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We propose a fast optically induced two-qubit C-PHASE gate between two resident spins in a pair of coupled
quantum dots. An excited bound state which extends over the two dots provides an effective electron-electron
exchange interaction. The gate is made possible by the electron-hole exchange interaction, which isolates a
single transition in the system. When combined with appropriate single-qubit rotations, this gate generates an
entangled state of the two spins.
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I. INTRODUCTION

Spins in quantum dots �QD� are currently under intense
investigation due to their potential use as bits of quantum
information. All-optically controlled QDs are particularly at-
tractive, as they take advantage of the speed at which optical
transitions can be accessed with a high degree of control.
Qubit operations are typically realized through Raman-type
transitions via optical generation of an electron-hole pair.
Thus far, many of the requirements of quantum computation
have been demonstrated experimentally in QD systems:
initialization,1 readout,2,3 and long coherence times,4 as well
as some recent advances in single-qubit control.5,6 Recently,
conditional control between a spin and an exciton qubit was
demonstrated in coupled QDs.7 However, two-qubit gates
between spins, which are necessary for spin-based quantum
computation, are yet to be realized in those systems. Such
gates are conditional, i.e., they alter the state of the one qubit
depending on the state of the other. For such an operation,
the ability to switch on an interaction between the two qubits
is required. Proposals for optical two-spin gates have been
made using a cavity photon mode8,9 or using optical excita-
tion of electron-hole pairs10–14 as mechanisms for this inter-
action.
In this work we consider an approach where the interme-

diate electron is in an excited bound state that extends over
both dots. Such states have the advantage of weaker coupling
to the continuum, and they have been studied
experimentally.15 Our scheme is general enough to cover
both vertically stacked coupled QDs and also laterally
coupled QDs.16,17 The latter are thought to be desirable for a
scalable quantum computing architecture, in which vertically
coupled QDs would be used to encode logical qubits in mul-
tiple physical qubits, so that quantum error correction is pos-
sible. Sketches of the QD potential and of the single-particle
states are shown in Fig. 1�a� for the vertically coupled QDs
and in Fig. 1�b� for the laterally coupled ones. In the insets,
the relevant orbital electronic states are shown schematically:
�R� and �L� are the states localized within each QD, and �E� is
an extended state mediating the exchange interaction. The
requirement that the qubits are uncoupled in their ground
state �and addressable separately� while there exist transi-
tions that allow for their coupling has been shown experi-
mentally for vertical QDs.15 In that case coupling is achieved

in the excited state by an external electrical bias that brings a
certain excited state in resonance, so that the electron of the
optically generated exciton is in a molecular state of the two
dots. For lateral dots, this requirement can be met if the
potential along the line coupling the two QDs has the shape
of an asymmetric sombrero, an attractive potential with two
asymmetric minima. The asymmetry could represent differ-
ences in size and composition between the two QDs, and it
prevents the electrons in the ground states from tunneling
into the other dot. As the energy quantum number is in-
creased, the states become more extended while still bound
in the two QDs.
The key component of our proposal is use of the electron-

hole exchange interaction �EHEI�, which has not been con-
sidered previously in conditional gate designs. EHEI gives
rise to well-known features of QDs, such as the splitting
between optically active �bright� and optically inactive �dark�
excitons, as well as the splitting of the bright exciton dou-
blet, which results in the linearly polarized photolumines-
cence of neutral QDs. These effects are crucial in the role of
QDs as entangled photon emitters,18,19 and they have been
studied extensively in recent years.20–24
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FIG. 1. �Color online� Sketches of the potentials of �a� laterally
and �b� vertically coupled QDs. The single-particle orbital states are
also sketched, and the arrows denote the optical transitions. The
wave functions of the three electrons participating in the two-qubit
quantum gate are shown in the insets. States �L� and �R� are con-
fined within each QD and have negligible overlap between them.
The excited state �E� is the extended bound state which mediates the
effective exchange interaction.
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EHEI can play a significant role in optically controlled
spin qubits, depending on the number of electrons in the
intermediate optically excited state. For an even number of
electrons, the total electron spin can be zero, in which case
there is no net EHEI. On the other hand, a state with an odd
number of electrons always has a half integer, i.e., nonzero
total spin, which means nonzero net EHEI. Here we show
that in the case of a two-spin conditional gate, where the
intermediate state contains three electrons and one hole, the
nonzero EHEI allows for a simple and fast design of a
C-PHASE gate.

II. THREE-ELECTRON STATES

The system we consider involves two resident electrons in
two coupled QDs. The growth axis of the QDs defines the z
axis and is also the optical axis, and an external magnetic
field along the perpendicular direction defines the x axis
�Voigt geometry�. Upon optical excitation, the system con-
sists of three electrons and one hole. The exchange interac-
tion between the same quasiparticles �electron-electron� is
the strongest interaction, on the order of 2–6 meV.25 First we
diagonalize the electron-electron �e-e� exchange interaction
in the three single-particle basis states illustrated in Fig. 1,
�L�, �R�, and �E�. Then the states diagonalizing the e-e ex-
change Hamiltonian are eigenstates of the total electron spin
S, which can be 3/2, 1/2, 1/2, and the projection of that spin
along the quantization axis.
The S=3 /2 quadruplet is separable in spin and orbit,

so it is straightforward to write it down as a product of
the antisymmetric orbital state and the symmetric spin
state: �A��3 /2,MS�, where MS=�3 /2,�1 /2 and �A�
= �LRE�−�RLE�−�LER�+�REL�−�ERL�+�ELR�

�6 . The energy of the S=3 /2
states at zero B field is �3/2=�d− �VRE+VLE�, where VRE �VLE�
is the exchange integral between electrons in states �E� and
�R� ��L�� and �d is the energy of the three particles including
direct Coulomb terms. The e-e exchange term between states
�R� and �L� is essentially zero, and it has been dropped.
The remaining sets of states both have S=1 /2. To find

their energies and express them in terms of single-particle
states, we use the basis states �1↑�=

1
�6 ��RLE��↑↓↑�

− �LRE��↓↑↑�+c.p.�, �2↑�=
1
�6 ��RLE��↓↑↑�− �LRE��↑↓↑�

+c.p.�, and �3↑�=
1
�6 ��RLE��↑↑↓�− �LRE��↑↑↓�+c.p.� �where

c.p. stands for cyclic permutations� for the �= +1 /2 states.
The Coulomb interaction does not mix different spin projec-
tions, so we diagonalize each spin projection subspace sepa-
rately. The Hamiltonian in the �1↑�, �2↑�, �3↑� basis is

H↑ = ��d − VER 0 − VEL

0 �d − VEL − VER

− VEL − VER �d
� . �1�

Diagonalizing the above Hamiltonian gives the following
eigenstates:

	1
2
,�;�
 = VLE − VRE � �

− VLE � �
�1↑� +

VRE

− VLE � �
�2↑� + �3↑� ,

with normalization �VLE+VRE�2� / �6� �for the �=−1 /2
basis states, all the spins are flipped�. We label the states by

their energies, ��=�d��VRE
2 +VLE

2 −VREVLE, as �1 /2,� ;��,
where �=�1 /2 is the spin projection along the quantization
axis. In the following we take VLE=VRE�Je-e.

III. INCLUSION OF ELECTRON-HOLE
EXCHANGE INTERACTION

Now we consider the hole. The two heavy-hole states in
the QD act as a pseudospin and split in the presence of the
magnetic field.1 Taking the tensor product of these with the
three-electron states above gives a total of 16 nondegenerate
basis states. The exchange interaction between an electron
labeled by i and the hole is anisotropic and can be written in
terms of the hole pseudospin j and the electron spin si as

26

Hexch
�i� = �

�=x,y,z
���ri�si�j�, �2�

where � is an operator acting on the envelope functions of
the electron and the hole and is different for each of the
principal axes.26 It can be shown that AB��x�AB�=
−AB��y�AB�=�1

AB, where A ,B are electron and hole enve-
lope states, respectively. These terms are responsible for the
familiar anisotropic exchange between bright excitons in the
s shell. AB��z�AB�=�0

AB is responsible for the splitting be-
tween bright and dark excitons. The full exchange Hamil-
tonian is given by the sum of three terms of form �2�, one
term for each electron. In the presence of a magnetic field,
the full four-particle Hamiltonian can be expressed as

Hspin = 	eSx + 	hjx + �
�=x,y,z

���r1� + ���r2� + ���r3�
3

S�j�

+
���r1� − ���r2�

3
�s1� − s2��j� + c.p. �3�

The first three terms conserve the total electron spin S. The
fourth term is spin antisymmetric and mixes states of differ-
ent total electron spin.
Hamiltonian �3� is invariant under parity transformation,

which means that �Hspin ,Rx�
��=0, where Rx�
�=ei
Jx is the
operator that rotates the total �J=S+ j� spin about the quan-
tization axis by an angle 
. The Hamiltonian is therefore
block diagonal according to the parity eigenvalue: The states

of even parity, �� 32 ,
3
2 ;hx� , �

3
2 ,
1̄
2 ;hx� , �

3
2 ,
1
2 ;hx̄� , �

3
2 ,
3̄
2 ;hx̄� ,

� 12 ,
1
2 ;� ;hx̄� , �

1
2 ,
1̄
2 ;� ;hx��, are labeled by �E�; the states

of odd parity, �� 32 ,
3
2 ;hx̄� , �

3
2 ,
1̄
2 ;hx̄� , �

3
2 ,
1
2 ;hx� , �

3
2 ,
3̄
2 ;hx� ,

� 12 ,
1
2 ;� ;hx� , �

1
2 ,
1̄
2 ;� ;hx̄��, are labeled by �O�. Therefore the

Hamiltonian splits in two 8�8 blocks. The energy levels are
shown in panel �a� of Fig. 2 without EHEI, while panel �b�
includes EHEI, with typical values taken from experiment
and Zeeman splittings corresponding to about 8 T. The or-
ange color represents states of odd parity, while the green
ones represent those of even parity. From the figure, one can
see that the levels become mixed and shifted by the EHEI,
with the mixing occurring predominantly within the same
total electron spin multiplets. This is because the electron-
electron exchange is much larger than the EHEI. It is there-
fore an appropriate approximation to ignore the spin-mixing
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terms in Eq. �3� and take S to be a good quantum number. In
the following we will focus on the topmost four states
�dashed box in Fig. 2�b�� and use them for our gate design.
The Hamiltonian in this space is block diagonal, consist-

ing of one block in the even subspace �� 12 ,
1
2 ; + ;hx̄� , �

1
2 ,
1̄
2 ;

+ ;hx�� and one in the odd subspace �� 12 ,
1
2 ; + ;hx� , �

1
2 ,
1̄
2 ;

+ ;hx̄��. Diagonalizing each block gives the four eigenener-
gies

EO,� = Je-e + �1 � ��	e + 	h�2/4 + ��0 + �1�2,

EE,� = Je-e − �1 � ��	e − 	h�2/4 + ��0 − �1�2,

where ��� 1
6 �2��

RH+2��
LH−��

EH�, with �=0,1.
Now we also consider the 4�4 qubit subspace, shown at

the bottom of Figs. 3�a� and 3�b� and corresponding to the
two spins in the two QDs before optical excitation. The op-
tical selection rules between this qubit subspace and the four
states from Fig. 2 are such that H-polarized light couples
even to even and odd to odd states, whereas V polarization
couples odd to even states. These can be derived from the
well-known circular selection rules if our basis states are
expressed as linear combinations of the spin states polarized
along the growth axis. They have also been demonstrated
experimentally.1 First, let us ignore EHEI �Fig. 3�a��: then,
not all ground states couple to every excited state. For ex-
ample, the transition from the two-qubit state �↑↑� to the
lowest state of the quadruplet, � 12 ,

1̄
2 ;+��h�, is optically forbid-

den, as indicated in Fig. 3�a�. To implement a C-PHASE gate
optically, a transition has to be addressed between �↑↑� �or
�↓↓�� and an excited state, without other transitions being
excited. However, in the absence of EHEI, each transition
has a frequency and polarization that is doubly degenerate.
An example is shown in Fig. 3�a� for the two transitions
labeled by their common frequency 	0. This means that the
target transition cannot be isolated, irrespective of the laser
bandwidth and polarization.

Now, we include EHEI, in panel �b� of Fig. 3. The tran-
sition between �↑↑� and the lowest excited state now is al-
lowed; moreover it has a unique frequency. This transition is
enabled by the EHEI. Stronger EHEI results in a larger di-
pole moment for this transition and larger energy separation
from the nearest transition. This can be seen in Fig. 3, panels
�c� and �d�, where the dipole and detuning �	 are plotted as
functions of the isotropic and anisotropic EHEI between the
hole state and the electronic state �R�, �0

RH and �1
RH. Here the

hole has been taken to be confined within one QD �the one
with state �R��, so the EHEI with state �L� is zero. For state
�E� we have taken �0

EH=�0
RH /2 and �1

EH=0. The range of
values for the EHEI shown in Figs. 3�c� and 3�d� is taken
from experiments.21,24–26

IV. TWO-QUBIT C-PHASE GATE

For the two-qubit gate, we propose using a laser of pulse
area 2
 resonant with the transition discussed above �thick
arrow in Fig. 3�b��. The pulse can have any temporal shape,
and its effect will be to induce a minus sign to the �↑↑� state,
leaving the rest of the basis states unaffected; i.e., it can be
expressed by the unitary diag�−1,1 ,1 ,1�. This is the
C-PHASE quantum gate, which we denote as C. The result that
inclusion of EHEI makes possible this two-qubit gate is re-
markable, since EHEI is usually viewed as a source of deco-
herence and error.
Our C-PHASE gate is compatible with the single-qubit

gates that we developed earlier,27 since the two QDs have
optical excitations at different frequencies �about 10 meV
apart�, so the speed of the single-qubit gates is not compro-
mised. These single spin gates, implemented through the
lowest trion �three-body complex that involves an exciton

2Jee

Jee

S=1/2

(a) (b)

S=1/2

S=3/2

EHEI

FIG. 2. �Color online� Three electron–one hole energy levels in
the presence of the Voigt field �a� without and �b� with electron-hole
exchange interaction. The total electron spin is approximately a
good quantum number. The total parity is conserved �denoted here
by color/grayscale�.
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FIG. 3. �Color online� �a� In the absence of EHEI, the optical
transitions are degenerate and some transitions are forbidden by
optical selection rules. �b� EHEI mixes the states and lowers the
symmetry, such that all transitions are allowed. In particular, the
lowest frequency transition indicated by the thick arrow can be used
for a C-PHASE gate. The �c� dipole and �d� detuning of this transition
as function of isotropic and anisotropic EHEI between state �R� and
the hole state.

OPTICALLY INDUCED SPIN GATES IN COUPLED… PHYSICAL REVIEW B 78, 115306 �2008�

115306-3



and an extra hole� localized in each QD, in combination with
the present C-PHASE gate, provide the entangling CNOT gate
as Rz

†� 

2 �CRz�



2 �, where Rn�� is the single-qubit operator

representing a rotation by angle  about axis n̂. Single-qubit
rotations about z have picosecond durations,28 so the total
gate time is not slowed down by the single-qubit gates.
We have performed numerical calculations in the 8�8

space of Fig. 3�b� to simulate the C-PHASE gate in the pres-
ence of decoherence and relaxation dynamics. The fidelity
has been calculated as the average29

f =
1

10�i

�Iii�2 +
1

20�i�k

�IiiIkk
� + IikIik

� � , �4�

where I=U†U0, U0 is the ideal operation, and U is the actual
operation. The indices i ,k run through all four possible two-
qubit states. The predominant dissipation mechanisms are
relaxation to lower levels and spontaneous emission of the
trion �recombination�. We have used an effective recombina-
tion rate � in the Lindblad master equations to account for
both of these mechanisms. In those simulations we used
the following values for the parameters: for the Zeeman
splittings 	e=0.12 meV and 	h=0.04 meV, which
correspond to a B field of about 8 T for InAs QDs. For the
EHEI we used the recently measured values by Poem
et al.,24 �0

RH=−0.2 meV, �1
RH=0.38 meV, �0

EH=−0.1 meV,
and �1

EH=�0
LH=�1

LH=0. We have used a Gaussian pulse
envelope, e−�2t2/�2, with �=0.01 meV, shown in the inset of
Fig. 4. Figure 4 shows the calculated fidelity for varying
values of �: The fidelity ranges from 79% for ��160 ps to
about 94% for ��1200 ps.
We note that the values of the EHEI used in our calcula-

tions were chosen for concreteness, and our proposal is valid
for a wide range of EHEI values. A stronger EHEI is advan-

tageous, as it better isolates the target transition from the
other transition �Fig. 3�d��, leading to higher fidelity and
shorter gate times.

V. CONCLUSIONS

In conclusion, we have proposed an optically induced
C-PHASE gate between spins in neighboring �coupled� QDs.
This gate, in combination with our single-qubit rotations, is
equivalent to the familiar C-NOT gate. Our proposal yields
fidelities on the order of 85% for gates with pulse width of
about 100 ps. The electron-hole exchange interaction has
been shown to be a crucial component of this conditional
control by isolating a transition in the system, thereby mak-
ing the gate possible.
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