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Abstract—Quantum wells formed from antimonide-based 
compound semiconductors are exploited in n-channel field-effect 
transistors (FETs) operating at high speeds with ultra-low power 
consumption. Compressive strain enhances hole mobilities, 
making these materials strong candidates for p-channel FETs 
and complementary circuits. Recent work focuses on 
incorporation of gate oxides and integration of n- and p-channel 
FETs. 
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High-speed, low power high-electron mobility 
transistors (HEMTs) can be fabricated from InAs quantum 
wells clad by Al(Ga)Sb barriers [1]. Advantages of this 
material system include the high electron mobility (30,000 
cm2/V-s at 300K) and velocity (4 x 107 cm/s) of InAs, and a 
large conduction band offset between InAs and Al(Ga)Sb. The 
large offset results in good carrier confinement and enhanced 
radiation tolerance. InAs HEMTs with 100-nm gate-length 
have exhibited unity-current-gain cutoff frequency, fT, and 
unity-power-gain cutoff frequency, fmax, values of 200-300 
GHz. Compared to state-of-the-art InP-based HEMTs with the 
same gate length, the InAs HEMTs provide equivalent high-
speed performance at 5-10 times lower power dissipation. 
These transistors exhibit low microwave noise, with noise 
figures of 0.6-0.8 dB at 10 GHz [1].  Circuits based upon InAs 
HEMTs have been reported in the X-band, Ka-band, and W-
band. For example, a three-stage W-band low-noise amplifier 
(LNA) was demonstrated with 11 dB gain at a total chip 
dissipation of only 1.8 mW at 94 GHz [2]. This is a factor of 3 
lower power than comparable InP-based LNAs at the same 
frequency. In addition, antimonide-based semiconductors have 
been used to fabricate low-power heterojunction bipolar 
transistors [3], heterostructure barrier varactors for use as 
frequency multipliers [4], and p-n diodes for THz mixer 
applications [5].   

Recently, there has been interest in the potential of III-
V FETs for advanced logic applications which could enhance 
digital circuit functionality and extend Moore’s law [6,7]. For 
these applications, a key to low power operation is the ability 
to make complementary circuits. In III-V materials, one 
challenge centers on maximizing the hole mobility in p-
channel FETs. Strain and confinement can split the heavy- and 
light-hole valence bands, resulting in a predicted lower 
effective mass and higher mobility. We have demonstrated 

this with compressively-strained InxGa1-xSb quantum wells 
clad by Al0.8Ga0.2Sb, and GaSb clad by AlAsySb1-y (see Fig. 
1). In both systems, hole mobilities as high as 1500 cm2/V s 
were achieved at room temperature (a world record for any 
III-V compound), and p-channel FETs were demonstrated [8-
10]. GaSb QWs on InP substrates reached record-low sheet 
resistivities of 1500 Ω/□ [11]. An Intel/QinetiQ collaboration 
investigated p-FETs with InSb QWs and achieved an fT of 140 
GHz for a 40 nm gate length [12]. Modeling suggests that 
InGaSb p-FETs will have higher ION/IOFF ratios than InSb p-
FETs because of the smaller valence band offset for InSb 
QWs [13]. Application of uniaxial strain has also enhanced the 
performance of InGaSb-channel p-FETs [14]. 

An Sb-based CMOS requires deposition of high-κ 
dielectric layers on semiconductors with low interface state 
densities. This has been demonstrated for n- and p-GaSb using 
HCl etching followed by atomic layer deposition (ALD) of 
Al2O3 [15,16]. Recently, in situ hydrogen plasma cleaning was 
applied to GaSb prior to Al2O3 deposition by ALD [17]. As 
shown in Fig. 2, the 100W plasma resulted in excellent Fermi 
level modulation, eliminating the need for chemical etching. 

One strong candidate for the n-channel material in 
CMOS is InAsSb. MOSFETs with 150 nm gate length have an 
effective electron mobility of 6000 cm2/V s, an fT of 120 GHz, 
and a source-side injection velocity of 2.7 x 107 cm/s [18]. 
These devices could be combined with p-InGaSb channel 
MOSFETs [19], with the advantage of similar lattice 
constants. 

An alternative is to integrate Sb-based p-FETs and InP-
based n-FETs, taking advantage of the maturity of InP n-FETs  
for analog applications. The 4% lattice mismatch between 
GaSb and InP could be tolerated if a buffer layer of AlGaAsSb 
(a0 ~ 6.0 Å) could be used with (In)GaSb p-channels in 2% 
compressive strain and InGaAs n-channels in 2% tensile strain 
(Fig. 1). The p-FETs were previously demonstrated [10,16]. 
As a step toward integration of the (In)GaSb-channel p-FETs 
with the InGaAs-channel n-FETs using the same buffer layer, 
we have demonstrated InxGa1-xAs/In0.52Al0.48As QWs (x = 
0.64, 0.80 and 1.0) on AlGaAsSb buffer layers (Fig. 3) with 
mobilities as high as 9000-11,000 cm2/V s for tensile strains 
up to 2%. The FET I-V characteristics for In0.64Ga0.36As are 
shown in Fig. 4. The best devices have a DC transconductance 
of 300 mS/mm, an fT of 160 GHz, and an fmax of 150 GHz for 
a 90 nm gate length. This work was partially supported by the Office of Naval Research. 
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Figure 1: Energy gap vs. lattice constant indicating the typical parameters 
for n- and p-channel FETs. 

 

 
Figure 2: Normalized capacitance vs. gate voltage for GaSb 
MOS capacitors with different H plasma cleaning powers 
prior to ALD of Al2O3 [17]. 

 

 
 

Figure 3: Cross-section of InGaAs/InAlAs HEMT in tension. The sample 
was not rotated during the AlGaAsSb buffer layer, resulting in the lattice 
constant varying from 5.97 to 6.01 Å across the substrate. 

 

 
Figure 4: Drain characteristics for InGaAs-channel HEMT 
in tension with LG = 100 nm and WG = 31 µm. 

 


