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Implementations for quantum computing require fast single- and multi-qubit quantum gate op-
erations. In the case of optically controlled quantum dot qubits theoretical designs for long-range
two- or multi-qubit operations satisfying all the requirements in quantum computing are not yet
available. We have developed a design for a fast, long-range two-qubit gate mediated by a photonic
microcavity mode using excited states of the quantum dot-cavity system that addresses these needs.
This design does not require identical qubits, it is compatible with available optically induced single
qubit operations, and it advances opportunities for scalable architectures. We show that the gate
fidelity can exceed 90% in experimentally accessible systems.

I. INTRODUCTION

Quantum information processing involves the manip-
ulation of entanglement carried out by unitary gate op-
erations between different quantum bits (qubits). Re-
alistic quantum computing architectures require entan-
gling gates between distant qubits. Optical photons pro-
vide a natural vehicle to implement such interactions in
many physical systems.1 As a result, architectures based
on optically active qubits that can couple to photonic
modes in optical cavities and waveguides, such as quan-
tum dots, NV centers, and trapped ions are attractive
for large scale quantum computing.2–5 Quantum dots
(QDs) in particular hold promise as qubits for such ar-
chitectures, in part owing to their large dipole moments,
which allow them to couple efficiently to the optical cav-
ity modes and to photonic flying qubits for extended ar-
chitectures. Qubits encoded by the spin of an electron
in a QD have long coherence times which are five to six
orders of magnitude longer than the typical picosecond
scale of optical control. Successful initialization and read-
out, as well as fast optical single spin rotations, have
been demonstrated in these systems.6,7 In addition, im-
portant advances have recently been achieved in work on
coupled cavity-QD systems, including demonstrations of
strong coupling and tunability,5,8–15 and very recently
full single-qubit control.16

A critical step needed to advance the field is the de-
sign of a two-qubit controlled gate operation mediated
by an optical cavity mode. A viable two-qubit quantum
gate requires that several criteria are met: (i) a long-
range switchable physical interaction between qubits is
available; (ii) the gate performs a unitary operation on
one qubit depending on the state of the other qubit to
provide a controlled operation; (iii) the operations are
sufficiently fast compared to decoherence rates; (iv) the
gate is compatible with single-qubit rotations (to form a
universal set of gates); (v) the gate design is consistent
with a multi-qubit system for scalability.

So far, only local control of entanglement in closely
spaced quantum dots (QD ‘molecules’) has been demon-
strated experimentally.17 For an experimental demon-
stration of cavity-mediated entangling gates, a theoreti-
cal design is needed that satisfies the above criteria, (i)-

(v), while being experimentally simple and compatible
with current technology. Existing proposals for cavity-
mediated gates have not met these requirements; they
are either incompatible with single-qubit gates,18 limited
to nearest-neighbor qubits,19 and/or require adiabaticity,
either through adiabatic evolution19 or through adiabatic
elimination of the auxiliary state.20 As a result, they are
much slower than what is needed from a quantum infor-
mation processing perspective. Moreover, a careful as-
sessment of the performance of such gates as a function
of system parameters has not been given in the litera-
ture, despite the key role it would play in experimental
demonstrations.

In this paper we give a novel design for an entan-
gling control-z (CZ) two-qubit gate21 that satisfies all the
above criteria. Our design does not require the QD ener-
gies to be equal or dynamically tunable. As a result, our
approach is compatible with single qubit operations and
has a potential for many-qubit scalable architectures. We
obtain fidelities in excess of 90% for realistic parameters.
In the following we explain the concept of this all-optical
gate, formulate the model, calculate the QD-cavity sys-
tem spectrum, and analyze our design of the two-qubit
gate protocol. The fidelity of the gate operation as a
function of the system parameters is also calculated and
provides a guide for experiment.

II. TWO-QUBIT GATES

The control-z gate is a maximally entangling two-qubit
gate, and it is given by UCZ = diag(1, 1, 1,−1). It is
equivalent to the more familiar control-NOT (CNOT) op-
eration up to single-qubit gates. Specifically, UCNOT =
(1⊗H)UCZ(1⊗H), where H = (1 1

1−1)/
√

2 is the Hadamard
gate. To see the entangling capability of CZ we can look
at its action on a product state of two qubits. In partic-
ular, when each qubit is in an equal superposition of the
basis states, we have

UCZ
(
|1〉+ |0〉

)
⊗
(
|1〉+ |0〉

)
= |11〉+ |10〉+ |01〉 − |00〉,

which is a maximally entangled two-qubit state, also
known as a two-qubit ‘cluster state’. Such a state is
equivalent to a Bell state up to single-qubit rotations.
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To implement the CZ gate, we need to accumulate a
phase factor of −1 selectively to only one of the two-qubit
basis states, taken to be |00〉 above. Meanwhile, to be
able to perform single-qubit gates, the transition involv-
ing state |00〉 and an auxiliary state should be performed
in parallel with that involving |01〉 (or |10〉 for rotations of
the second qubit) and its corresponding auxiliary state.
To avoid dynamically tuning energies–a process that is
costly in time and can compete with coherence times–
we will use different classes of auxiliary states for single-
qubit and two-qubit operations. In particular, we will
use a near-resonance between the two-photon state of
the cavity and the state where both QDs are excited.

III. QUANTUM DOTS IN A CAVITY

We focus on a system of two (singly) charged self-
assembled InAs QDs in a photonic crystal microcav-
ity. This structure can support in- and out-of-plane
polarizations.22 Due to strain the optical dipole transi-
tion matrix elements in the InAs dots are anisotropic,
resulting in efficient absorption of light with electric field
polarization perpendicular to the QD growth axis. As
a result, only the mode with electric field polarized in
the plane of the crystal can be coupled to transitions in
QDs. We take an external magnetic field to be applied
in-plane (Voigt configuration), perpendicular to the QD
growth direction. This will enable full single qubit con-
trol as explained in Ref. 20.

The system can be represented by two separate four-
state QDs interacting with a single photon mode, as
shown in Fig. 1(a). The two lowest energy states of
each four-state system are the spin states of the elec-

tron in each dot, which represent the qubit, |↑〉 = c†n,↑|〉0
and |↓〉 = c†n,↓|〉0, where n = 1, 2 refers to the two

dots and c†↑(↓) creates an electron of spin ↑ (↓) rela-

tive to the uncharged QD state |〉0. The two excited
states in each dot are electron-exciton bound states,
called trions (or charged excitons). They are complexes
having total angular momentum 3/2. The two ±3/2
states (‘heavy holes’) are energetically lower than the
±1/2 (‘light hole’) states and thus form a pseudo spin

|⇑〉 = t†n,↑|〉0 = c†n,↑c
†
n,↓h

†
n,⇑|〉0 and similarly for |⇓〉,

where h† is the creation operator for a heavy hole. The
trion states carry the pseudospin of the hole because the
two electrons are in a spin singlet. We choose the spin
quantization axis along the external magnetic field.

The cavity couples to the trion transitions and pre-
serves the (pseudo) spin orientation, |↑〉 ↔ |⇑〉 and |↓〉 ↔
|⇓〉. In the rotating-wave approximation the cavity-dot
interaction is

HQD−C = g
∑
n=1,2

(
t†n,↑cn,↑a+ t†n,↓cn,↓a+ h.c.

)
(1)

where a annihilates a photon in the cavity and g is the
coupling between the trion transition and the cavity. We
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FIG. 1: The cavity-dot system. (a) Energies and relevant
states of two QDs and cavity. (b-e) Interacting cavity-dot
spectrum as a function of the cavity mode frequency, ω0.
(b) Structure of crossings and corresponding states. Panels
(c) and (d) show the anti-crossing splittings in the two- and
single-excitation subspaces respectively. Panel (e) shows the
energy structure of the qubit subspace, which is unaffected
by the coupling to the cavity mode. The numbers in (c-e)
give the states of the diagonalized Hamiltonian, and the ↑, ↓
show the predominant spin character of each state far (to the
right) of the avoided crossings. Vertical dashed lines indicate
(ε1 + ε2)/2.

choose these coupling constants to be the same for the
two QDs to simplify the presentation. This assumption
is not important to the proposed procedure and can be
relaxed when necessary.

The spectrum of the cavity-QD system is shown in
Fig. 1 as a function of the cavity frequency ω0. This
representation does not suggest the need to tune ω0 dy-
namically, but it helps to identify the region of optimal ω0

values. The spectrum is obtained by diagonalizing H0 =

HQD+HC +HQD−C , where HQD =
∑
n,ξωeθ(ξ)c

†
n,ξcn,ξ+∑

n,ξ t
†
n,ξ[εn+ωhθ(ξ)]tn,ξ, HC = ω0a

†a, ξ =↑, ↓, θ(↑) = 0,

and θ(↓) = 1.

The Hamiltonian H0 conserves the total number of ex-
citations. As a result the Hilbert space of the system
separates into subspaces with different numbers of ex-
citations. Each subspace contains several states, corre-
sponding to different spin projections. The lowest set
of four states (three energy levels) defines the two-qubit
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subspace, |↑↑〉, |↑↓〉, |↓↑〉, and |↓↓〉, and has zero cav-
ity photons; we call this the ‘zero excitation’ subspace.
The other relevant subspaces are the ‘one-excitation’ sub-
space, that has states with either one cavity photon or
one trion, and the ‘two-excitation’ subspace, that has
states with two trions (one per dot), states with one trion
and one cavity photon, and states with two cavity pho-
tons; see Appendix A. States in the ‘one-excitation’ part
of the spectrum are approximately local to each quan-
tum dot and interact with each other only very weakly,
∼ (g/∆ε)2. They are the states that can be used for
single-qubit control.23 The two-excitation subspace in-
volves hybridized states of the two QDs and are ideal for
a two-qubit gate. These states however are not directly
accessible from the qubit subspace with a single pulse, so
we make use of a series of control pulses.

The laser pulses have momentum perpendicular to the
photonic crystal plane to avoid Bragg shielding due to
the photonic crystal. For definiteness we choose pulses
with the same linear polarization as the cavity mode,24

V(t) =
∑

p;n>m

Ωp(t− tp)2 cosωpt (Mnm|n〉〈m|+h.c.) . (2)

The total Hamiltonian becomes H(t) = H0 + V(t),
where H0 = U†H0U =

∑
nEn|n〉〈n| and Mn,m =∑

j=1,2,ξ〈n|U†(t
†
j,ξcj,ξ + c†j,ξtj,ξ)U |m〉. The subscript p

enumerates the pulses used to perform the gate where
each has frequency ωp and is centered at time tp.

IV. IMPLEMENTATION OF CZ GATE

The CZ gate has a simple diagonal form, which allows
for a relatively straightforward design based on phases
induced by resonant cyclic excitation of an auxiliary ex-
cited state. The idea is to use the property of quantum
two-level systems, in which a cyclic evolution from the
ground state to the excited state and back to the ground
state induces a minus sign to the latter. In the presence
of additional, uncoupled states the minus sign is relative
and thus constitutes a nontrivial quantum evolution. The
pulse performing such an evolution is known as a ‘2π’
pulse. Optical 2π pulses were proposed theoretically for
single-qubit rotations in quantum dots23 and two-qubit
gates in quantum dot molecules25 and later used in their
experimental demonstrations.7,17

In our approach, the phase accumulation will be on
state |↑↓〉, while keeping the phases of other basis states
unchanged. This can be done by the following pulse se-
quence: (i) a population inversion π pulse, pulse A, tuned
to transition ω1 = ωA = E4−E0 between qubit state |↑↑〉
and the excited state with similar spin configuration, see
Fig 1(d)-(e). The pulse is also in resonance with E6−E2

transition, and thus it creates a trion in the first QD only:
both |↑↑〉 and |↑↓〉 are transformed in the same way and
accumulate a phase factor of −i each. (ii) A 2π, or phase,
pulse (pulse B) with frequency ω2 = ωB = E16 − E4,

see Fig 1(c)-(d). This induces a transition between the
‘one-excitation’ states previously created and one of the
‘two-excitation’ states. Note that if g = 0 or we are far
detuned, ω � ∆ε, the transition E10 − E2 would also
occur. This would correspond to a single qubit opera-
tion on the second qubit, i.e., |⇑↑〉 and |↓↑〉 would both
acquire a phase factor of −1. A nonzero g induces forma-
tion of two-excitation states that have different energies,
c.f. the energy of state 16 and the sum of energies of
states 4 and 8. As a result, the state ⇑↑, or state 4, ac-
quires the factor of −1 after the pulse, while state |↓↑〉
does not. (iii) Finally, we apply the population inversion
pulse A again, ω3 = ωA, to restore the system to the
qubit subspace. This gives additional factors of −i to
both |↑↑〉 and |↑↓〉, as mentioned above. The two phase
factors of (−i) induce a minus sign to states |↑↓〉 and |↑↑〉,
while the 2π pulse cancels that sign in state |↑↑〉. The
phase between the control pulses A and B does not enter
the result and therefore pulses with unequal frequencies
do not have to be phase locked, which is a significant
experimental convenience.

A physical explanation of this approach is the follow-
ing: because each QD is off-resonant from the cavity,
when only one of the QDs is excited and no other exci-
tations are present in the system the excited QD can be
roughly thought of as isolated, i.e., decoupled from the
cavity and from the other QD. Thus, single excitations
can implement single-qubit operations without disturb-
ing the rest of the system. On the other hand, when both
QDs are excited they are closer to the resonance with the
cavity state. As a result, there is a large mixing between
cavity states and the states of both QDs. Thus, using the
two-excitation regime is a natural venue for performing
two-qubit conditional operations while maintaining the
ability to manipulate each QD spin separately.

V. FIDELITY

Now we consider the gate fidelity, which is a measure
of how close our operation is to the target gate. There
are two types of fidelity losses, those caused by unin-
tended coherent dynamics due to coupling of the lasers
to off-resonance transitions and those originating from
random processes such as trion recombination. First we
focus on the former mechanism. The unintended tran-
sitions can cause Ug to deviate from the ideal UCZ and
effectively cause loss of coherence in the qubit-subspace,
even though the entire operation involving excited states
is unitary and coherent.

To analyze this type of decoherence we compute the
average fidelity, F , of the gate operation, as explained in
detail in Appendix B, including transitions 0-4, 4-6, 2-5,
3-7, 0-8, 2-10, 1-9, 3-11 for pulse A and transitions 4-16,
6-18, 0-8, 2-10, 1-9, 3-11 for pulse B. Other transitions
are negligible either due to vanishing matrix elements
or to large detuning. We chose different pulse widths
for pulse A and pulse B σA = 2σB = 2σ. In Fig. 2(a)
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FIG. 2: Fidelity of CZ gate with imperfections resulting from coupling of the pulses to neighboring off-resonance optical
transitions (a) as a function of ω0 for σ/ωe = 0.1 for ∆ε/ωe = 8.33, 16.67, 25.00, 33.33, as indicated, and (b) as a function of
the spectral separation ∆ε between the QDs for different values of the pulse bandwidth, σ/ωe = 0.01, 0.02, ..., 0.1, 0.15, ..., 0.3
as indicated by the dashed arrow. Each point is computed for the optimal value of ω0 from Fig. 2(a). The vertical lines mark
the values of ω2 from panel (a). In both panels (a) and (b) we used g/ωe = 3.33 and ωh = ωe/3.
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FIG. 3: (a) Fidelity of the two-qubit CZ gate in presence of decoherence due to trion recombination and cavity decay. The
fidelity is plotted as the function of the trion decay time and the cavity mode quality factor. (b) The temporal profiles of the
pulse sequence for σ/ωe = 0.2, ωh = ωe/3, ∆ε/ωe = 8.33, g/ωe = 3.33, and ωe = 0.12meV.

the fidelity is plotted as a function of the difference be-
tween the cavity mode frequency ω0 and the transition
frequency of QD1 ε1 for varying values of the frequency
of QD2 ε2. The qualitative features of the plots can be
understood as follows: when the cavity mode frequency
is much smaller or much larger than the QD frequencies,
QD-cavity hybridization is negligible, and we are in a
regime of two independent qubits. This causes attenua-
tion of fidelity towards both sides of the plot. The dip
in the middle occurs because, as the cavity is tuned, the
target transition of pulse B (transition 4-16) becomes de-
generate with transition 3-11, and therefore state | ↓↓〉 is
also affected by pulse B, resulting in strong unintended
dynamics. Note that at its high values the fidelity does
not vary strongly with ε1 and ε2. As a result, gates be-
tween several different pairs of quantum dot spin qubits
can be performed with high fidelity using only one cavity
mode to mediate the interactions, which is an intriguing
opportunity for scalable architectures.

Fig. 2(b) shows the fidelity as a function of the spectral
separation ∆ε between the trions in QD1 and in QD2 for
different pulse bandwidths σ. When ∆ε is small (com-
parable to ωe) the fidelity drops appreciably. This drop
is the result of coupling in the ‘one-excitation’ subspace,

i.e., the assumption that an excited QD is isolated from
the rest of the system is no longer valid. Thus it also
identifies the regime where fast optical single-qubit con-
trol is not possible. In the region of higher fidelities,
where ∆ε/ωe >∼ 10, the fidelity approaches its maximal
value for longer pulses and starts decreasing more rapidly
for σ/ωe >∼ 0.2 due to involvement of a larger number of
unintended transitions.

Next, we consider the effects of decoherence due to
losses during the gate. The main contributions come
from trion recombination and cavity photon leakage. The
typical linewidth of the trion state, Γtr, in InAs QDs is
∼ 1µeV.26 The loss rate associated with the cavity is
Γc = ω0/Q. State-of-the-art microcavities15 can have Q’s
up to ∼ 105, which gives Γc ∼ 10µeV. We calculate the fi-
delity using the standard master equation formalism21,27

and include states from 0 to 19, see Appendix B. The
fidelity as a function of Q and 1/Γtr in shown in Fig. 3.
It is maximized when the pulses overlap to reduce the
time the excited states are occupied. We choose ω0 from
the maximal fidelities, as in Fig. 2(a) for each point of
Fig. 3. We see that fidelities in excess of 90% are possible
for realistic values of the parameters.
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VI. CONCLUSIONS

In summary, we have developed a design for a cavity-
mediated entangling gate between two spin qubits that
satisfies the criteria for a realistic two-qubit operation.
Our control-z gate is compatible with available single
qubit operations and with natural inhomogeneities in op-
tical resonances. It can thus accommodate several qubits
that couple pairwise with appropriate control laser fre-
quencies, opening a path to scalable architectures. It
may also be useful for hybrid quantum computing ap-
proaches with various physical systems.28 We have shown
that the gate fidelity is at least 90% for current experi-
mental parameters. Higher fidelities can be achieved in
various ways such as using pulse shaping techniques29,30

and engineering higher finesse cavities.

VII. ACKNOWLEDGEMENTS

This work was supported in part by NSA/LPS and in
part by ONR.

Appendix A: The spectrum

In the rotating wave approximation the Hamiltonian
[Eq. (1) from the main text] conserves the total number
of excitations. Therefore it can be diagonalized indepen-
dently in each excitation-number subspace. The lowest
energy set of four states (three energy levels) corresponds
to a subset with zero excitations. It represents the two-
qubit subspace with zero cavity photons,

0→ |↑↑〉|0〉, 1→ |↑↓〉|0〉, 2→ |↓↑〉|0〉, 3→ |↓↓〉|0〉, (A1)

where |0〉 is the vacuum state of the cavity. The corre-
sponding energies are controlled by the magnetic field via
Zeeman splitting. For typical values of magnetic field of
∼ 1 T used in the initialization and readout and single-
qubit experiments the splitting between E0,E3 and E1,2

is ∼ 0.1 meV. The micro-cavity optical mode is coupled
to the excitonic transitions in each quantum dot with the
transition energies ∼ eV. As a result, the qubit subspace
is not affected by the cavity.

The one-excitation subspace occurs at the optical fre-
quency, ∼ eV from the qubit subspace energies:

dot 1 : |⇑↑〉|0〉, |⇓↑〉|0〉, |⇑↓〉|0〉, |⇓↓〉|0〉, (A2)

dot 2 : |↑⇑〉|0〉, |↑⇓〉|0〉, |↓⇑〉|0〉, |↓⇓〉|0〉, (A3)

cavity : |↑↑〉|1〉, |↑↓〉|1〉, |↓↑〉|1〉, |↓↓〉|1〉, (A4)

where |1〉 denotes the state with a single photon in the
cavity. The energy gap ∆ε between states (A2) and (A3)
is due to the fact that the two dots are not identical in
size, shape, and strain environment, which affects the
excitonic transitions. The typical variation in trion tran-
sition energies is ∼ 1− 20 meV. The energy of the cavity

mode, ω0, is fixed during the gate operation but can be
set to an optimal value during sample growth. The in-
teraction with a cavity photon shifts the energies and
mixes trion and photon states. The energies of the re-
sulting states can be found analytically: note that states
(A2-A4) are always coupled in triplets. For example, the
state |↑↑〉|1〉 interacts only with |⇑↑〉|0〉 and |↑⇑〉|0〉. For
each triplet we have

(E−ε1,ξ)(E−ε2,ξ)(E−ω0)=g2(E−ε1,ξ)+g2(E−ε2,ξ),(A5)

where ξ =↑ or ↓, εn,↑ = εn and εn,↓ = εn + ωh − ωe.
Each triplet forms two anti-crossings when ω0 is swapped
across the trion energies [see Fig. 1(b) and Fig. 1(d) of
the main text]. When g ∼ ∆ε or g � ∆ε, the two excited
quantum dot states can mix and form spin-entangled
states. For experimentally accessible systems of quantum
dots in a micro-cavity the coupling strength g is substan-
tially smaller than the variation in trion energies ∆ε and
the mixing is negligible. In the limit g � ∆ε the interac-
tion between one-excitation states from different QDs can
be estimated by analyzing the difference δω↑ in transition
energies between ω↑ : |↑↑〉 → |⇑↑〉 and ω′↑ : |↑↓〉 → |⇑↓〉.
From Eq. (A5) we find ω↑ = ε + g2/f(ωA,∆ε) and
ω′↑ = ε + g2/f(ω′A,∆ε + ωe − ωh), where f(y, x) =

x − ω0 − g2/(x − ε + y). Since ωe ∼ ωh ∼ g � ∆ε it
is easy to show that δω↑ <∼ −g2ωe/∆ε2. This should be
compared to the typical inverse lifetime of the trion state,
∼ 1µeV (in energy units) or ∼ ωe/100. As a result for
ωe/∆ε ∼ 10, ω↑ and ω′↑ are practically indistinguishable.
This result is confirmed numerically by computing the
spectrum (and the states) for different values of ∆ε. It
also holds for other transitions between the qubit and the
one-excitation subspace states. Therefore we conclude
that the one excitation subspace cannot be used for a
two-qubit operations. It can, however, be used to per-
form fast single qubit operations as described in Ref. 23
by using the localized trion state.

In order to find useful non-local states that can mediate
a two-qubit gate we investigate the two-excitation sub-
space. In this subspace the states are coupled in groups
of four, e.g. |⇑⇑, 0〉, |⇑↑, 1〉, |↑⇑, 1〉, |↑↑, 2〉:

(ε2,ξ+ε1,ξ−E)(ω+ε1,ξ−E)(ω0+ε2,ξ−E)(2ω−E)(A6)

= g2(ε2,ξ+ε1,ξ+2ω0−2E)2.

The spectrum has a more complex structure, see Fig. 1(c)
of the main text. The two-excitations subspace provides
non-local quantum-dot-cavity states, such as state 16,
which has two trions (one in each dot). The energy of
such state is different from the combined energy of two
trion states localized in each dot, such as E4 and E8,

∆E16,4 6= ∆E4,0 + ∆E8,0 (A7)

where ∆En,n′ = En − En′ . This is the basis for the
two-qubit conditional phase gate in this work. Us-
ing a perturbative approach like that above, we obtain
∆E16,4 − (∆E4,0 + ∆E8,0) ∼ −g2/∆ε.
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Appendix B: Gate Fidelity

The fidelity of the gate described in the main text is
affected by two type of processes: (i) induced unintended
transitions between the states of the qubit-cavity system
and (ii) real losses due to cavity leakage and trion re-
combination. We first estimate losses due to unintended
but coherent dynamics. We include transitions 0-4, 4-6,
2-5, 3-7, 0-8, 2-10, 1-9, 3-11 for pulse A, and 4-16, 6-18,
0-8, 2-10, 1-9, 3-11 for pulse B (ωB). Other transitions
are negligible either due to vanishing matrix elements or
to large detuning. We compute the wave function after
the A-B-A pulse sequence for each basis configuration of
the qubit subspace as initial state (evolution is linear and
therefore the resultant wave function for any initial qubit
state can be easily recovered). To simplify calculations
here we resort to analytically solvable Rosen-Zener pulse
shapes,31 i.e. Ωp(t) = Ωpsech(σpt) with σA = 2σB = 2σ,
to calculated transition amplitudes and phases for reso-
nant and off-resonance transitions for each pulse. Given
the initial, |ψ0〉, and final, |ψ〉 = U |ψ0〉, wave function,
the fidelity can be computed as

F (ψ0, ψ) = |〈ψ0|U†CZ |ψ〉| (B1)

where U†CZ is the evolution operator corresponding to
the ideal CZ gate. The value of F (ψ0, ψ) depends on the
initial state of the two-qubit system and therefore can
vary depending on the choice of algorithm and initial
data. We therefore compute the average fidelity F by
taking average over all possible initial states of the two-
qubit system,

F 2 =

∫
dψ0F (ψ0, ψ{ψ0})2 (B2)

=
∑
ijnm

δinδjm + δijδnm
20

〈n|U†CZU |i〉〈j|U
†UCZ |m〉

The integration
∫
dψ0 is performed over all complex am-

plitudes that define the initial state in the basis |i〉, and
i, j, n,m run over all basis states ↑↑, ↑↓, ↓↑, ↓↓.32 The re-
sults are presented in Fig. 2 and the discussion is given
in the main text.

In order to account for both unintended dynamics and
actual losses we have to calculate the reduced density
matrix, ρ(t), of the two-qubit sub-system for the duration
of the pulse sequence. The reduced density matrix can be
found within the Bloch-Redfield master-equation (ME)
formalism

iρ̇ = [H + V (t), ρ] (B3)

+
∑
s

iΓs

[
PsρP

†
s −

P †sPsρ+ ρP †sPs
2

]

where Ps = |fs〉〈is|, |is〉 and |fs〉 are initial and finial
states (in the spin basis) corresponding to the s-th de-
cay process with rate Γs. Solving the above equation
directly is computationally involving due to the presence
of two different time scales: fast, associated with the
laser driving frequency, and slow, coming from the time-
dependence of the pulse shaped envelope. To simplify
the computation we transform the ME to the eigenbasis
of H and use the rotating wave approximation,

˙̃ρ = −i[V (t), ρ̃] (B4)

+
∑
s

Γs

[
Psρ̃P†s −

P†sPsρ̃+ ρ̃P†sPs
2

]
,

where ρ̃ = eiH0tU†ρUe−iH0t, Ps = U†PsU and
V (t) = eiH0tV(t)e−iH0t. Note that the trion decay pro-
cesses can involve photons with any in-plane polariza-
tion (along or perpendicular to the applied magnetic
field). Therefore, for each trion we have Γs = Γtr:
Ps → {|↑〉〈⇑|, |↓〉〈⇑|, |↑〉〈⇓|, |↓〉〈⇓|}. Leakage of pho-
tons from the cavity is modeled as Γs = Γc: Ps →
{|0〉〈1|,

√
2|1〉〈2|, etc.}. Due to additional (pseudo)spin-

flip electron-hole recombination processes, more states
are involved than for the coherent case discussed above
and we include states from 0 to 19. We chose to use Gaus-
sian pulse shapes Ωp(t) = (Ωp/

√
π/2) exp{−2t2σ2

p/π
2}

for numerical convenience and apply the same pulse se-
quence as before with σA = 2σB = 2σ.

Since a separable quantum wave function is no longer
accessible, fidelity has to be defined differently,

F (ψ0, ρ{ψ0}) =

√
〈ψ0|U†CZ ρUCZ |ψ0〉 (B5)

In this case the average fidelity is computed as

F 2=
∑

ijnm={1,4}

δinδjm + δijδnm
20

〈n|U†CZρ{|i〉〈j|}UCZ |m〉 (B6)

which is the generalization of Eq. (B2) for the case of
non-unitary evolution of pure initial state. This is possi-
ble due to the fact that the evolution of the density ma-
trix is still described by a linear (but non-unitary) super-

operator, i.e. ρ(t) = T exp(−i
∫ t
0
dtLH(t) − tL)|ψ0〉〈ψ0|,

where LHO = [H,O]. As a result, the complex coef-
ficients that define initial (|ψ0〉) and target (UCZ |ψ0〉)
states in the basis |i〉 can be integrated out in exactly
the same way as for Eq. (B2). The results are presented
in Figs. 2 and 3 in the main text.
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