble 
radius (or, equivalently, volume). If it is assumed that 
the internal bubble gas can be treated as a polytropic 
gas, then for small linear radial oscillations, the bubble 
radius can be considered to have a form of R(t) = 
R0 (1 + X(t)), where X(t) is a dimensionless small 
harmonic perturbation. The pressure can then be given 
similarly as P(t) = P0 (1 + ΦX(t)), where the factor Φ 
is a complex function of the frequency, the equilibrium 
bubble radius, the ratio of specific heats of the bubble 
gas, and the diffusivity of the bubble gas through6,7 
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where the subscripts “g” refer to the gas phase and p∞ is 
the quiescent pressure minus surface tension effects.

From the Acoustics with a Single Bubble 
to the Acoustics of a Cloud 

The transition from a single bubble to a collection 
of bubbles follows along that of the two-phase fluid. 
This results in a generalized wave equation for the pres-
sure in the liquid phase with an added term involving 
the expansion and contraction of the bubbles, repre-
sented as a total change in macroscopic void fraction,8 

of the bubble gas. This effective medium approach 
presents itself as a modified dispersion formula relating 
the wavevector to all of the physical parameters, and is 
necessarily a complex function reflecting the dissipa-
tion,9
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where b is the void fraction of the gas in the liquid and 
r is the density of the liquid. When the bubble field can 
be regarded in an isotropic and homogeneous system, 
then ∂2 b / ∂t2 can be determined from the linearization 
of the Rayleigh-Plesset equation with the added effects 
of viscosity, surface tension, and finite conductivity 
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where rBSD is the bubble size distribution and w is the 
radial frequency of the driving acoustic wave. Here it 
is evident that there are a significant number of physi-
cal parameters that affect acoustic wave propagation 
in bubbly water and that even this theory represents 
only a linear approximation to the physical reality. 
How faithful this treatment of the problem is, whether 
the behavior that this theory predicts represents a true 
system that is causal, and what theoretical predictions 
can be detected in the laboratory have been the focus 
of research at NRL’s Salt Water Tank Facility, shown in 
Figs. 1 through 3. 

At very low frequencies, the system becomes iso-
thermal and the effect of the injection of a gas into 
the liquid can be grossly regarded as a change in the 
system’s mean compressibility and mean density that 
result in Wood’s equation for the phase speed of the 
combined liquid. The air (gas) phase in the two-phase 
fluid has a high degree of compressibility compared 
to the liquid. In the case of water, this ratio is approxi-
mately 104. However, the mass density ratio is approxi-
mately 10–3 and thus is not changed significantly by the 
inclusion of small amounts of gas. This combination 
frequently results in an acoustic phase speed that can be 
significantly lower than that of the gas alone. 

If the bubble size distribution is relatively sharply 
peaked, then there is a frequency regime that can be 
identified with the resonance of a sizable portion of the 
bubbles. This is manifest as a dip in the phase speed 
curve to values even lower than that given by Wood’s 
equation in the low frequency limit. Because the 
bubbles are now responding via the Rayleigh-Plesset 
equation as a damped resonating harmonic oscillator, 
the bubble pulsations and, hence, the total radial deflec-
tions maximize. As this occurs, the volume fluctuations 
maximize and, hence, thermal dissipation becomes a 
significant loss mechanism. 

Just above the resonance frequency we enter the 
anomalous absorption regime where all of the loss 
mechanisms, viscous, thermal, and radiative (scatter-
ing), are significant. This area is characterized by three 
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FIGURE 1
Exterior view of the Salt Water Tank, with 
a small bubbler test tank on the left. The 
main tank measures 6 m x 6 m x 4 m 
deep, although typical water depth is 3 m. 
The interior of the tank has 50 precision-
controlled air-flow ports to allow for various 
air injection mechanisms to be arranged 
for each experiment. Barely visible at the 
far left is the salt mixing tank used to mix 
salt into the main tank to any desired level 
of salinity. Visible through the Plexiglas 
windows of the large tank is an ITC2010 
acoustic source, used for much of the 
experimental data below 10 kHz. 

FIGURE 2
Precision bubbler. This bubbler 
consists of 3000 luer-lock square 
cut hypodermic needles glued into 
a 2.5-cm-thick Plexiglas sheet. This 
sheet is bolted over a plenum box 
weighted to be nearly neutrally 
buoyant. Since the pressure is 
nearly identical over all needles, the 
rate of bubble formation and size of 
bubbles is close to uniform. 
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dominant features. The first is the rise of the absorption 
to very high levels that can approach hundreds of dB/m 
for void fractions even as small as 10–4. The second 
feature is a similar rise in the acoustic phase speed 
that can be tens of thousands of meters per second for 
similarly small void fractions (10–4). This is due to the 
bubble’s resonant frequency beginning to oscillate out 
of phase with the incident acoustic wave driving the 
small radial oscillations. As such, the medium stiffens 
considerably with respect to the phase speed. The third 
major feature is the significant departure of the acous-
tic signal velocity from the acoustic group velocity. The 
group velocity, as a quantity derived from behavior of 
the phase velocity, eventually passes through infinity to 
negative infinity and back: clearly the wave propagation 
velocity can no longer be approximated by the group 
velocity and we must rely on a complicated determina-
tion of the signal’s velocity. 

Far above resonance, the velocity of the signal 
asymptotes with both the group velocity and phase 
velocity to the quiescent medium’s speed of sound. Fur-
thermore, the attenuation becomes effectively constant 
with frequency, signifying the dominance of scattering 
as the loss mechanism at high frequencies. Here the 
wavelength of the incident acoustic field in the medium 
between the bubbles becomes significantly less than the 
size of the typical bubble. 

Causality and the Acoustic 
Signal Velocity 

If the dispersion formula as stated above is used 
directly to calculate the phase speed, attenuation, and 
group velocity of an acoustic pulse in a bubbly liquid, 
then the problems seen a century ago by Sommerfeld 
and Brillouin are essentially repeated, albeit with a 
significantly more complex dispersion formula. The 
bubbly liquid dispersion formula can be shown to be 

analytic in the upper half complex frequency plane. 
Thus, Cauchy’s integral theorem trivially proves causal-
ity, as the Fourier integral describing the propagation 
of an acoustic pulse is zero for times less than x/c0. To 
determine the behavior of the signal as a function of 
time for times equal to or greater than this, the behav-
ior of the dispersion formula in the complex frequency 
plane must be determined in detail, and in general 
the saddle point method can be used to determine the 
propagation characteristics as a function of time. This 
is because the lower half complex plane contains several 
branch cuts that must be included in any calculation. 

An example of a typical integration path using this 
method is shown in Fig. 4. As in the electromagnetic 
case, there are three different phases of an incident 
signal’s arrival: the Sommerfeld precursor, the Brillouin 
precursor, and the signal. The first two are dependent 
upon the behavior of the dispersion function in the 
complex plane near the point at infinity and the origin, 
respectively, and hence are independent of the source 
characteristics (i.e., frequency).2,3,9 The actual signal 
arrival is determined by the crossings of the saddle 
point integration path (which is a function of time, 
distance, and the physics of the propagation medium) 
with the abscissa. If a portion of the signal’s spectrum 
exists at this crossing, then there will be a simple pole 
in the Fourier integral, requiring an altering of the 
integration path around the pole to exclude it from 
the integration region. The consequences of this are a 
dominating contribution to the integral at that point 
and the arrival of energy with that frequency.9 

Experimental Effort in the Salt 
Water Tank Facility 

Since the surface tension of water is affected by 
the presence of salt, the bubble size distribution found 
in saline environments is different from that found in 

FIGURE 3
An ITC2010 acoustic source tethered in a 
bubble cloud produced by aeration tubes 
(which generate a log-normal bubble size 
distribution). Much of the data is collected 
under similar conditions to these. Here the 
void fraction is only 0.001 with a mean 
bubble radius of only 0.4 mm. Note that the 
ascent of so many bubbles drags enough 
fluid upwards to cause the source to move, 
and hence it is lashed to the side of the 
tank throughout our experiments: precise 
phase measurements can be made only 
when the source and receiver positions are 
well known. Typical data collection times 
can exceed a week for each set of physical 
parameters (temperature, salinity, void frac-
tion, etc.).
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fresh water. However, the violent nature of the bubble 
entrainment mechanisms found in the open ocean 
tends to break up larger bubbles until the external 
turbulent forces no longer have sufficient force to over-
come the surface tension. The Salt Water Tank Facility 
(SWTF) at NRL (see Figs. 1 through 3) was specifically 
constructed to test acoustic propagation in bubbly salt 
water to fully verify and validate theoretical predictions 
of acoustic wave propagation in bubbly water relevant 
to oceanic environmental conditions. 

The SWTF consists of a vinyl-coated steel walled 
tank measuring 6 m × 6 m × 4 m deep, with 12 clear 
Plexiglas windows in the tank walls, each window being 
3 m × 1-1/2 m × 10 cm thick. Within this tank, we used 
50 fabric-coated aeration tubes, each one 5 m long, 
placed 10 cm apart on the tank floor and fed from both 
ends by a filtered compressed air supply. These tubes 
continuously injected bubbles of a wide size distribu-
tion into the water volume, which would then rise to 
fill almost the entire volume of the tank. Depending 
on the air overpressure applied to the aeration tubes, 
the tank would contain from 7 to 70 million bubbles, 
which translates into void fractions of between 0.0002 
and 0.002. At the center of the water volume we then 
used acoustic transducers to transmit narrowband 
acoustic signals, which we would then detect on hydro-
phones positioned at precisely measured distances from 
the sources. The time of flight and received intensity 
were measured directly from a comparison of the data 
recorded at a monitoring hydrophone placed next to 
the source and those recorded at the various receivers. 
The absolute phase of the signal’s carrier frequency at 
the receiver can be inferred from the data and the phase 
velocity thus determined. Comprehensive acoustic data 
sets were collected for several void fractions between 

0.0002 and 0.002, multiple salinities, and covering 
frequencies from 1 kHz (which is far below bubble 
resonance) up to 100 kHz (which is far above bubble 
resonance) in 100 Hz increments. Coincidentally, an 
underwater camera was used to capture bubble images 
alongside a calibration scale, and these were later used 
to generate numbers for the bubble size distributions, 
and to verify the void fraction measurements made 
from air flow meter and bubble rise time measure-
ments. 

[Sponsored by ONR]
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FIGURE 4
Real (left) and Imaginary (right) density plots of the complex phase function in the complex frequency do-
main. The Saddle Point Method of calculation of the Fourier integral defining the signal as it travels in time 
and space is determined by the shape and value of the functions shown here. The white loops around 
the branch cuts are the paths of integration for a specific time and distance from the source. Frequencies 
on the real axis that are intersected by the curves can have arrival times at distance x, thus defining the 
signal velocity of that frequency. 
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