
ar
X

iv
:1

20
5.

18
02

v2
  [

co
nd

-m
at

.m
es

-h
al

l]
  5

 J
un

 2
01

2

High fidelity quantum gates via analytically solvable pulses

Sophia E. Economou
Naval Research Laboratory, Washington, DC 20375, USA

(Dated: June 6, 2012)

It is shown that a family of analytically solvable pulses can be used to obtain high fidelity quan-
tum phase gates with surprising robustness against imperfections in the system or pulse parameters.
Phase gates are important because they can implement the necessary operations for universal quan-
tum computing. They are particularly suited for systems such as self-assembled quantum dots,
trapped ions, and defects in solids, as these are typically manipulated by the transient excitation of
a state outside the qubit subspace.

The physical implementation of quantum computation
requires high quality coherent gates. Single qubit rota-
tions combined with the conditional C-Z phase gate form
a universal set of quantum logic gates [1]. Time depen-
dent controls, such as lasers, are used in order to imple-
ment these prescribed unitary evolutions of the qubits.
In many physical systems, such as self-assembled quan-

tum dots [2–5] and quantum wells [6], trapped ions [7]
and atoms [8], defects in solids [9], and in some cases
superconducting qubits [10], auxiliary states outside the
Hilbert space of the qubit are used in order to implement
these gates. One advantage of using such states is that
their energy splitting from the qubit states is typically
orders of magnitude larger than the qubit splitting itself
and thus fast operations can be achieved, since the time
scales as the inverse of the energy. For unitary evolution
within the qubit space, these excited states should be
only transiently excited, and fast operations are key in
order to avoid incoherent decay back to the qubit states.
The most familiar gate is the induction of a minus sign

in front of one of the qubit states via cyclic resonant ex-
citation of the excited state. As shown in Fig. 1, the
two qubit states |n〉 and |n̄〉 (which can be thought of as
spin eigenstates along the n direction, or as a subset of
two-qubit states) are respectively coupled and uncoupled
from the excited state by a pulse. A path that excites
the population in state |n〉 resonantly to |E〉 and returns
it through a cyclic evolution will induce a minus sign to
state |n〉. This is a familiar property of quantum systems
that differentiates (pseudo)spin from spatial rotations in
euclidian space, where a full 2π rotation returns the sys-
tem to its starting point.
Indeed, this evolution has been used in the demonstra-

tion of quantum gates of a variety of systems, including
semiconductor nanostructures [3, 6, 11, 12], trapped ions
[13] and fullerene molecules [14]. This is done straight-
forwardly by a resonant pulse of any temporal profile.
In contrast, the implementation of other phase gates is
non trivial, since the majority of pulses will leave the sys-
tem partially in the leaky excited state |E〉. Perturbative
methods such as adiabatic elimination [15] of state |E〉
partially address this, but they have the inherent draw-
back of a need for long pulses. Exact analytically solvable
dynamics are therefore highly desirable, since they can

guarantee that the probability of the population remain-
ing in the excited state is zero after the passage of the
pulse. Moreover, they provide a reliable recipe for tun-
ing parameters to achieve the target evolution. In that
spirit, the well-known hyperbolic secant (sech) pulse [16]
was proposed [17] and later used experimentally for the
demonstration of electron [3] and exciton [12] spin rota-
tions in quantum dots.
While the sech pulses considered in [3, 12, 17] have

been successful for the experimental demonstration of
spin gates, they do not yield the near perfect fidelities
needed for quantum computing. The main shortcomings
of these pulses are the (near) resonant excitation of the
lossy excited state required to achieve large phases and
the sensitivity of the induced phase to small variations
in the detuning. As a result, an experimental error in
the laser frequency induces errors in phase, while in an
ensemble of systems with unequal energy splittings this
can lead to dephasing in the net signal [3].
In this work, these issues are addressed by use of a fam-

ily of pulses that generally feature asymmetric profiles
and frequency modulation (‘chirp’). Focusing on cyclic
evolutions by two different pulse strengths, I show that
impressive fidelities are obtained by the stronger pulses,
which furthermore demonstrate robustness against errors
in the parameters. The chirped pulses generally allow
for higher fidelities as compared to their unchirped coun-
terparts, an effect reminiscent of the robust population
transfer to an excited state using chirped lasers, which
has been recently used to that end in quantum dot sys-
tems [18, 19]. In the context of the latter experiments,
the present work is particularly timely and compatible
with state of the art capabilities.
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FIG. 1: (Color online) Qubit states (|n〉, |n̄〉) and the auxiliary
excited state |E〉. States |n〉 and |E〉 have energy separation
ωEn and are coupled by a field of frequency ω.
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The hyperbolic secant (sech) pulse shape was first dis-
covered by Rosen and Zener (RZ) as a nontrivial driv-
ing term that yields an analytically solvable Schrodinger
equation of a two-level system. In the 70s the sech pulse
gained intense interest in the context of self induced
transparency, i.e., as the pulse that does not lose its shape
as it propagates through a nonresonant medium [20]. In
the 80s a number of papers introduced pulses that also re-
sult in analytically solvable dynamics and which are gen-
eralizations of the sech, generally containing asymmetry
and/or chirping [21, 22]. It was found [21] that asym-
metric pulses do not return the population to the ground
state, while the same is true for ones with only chirp-
ing. However, the combination of chirp and asymmetry
allows for cyclic evolution when the chirp and asymmetry
parameters are related in a certain way [22].

To solve the time-dependent Schrödinger equation for
a coupling with a hyperbolic secant temporal shape
f(t) = Ωsech(σt)eiωt + cc, RZ define a new variable
z(t) = 1/2(1 + tanh(σt)). In terms of z, they show that
the second order differential equation for the probability
amplitude of state |n〉 is the hypergeometric equation, for
which the solutions are known. From the solution, one
can see that when Ω/σ =integer, the evolution is cyclic,
independently of the detuning ∆ = ωEn − ω from the
transition |n〉 → |E〉.

In the more general case of temporally asymmetric
and frequency modulated pulses with envelope f(t) =
2
√

z(1− z)/(λz + 1) and oscillatory term ei(ωt+g(t)),

where ġ = β (2+λ)z−1
λz+1 , a similar transformation t =

σ−1/2 ln[z/(1 − z)1+λ] with λ > −1 puts the equation
in a Hypergeometric form. Therefore, the dynamics are
analytically solvable, and what changes relative to the
RZ solution are the parameters appearing in the Hyper-
geometric functions, which are now functions of not only
the pulse strength and frequency, but also the asymme-
try and the chirp. In this general case, the probability
of return does depend on the detuning as well in the fol-
lowing way: when the chirp parameter β is related to
the asymmetry via β = −λ∆/(2 + λ), the effective pulse
area is the same as that of the RZ sech pulse, so that for
Ω/σ = integer, the induced evolution is cyclic. I focus on
cyclic evolution and specifically on Ω = σ and Ω = 2σ,
which will be referred to as 2π and 4π pulses respectively.
A 2π (4π) pulse cycles the polarization vector from |n〉
toward |E〉 and back to |n〉 once (twice). Taking λ = 0
recovers the symmetric, unchirped sech pulses.

A cyclic evolution in general induces a phase to the
state, i.e., the probability amplitude acquires a phase
factor. Using the analytically solvable dynamics outlined
above, I obtain the following expressions for the phases
for 2π and 4π pulses respectively

φ(2π) = 2 arctan

[

2 + λ

2(1 + λ)

σ

∆

]

(1)

φ(4π) = 2 arctan

[

8(1 + λ)(2 + λ)∆/σ

4(∆/σ)2(1 + λ)2 − 3(2 + λ)2

]

.(2)

In general, the pulses are defined through their pulse
shape asymmetry and their chirp, but since the two are
related for transitionless dynamics henceforth only the
strength and asymmetry will be used to refer to each
pulse. To examine the qualitative behavior of these
pulses, I focus on three non trivial values for the asym-
metry parameter, λ = −3/4,−0.5, 1 for which z(t) can
be inverted. The phase φ from Eqs. (1) and (2) is plot-
ted against the detuning (in units of bandwidth) in Fig.
2, where one may notice that for a target phase φ, the
phase is a slower varying function for the 4π set of pulses.
Within that set, the curves with negative λ’s are even
more slowly varying. In the limit λ → −1 we get a hor-
izontal straight line, which means that the phase is al-
ways −1 and 1 for 2 and 4 π pulses respectively. This is
somewhat reminiscent of adiabatic rapid passage, where
chirped pulses invert population robustly in the presence
of variations in detuning. Moreover, 4π pulses have larger
detunings for the same phase, resulting in less real exci-
tation of the leaky excited state.
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FIG. 2: (Color online) Phase (modulo 2π) as function of the
detuning in units of pulse bandwidth for 4π and 2π pulses for
various asymmetry parameters as shown in the legend.

In the present case, we expect the flatter pulses to be
more robust against errors in the detuning. This state-
ment is checked by calculating the fidelity of the phase
gate implemented with each pulse as a function of the de-
viation from the ideal detuning. The fidelity is a measure
of how close our evolution U is to the target evolution
Ut, and is defined as |〈ψ|U †Ut|ψ〉|2, where the average is
taken over all possible initial states |ψ〉. Indeed, calcula-
tions of the fidelity verify this expectation and quantify
the performance of these gates, as can be seen from Fig.
3, where ∆o is the ideal detuning for the target transi-
tion and is given in terms of the target phase and the
pulse parameters σ, λ by inverting Eqs. 1 and 2. Even
though in the case of chirped asymmetric pulses the de-
viation from the ideal detuning affects the probability
of complete return to the ground state, these pulses are
still more robust than their symmetric, unchirped coun-
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FIG. 3: (Color online) Fidelity of π/2 rotation as function of
deviation from the ideal detuning ∆o for, from top to bottom,
4π λ = −3/4, 4π λ = −0.5, 4π λ = 0, 4π λ = 1, 2π λ =
−3/4, 2π λ = −0.5, and 2π λ = 0. The pulse 2π λ = 1
is not included here as it performs worse than the 2π sech,
as expected from the plots in Fig. 2. The inset shows the
fidelities for only the three best performing 4π pulses in a
scale where they can be distinguished.

terparts. The implication of this result is a highly de-
sirable robustness against errors in the pulse frequency
or uncertainty of system parameters. Furthermore, this
insensitivity in the detuning in Fig. 3 tells us that we
can implement high fidelity quantum gates in an inho-
mogeneous ensemble of systems by use of a single pulse.
This is particularly important for human-made systems
such as quantum dots, but it can also impact naturally
occurring systems that interact with slightly different en-
vironments.

Another possible source of error can be the strength of
the dipole of the transition. The various 4π pulses with
different values of λ perform almost identically, while
there is no significant difference within the 2π pulse sub-
set either. However, the 4π pulses are overall superior to
the 2π ones. This can be seen in the left panel of Fig. 4,
where the fidelity is shown as a function of the phase for
a 4π and for a 2π sech pulse with the dipole of the tran-
sition set to 1.05 times its target value. The superiority
of the 4π pulse can be traced back to the larger detuning
required for the same phase. Since the detuning is large,
from a qualitative effective Rabi frequency argument, the
relative importance of the coupling strength compared
with the detuning is small for 4π pulses. However, for 2π
pulses, where the control is almost resonant (and exactly
resonant for a π rotation), the deviation from the ideal
coupling strength will have a greater effect.

Now let’s consider the case where state |n〉 is not an
energy eigenstate, but instead a linear superposition of
the two energy eigenstates of the qubit subspace. This is
a common situation in quantum dot spin qubits, where
there is an external magnetic field in the plane of the dot,
while the laser propagates perpendicular to that along
the growth axis and is circularly polarized. In that case,
the light couples to the ‘up’ spin state along the growth
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FIG. 4: (Color online) Left panel: Fidelity as function of the
phase for 4π (red, circles) and 2π (blue, squares) pulses. The
dipole of the transition is 5% higher than the ideal value. The
4π pulse is more robust to errors in the dipole. Right panel:
Fidelity as function of the phase for 4π (red, circles) and 2π
(blue, squares) pulses. The Zeeman splitting between the
energy eigenstates of the qubit subspace is 10 times smaller
than the bandwidth.

direction, which is not an energy eigenstate. The com-
mon assumption and experimental practice is to take the
pulse duration to be much faster than the spin preces-
sion, so that the picture of Fig. 1 is valid (Otherwise the
coupling between states |n〉 and |n̄〉 should be taken into
account, and the problem is no longer analytically solv-
able). It is therefore natural to ask what is the fidelity
of the present pulses when the Zeeman splitting is not
negligible compared to the pulse bandwidth. Again, the
family of 4π pulses is found to perform better than their
2π counterparts [23], as can be seen in the right panel of
Fig. 4. Since for the 4π pulses both the detuning and the
pulse strength are larger than that of the 2π pulses, the
relative importance of a larger Zeeman term is smaller in
the former case, and hence the better performance.

Finally an important situation to examine is the case
where there are other excited states that the laser cou-
ples to. In principle, these can be avoided by making
the pulses temporally very long, i.e., very narrowband.
This is generally not practical however, since long pulses
excite the lossy auxiliary state |E〉 for longer times, in-
creasing its chance to decay. Thus the compromise is to
pick pulses that are narrowband compared to the energy
difference between the target and unwanted transition,
and broadband compared to the linewidth of the excited
state. For such slower pulses, the fidelity is lowered pre-
dominately due to incoherent dynamics. This can be
seen by calculating the purity of the qubit state after the
passage of the pulse.

The purity is a measure of the incoherent dynamics and
can be defined as Tr(ρ2), where ρ is the density matrix
of the qubit. Clearly, for a system in a pure state, which
can be described by a wave function, the purity is 1. It is
instructive to look at the purity and fidelity of 2π versus
4π pulses. For this calculation, an additional excited
state |E′〉 is included in the Hamiltonian (see caption
of Fig. 5). First the bandwidths for which the fidelity is
maximized are found numerically for each of the 2π and
4π pulses (this happens for different bandwidths for each
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case), and the corresponding purity is calculated. The
low values of the latter, as shown in the right panel of
Fig. 5, indicate that indeed most of the fidelity loss is
due to incoherent dynamics.
It is particularly interesting that while the maximal pu-

rity and fidelity coincide at a certain value of σ for the 2π
pulse, they occur at different values of σ for the 4π pulse.
Moreover, for the latter the maximal purity is very high,
much larger than that of the 2π pulse, at a bandwidth
that is comparable to the splitting from the unwanted
transition. What this tells us is that the loss of fidelity
comes almost exclusively from unintended dynamics, i.e.,
that crucially the population is returned to the qubit sub-
space once the pulse has passed. This surprising result
is important because it means that there exists a fast
high fidelity phase gate corresponding to this pulse. So
essentially we have unitary but unknown dynamics. This
observation opens up the key question of how to explic-
itly determine the actual, almost unitary evolution corre-
sponding to the fast, high purity pulse. The analytically
solvable dynamics presented here, in combination with
approximate methods such as split-operator techniques
or other expansions, offer a promising starting point for
determining the evolution operator when additional ex-
cited state dynamics are involved. This pursuit would
advance the design of quantum controls for a variety of
realistic systems.
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FIG. 5: (Color online) Gate performance in the presence
of additional excited state |E′〉 and decay. The transition
|n〉 → |E′〉 is taken to be 0.2 meV higher in frequency from
|n〉 → |E〉 and to have half the coupling strength (qualita-
tively similar results are obtained for both higher and lower
coupling strengths). The decay rates are set to 0.8µeV. Left
panel: Fidelity as function of the phase for 4π pulse with
σ = 0.03meV (red, circles) and 2π pulse with σ = 0.06meV
(blue, squares). The green (diamonds) curve corresponds to
the fidelity of a fast 4π sech pulse with σ = 0.2meV. Right
panel: Purity as function of the phase for 4π (red, circles)
and 2π (blue, squares) pulses with the maximal fidelity, see
left panel. The green (diamonds) curve is the maximal purity
for a 4π sech pulse. Note that the parameters used here are
taken from quantum dot spin qubits, but are consistent with
atomic/ionic qubits since the energy scales in those systems
are all about an order of magnitude smaller.

In conclusion, I have shown that high fidelity phase
gates can be achieved in realistic systems by use of a fam-
ily of analytically solvable pulses that may have asym-
metric temporal shapes and frequency modulation. The

superior quality of these controls, as quantified by the fi-
delity, stems from their robustness against imperfections.
Moreover, the relatively simple analytical expressions de-
rived here greatly facilitate the design of experimental
implementation of phase gates. The latter are important
as they suffice for universal quantum logic. In addition,
this work opens up the possibility of incorporating off-
resonant states into the control schemes, thus allowing
for simultaneously fast and accurate control, an attrac-
tive feature when limited coherence times are available.

This work was supported by LPS/NSA and in part by
ONR. I thank Edwin Barnes for fruitful discussions.
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