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Two electron spins in quantum dots coupled through coherent tunneling are generally acknowledged to
approximately obey Heisenberg isotropic exchange. This has not been established for two holes. Here we
measure the spectra of two holes and of two electrons in two vertically stacked self-assembled InAs
quantum dots using optical spectroscopy as a function of electric and magnetic fields. We find that the
exchange is approximately isotropic for both systems, but that significant asymmetric contributions,
arising from spin-orbit and Zeeman interactions combined with spatial asymmetries, are required to
explain large anticrossings and fine-structure energy splittings in the spectra. Asymmetric contributions to
the isotropic Hamiltonian for electrons are of the order of a few percent while those for holes are an order
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of magnitude larger.
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The exchange interaction between the spins in two
quantum dots (QDs) leads to entanglement and to the
opportunity of quantum information processing [1].
Electron spin qubits have been studied in great detail, but
recently hole spins have received special attention [2,3]
because of their reduced hyperfine interaction with the
nuclear spin reservoir [4-7]. Now, for inter-QD entangle-
ment, the nature of the exchange interaction is of central
importance, both for quantum gates and for the decoher-
ence of two-qubit states [8—10].

The symmetry of the exchange interaction is often
assumed to be that of the Heisenberg isotropic exchange,
Jo - 0,. As a result, the eigenstates of two spins in two
quantum dots form singlet and triplet spin states separated
by the exchange energy, J. This model is very important,
conceptually [1], and for interpretations of complex ex-
perimental spectra [11-13], and has been used widely in
magnetism, quantum computing, and molecular and quan-
tum dot structures. It has been shown that for two bound
electrons the isotropic Heisenberg interaction captures
almost all of the physics and it requires only small asym-
metric exchange terms that couple singlets and triplets
[14-19].

In contrast to electron spins, hole spins are in some ways
extremely anisotropic, for example, in their g factor [20]
and in their hyperfine interaction [21]. This anisotropy
arises from the strong spin-orbit character of the valence
band, and is complicated by heavy-light hole mixing.
Counterintuitively, we find through optical spectroscopy
that isotropic exchange between two self-assembled InAs
QDs is in fact a good starting point for both two electrons
and for two holes [22,23]. Nevertheless, substantial asym-
metric contributions arising from spin-orbit interactions
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are necessary to explain anticrossings in the optical spectra.
In addition, inhomogeneous Zeeman interactions, that is,
differences in the g factor between the two QDs and also in
the tunnel barrier, lead to additional energy splittings in the
optical spectra that grow with a magnetic field. All of these
interactions lead to off-diagonal spin mixing terms that can
be accounted for in a generalized spin Hamiltonian.

In this Letter we use individual pairs of vertically
stacked self-assembled InAs/GaAs QDs separated by a
thin tunnel barrier with a thickness d. Two types of samples
were developed using a Schottky diode grown by molecu-
lar beam epitaxy, one for 2h [3] and one for 2e [12].
To obtain a direct comparison, the width and height of
the tunnel barriers were chosen to achieve similar values of
singlet-triplet splitting for both cases (J = 100 weV) [24].
Electric (F)) and magnetic (B) fields were applied longi-
tudinally along the stacking z axis in the Faraday geometry.
The optical spectra were measured at 5 K using photo-
luminescence with a spectral resolution limited by the
triple spectrometer of ~15 eV for the 2k case, and laser
transmission spectroscopy with a resolution of <1 ueV
for the 2e case.

The Heisenberg exchange can be treated within
the Hund-Mulliken model [25,26]. The natural spin
state basis is three triplets, Ty = (1, )7, T+ = (I.Dr,,
T_ = (I, )r_, and three singlets, S0 = (1, 0)s, S¢11) =
(1. s, and S(g2) = (0, 11)5. The individual spin projections
are either the electron spin *£1/2 or hole pseudo-spin
+1/2. The singlet states are coupled together and shifted
in energy by spin conserving tunneling (#) between the
two QDs, but because of spin blocking, the triplet states
are not affected. The Hamiltonian within the singlet basis
is given by
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FIG. 1. (a) Hund-Mulliken model for two-spin configuration at
zero B. (b) F dependence at fixed B for a symmetric case, Eq. (2).
(c) B dependence at fixed F' [marked by arrows with J in (b)].
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The potential (U) is the Coulomb energy required to
move the two charges from separate QDs to the same
QD. The relative energy between QDs separated by d is
controlled via F. In Fig. 1(a), the resulting levels of the
singlets show anticrossings. The lowest energy singlet
state is § = aSp0) + bS(,1) + ¢S2- In Fig. 1(b) and
hereafter we focus on one of the anticrossings and take
¢ = 0. The isotropic exchange interaction J is defined as
the splitting between T, and the lowest singlet with the
spin Hamiltonian Jor| - o, with J = J(F, U, 1).

To fully probe and engineer the spin states of the two
QDs we also need, in addition to F, a magnetic field B. The
simplest Hamiltonian consists of isotropic exchange and an
average Zeeman interaction,

Jo, oy + B (o + o). (2)

The Zeeman term B = (g;, + gx)upB/2 splits the T,
and T_ lines, but preserves the spin states. wp is the Bohr
magneton. (1 and 2 mark the bottom and top dot, respec-
tively.) In Fig. 1(b) the energies are calculated as a function
of F with B held constant, while in Fig. 1(c) the reverse is
done.

The optical spectrum arises from transitions between the
2e levels and the charged exciton levels (X>7) as shown in
Fig. 2(a). Here we show the calculated dependence on B,
holding F constant. The exciton states have been described
previously [11,26]. The optical spectrum is found by taking
the difference between the 2e and (X?>~) levels and weight-
ing according to the selection rules. The results for the
2e’s, which are fits to the measured spectra, are shown in
Fig. 2(b). As measured in previous studies, a singlet line at
B = 0 splits into two with increasing B. Likewise, the
triplet line also splits into two, although each of these lines
is doubly degenerate. However, at high B these lines also
split, although the splitting is very small for this 2e case
and requires the high resolution of laser spectroscopy to
resolve. The lowest inset on the right side of the figure
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FIG. 2 (color online). (a) Calculated B dependence for
the excited and ground states obtained by fitting the 2e trans-
mission spectra. Transitions are labeled by final state. (b) Fitted
optical spectrum for the 2e case using the parameters: g,;; =
8ex» = —0.49, g, = 1.58, t =350 peV, and U = 10 meV.
Diamagnetic shift of 8.9 ueV/T? is subtracted. Shaded areas are
the laser transmission measurements with the boxes to the right
representing an expanded views of the data at B = 3.5 T.

shows the measured splitting at B = 3.5 T with a value
of 4 ueV. The splitting grows to 8 ueV at B = 5.6 T.
We will show below that this fine-structure splitting of
the triplet arises from asymmetric Zeeman terms. In addi-
tion there are small anticrossings that occur only at B =
3.5 T as shown in the square insets on the right side of
Fig. 2(b). These anticrossings occur where the 2e singlet
and triplet energy levels would cross as seen in Fig. 2(a),
and arise from asymmetric exchange due to spin-orbit
interactions. Other than these spin-flip anticrossings and
the triplet fine structure splitting that grows with B, the
symmetric approximation is very good for the 2e spectrum.

In contrast to the 2e case of Fig. 2(b), the measured
2h spectrum appears much more complex as shown in
Fig. 3(a). In addition to substantial fine-structure splittings
observed in the triplet optical transitions that grow with
increasing B (36 ueV at 3.5 T), there are now obvious
anticrossings with magnitudes of 26 ueV at B=15T
that can be observed even in photoluminescence, though
with the resolution of a triple spectrometer. We have also
measured the 24 optical spectrum as a function of F at
fixed B. The complex pattern of anticrossings observed in
the data of Fig. 3(d) arises from the spin-flip anticrossings
in combination with the larger spin-conserving anticross-
ings of both the 24 and the exciton states that have been
described previously [26,27]. Remarkably, with the same
formalism for both the 2e and the 2/ cases, all of these
features can be explained with natural extensions of the
symmetric Hamiltonian, Eq. (2). As a result we obtain
the fitted optical transition spectrum shown in Figs. 3(b)
and 3(e), and calculate the corresponding 24 energy
levels in Figs. 3(c) and 3(f). A comparison of these 2k
energy levels and those of the symmetric calculations of
Fig. 1 show clearly the importance of asymmetric spin
interactions.
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FIG. 3. (a) Measured and (b) calculated transition spectra of B
dependence for the X2*. gn1 = 1.85, 8120 =0.78, g.20 =
—0.46, g, 1, =0.14, r=—115 peV, vy, =24 peV, and
Ay~ 5 ueV. In calculation § = +/0.44S(, ) + +/0.565;1). (a)
and (b) Three signatures of anticrossings are marked by dashed
horizontal arrows. Diamagnetic shift of 11.6 ueV/T? is sub-
tracted in (a). (c) Calculated 24 energy levels with ground state
S/T_ anticrossing of 26 weV. (d) Measured and (e) calculated
transition spectra of F dependence for B = 9 T. (small black
arrows on the right of panel (d) mark a transition spectra of X*.)
(f) Ground state energy levels as a function of bias. Circles mark
the spin-flip anticrossings. Vertical lines mark the position of
anticrossings in transition spectra of Figs. 3(d) and 3(e).

We generalize the symmetric spin Hamiltonian of
Eq. (2) to include spin coupling terms as follows. The spin
interaction of holes (or electrons) again is included with
interaction terms, B - oy + B5' - o, acting on each spin.
The fields now include not only the external magnetic field but
also the internal relativistic magnetic field arising from the
spin-orbit interaction B = B + B°. We could also
include the Overhauser field due to the hyperfine interaction
with nuclear spins, in a similar way to Ref. [19], but this is
expected to be small here. After integrating over the orbital
degrees of freedom and including the isotropic exchange we
obtain the general spin Hamiltonian for two spins in two QDs:

Jo oy +B-(o,+toy)+ B (o, —0))+ B (0 X0y).
3)

In our case, the strong axis of the QDs and also the
external B are along the z axis, B = BZ. The QDs are also

stacked along the z axis. We take the lateral asymmetry
(e.g., an offset / between the centers of the QDs) to have
B%*° = vx. This displacement generates a gauge factor ¢'¢s
between the QDs, ¢p o« Bl [28]. In Eq. (3), B' =
Re(S|B°YT) and B = Im(S|BT) can be written in
terms of the Zeeman and spin-orbit fields (o = uzB/2):

B = ozEgﬁ + 2’)/55 4
"= alaghs + bAg)Z + (ayRs + bAy)R 5)

B’ = aaglfgi + a'ylfg.f?. (6)

The Zeeman interaction with the external B is deter-
mined by the matrix elements of the coordinate-dependent
g factor g(r) over the two QDs: 2g = (g;; + g»), Ag =
(g11 — 82) and g, = (1]g(r)|2)e’?s. Likewise, the spin-
orbit field leads to mixing terms given by matrix elements
of . The linear superposition aSpg) + bS(; 1) gives a
contribution of Ay and 7y,,, which is determined by mea-
suring its dependence on F. The experiment gives absolute
values |gy,| and [y, |.

We can also write the Hamiltonian of Eq. (3) in a matrix
form within the singlet-triplet spin basis that shows explic-
itly how the states are mixed, and permits convenient
fitting to the data.

(1L0s Ds Dz, Dz, L7
Fd+U =2t av2gn, vyn —vn
—/2t 0 aAg —Ay Ay )
aﬁg“{z alg 0 Sy Sy
Y. Ay Xy aXg 0
—YD2 Ay Sy 0 —adg

Here we use both singlets and the off-diagonal tunneling
rate ¢ instead of J for convenience in fitting the data.

The off-diagonal terms lead to the observed anticrossings
and fine-structure splittings in the spectra. The phenome-
nological Zeeman and spin-orbit parameters, g;; and vy,
have useful physical interpretations, and can each be asso-
ciated with specific features in the spectra. First, the term
with Ag is manifesting the difference in g factors between
the two QDs, and likely arises from the difference in size
and indium concentration between the two QDs. This pa-
rameter is larger for holes than for electrons in part because
the larger effective mass of the hole makes them more
localized and more sensitive to differences of the QDs
such as differences in size or composition. The term with
g12 physically arises from the difference in g factor between
the barrier and the QDs, which leads to the T and | spins
tunneling at different rates [29,30]. These terms break the
spin symmetry and mix S and T, effectively pushing the S
and T energies apart as a function of B as seen in Fig. 3(c).
This is measured directly in the optical spectrum by the fine-
structure splitting in the triplet transitions that grows with B.
The splitting is given by B’ in Eq. (5). At sufficiently high
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TABLE I. Electron and hole coupling parameters.
Sy Ay 1712l
3¢ Ag gl (meV)  (meV)  (ueV)
Hole 263 1.07 014 0 5 24
Electron 098 0 0.3 0 2 3

fields the eigenstates become (1,] ) and (|, 1), instead of
(1, Dg and (1, l)TO [31].

The result of the spin-orbit field is similar but with
an important difference. The spin-orbit field acting or-
thogonal to Z has the effect of partially rotating T to |,
and vice versa. In particular, the term y,, which couples
(11, 0)g < (1, Dr_, can be viewed as spin-flip tunneling. It is
analogous to the spin conserving tunneling term (#), which
couples (1], 0)g < (1, |)s [33]. The 7y, term along with the
Ay term have the effect of mixing the S state with the 7_
and T, triplet states, and leads to the anticrossing observed
in Fig. 3(c) with magnitude given by 8" in Eq. (6).

The term 3y couples Ty with the Ty and T _ triplets. It can
be measured as a splitting of the triplet line at zero B. Any
zero-field splitting of the triplet energies was found to be less
than our resolution, and so we took this parameter to be zero
[34]. We note that in a separate study there is evidence for
a finite splitting of ~8 weV for the 24 case in a similar
sample from coherent measurements in the time domain [3].
Additionally, Ref. [27] represents a short description of a
microscopic origin of these spin mixing terms.

Using Eq. (7) we are able to get good fits to the data with
the coupling parameters given in Table I.

In conclusion, we have found that a symmetric spin
Hamiltonian based on the isotropic Heisenberg exchange
interaction can be generalized to treat the 2/ as well as the
2e spectrum in tunnel-coupled QDs using phenomenological
off-diagonal Zeeman and spin-orbit parameters. The fact that
the 2h exchange interaction between QDs is primarily
Heisenberg-like is important, because it means that concepts
and techniques developed for the control of 2e spins can
potentially be used for 2/4’s. Moreover, the substantial spin
mixing that can occur at the anticrossing points and at large
magnetic fields is also potentially useful for spin control and/
or measurement. Such mixings have already been used to
propose and demonstrate simultaneous optical spin-flip and
cycling transitions for a single electron spin [35]. As another
example, quantum control of two holes could also be
obtained with electrostatic gates (instead of optical gates)
in a way analogous to Taylor et al. [36]. However, instead of
hyperfine coupling, the much larger spin-orbit interaction
could be used, thereby enabling faster gates.
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