
Dimensionality Reduced Reinforcement Learning for Assistive Robots
William Curran

Oregon State University
Corvallis, Oregon

curranw@onid.oregonstate.edu

Tim Brys
Vrije Universiteit Brussel

Belgium
timbrys@vub.ac.be

David Aha
Navy Center for Applied Research in AI

david.aha@nrl.navy.mil

Matthew Taylor
Washington State University

Pullman, Washington
taylorm@eecs.wsu.edu

William D. Smart
Oregon State University

Corvallis, Oregon
bill.smart@oregonstate.edu

Abstract

State-of-the-art personal robots need to perform complex ma-
nipulation tasks to be viable in assistive scenarios. However,
many of these robots, like the PR2, use manipulators with
high degrees-of-freedom, and the problem is made worse in
bimanual manipulation tasks. The complexity of these robots
lead to large dimensional state spaces, which are difficult to
learn in. We reduce the state space by using demonstrations
to discover a representative low-dimensional hyperplane in
which to learn. This allows the agent to converge quickly
to a good policy. We call this Dimensionality Reduced Re-
inforcement Learning (DRRL). However, when performing
dimensionality reduction, not all dimensions can be fully
represented. We extend this work by first learning in a sin-
gle dimension, and then transferring that knowledge to a
higher-dimensional hyperplane. By using our Iterative DRRL
(IDRRL) framework with an existing learning algorithm, the
agent converges quickly to a better policy by iterating to in-
creasingly higher dimensions. IDRRL is robust to demonstra-
tion quality and can learn efficiently using few demonstra-
tions. We show that adding IDRRL to the Q-Learning algo-
rithm leads to faster learning on a set of mountain car tasks
and the robot swimmers problem.

1 Introduction
Our ultimate goal is to deploy personal robots into the world,
and have members of the general public retask them with-
out having to resort to explicitly programming them. Learn-
ing from demonstration (LfD) methods learns a policy using
examples or demonstrations given by a human to speed up
learning a custom task (Argall et al. 2009). However, these
demonstrations must be consistent and accurately represent
solving the task. These methods also solve for a specific
complex task, rather than solve for general control (Argall
et al. 2009). In this paper we present an approach to directly
address the problem of learning good policies with RL in
high-dimensional state spaces.

The first step in our research goals is to develop an ef-
ficient method for teaching the robot. Reinforcement learn-
ing is an ideal approach in our application. It can be used
to teach a robot new skills that the human teacher can-
not demonstrate, find novel ways to reach human-defined

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

goals, and can be used to find solutions to difficult prob-
lems with no analytic formulation (Kormushev, Calinon,
and Caldwell 2013). However, reinforcement learning does
not scale well, and real-world robotics problems are high-
dimensional (Kober and Peters 2012). Learning in high-
dimensional spaces not only significantly increases the time
and memory requirements of many algorithms, but also de-
generates performance due to the curse of dimensionality
(Kaelbling, Littman, and Moore 1996). Personal robots need
to perform complex manipulation tasks to be viable in many
scenarios. Complex manipulations require high degree-of-
freedom arms and manipulators. For example, the PR2 robot
has two 7 degree-of-freedom arms. When learning position
and velocity control, this leads to a 14 dimensional state
space per arm.

In this work, we focus on the core problem of high-
dimensional state spaces. We introduce two algorithms
Dimensionality Reduced Reinforcement Learning (DRRL)
and Iterative DRRL. In DRRL we use demonstrations to
compute a projection to a low-dimensional hyperplane. In
each learning iteration, we project the current state onto
this hyperplane, compute and execute an action, project the
new state onto the hyperplane, and perform a reinforcement
learning update. This general approach has been shown to
reduce the exploration needed and accelerates the learning
rate of reinforcement learning algorithms (Bitzer, Howard,
and Vijayakumar 2010; Colome et al. 2014).

The robot can learn more quickly in the low-dimensional
hyperplane. However, this leads to a critical trade-off. By
projecting onto a low-dimensional hyperplane, we are dis-
carding potentially important data. By adding DRRL to an
existing algorithm, we show that the robot can quickly con-
verge to a good policy much faster. However, since DRRL
does not represent all dimensions, it could converge to a poor
policy.

In many learning domains, poor policies are undesirable.
In robotics in particular, bad controllers can damage the
robot. We propose a novel framework, IDRRL, combining
learning from demonstration techniques, dimensionality re-
duction, and transfer learning. Instead of learning entirely
in one hyperplane, we iteratively learn in all hyperplanes by
using transfer learning. The robot can quickly learn in a low-
dimensional space d, and transfer that knowledge from d di-
mensions to the d + 1 dimensional space using the known



mapping between the spaces.
Our novel approach is a framework to improve other

learning algorithms when working in high-dimensional
spaces. It combines the speed of low-dimensional learning
and the expressiveness of the full state space. We show in a
set of mountain car tasks and the robot swimmers problem
that reinforcement learning algorithms modified with DRRL
or IDRRL can converge quickly to a better policy than learn-
ing entirely in the full dimensional space.

2 Background
To motivate our approach, we outline previous work per-
formed in the field of reinforcement learning, dimensionality
reduction, transfer learning, and learning from demonstra-
tion.

2.1 Reinforcement Learning
In our reinforcement learning (RL) approach, we use the
standard formulation of MDPs (Kaelbling, Littman, and
Moore 1996). An MDP is a 4-tuple 〈S,A, T,R〉, where S
is a set of states, A is a set of actions, T is a probabilis-
tic state transition function T (s, a, s′), and R is the reward
function R(s, a).

In this work, we use function approximation for general-
ization. CMACs (Albus 1981) partition a state space into a
set of overlapping tiles, and maintain the weights (θ) of each
tile. The accuracy of the generalization is improved as the
number of tilings (n) increases. Each tile has an associated
binary value (φ) to indicate whether that tile is present in the
current state.

The estimate of the value function is:

Qt(s, a) =

n∑
i

θ(i)φ(i) (1)

where Qt(s, a) is the estimated value function, θ is the
weight vector and φ is a component vector. Given a learn-
ing example, we adjust the weights of the involved tiles by
the same amount to reduce the error. We use standard model-
free Q-Learning to update our function approximation:

Qt+1(st, at) =Qt(st, at) + α(Rt+1(st, at) (2)
+ γmax

a
Qt(st+1, a)−Qt(st, at))

where α is the learning rate, and γ is a discount factor be-
tween 0 and 1 that represents the importance of future re-
wards.

A significant amount of research in RL focuses on in-
creasing the speed of learning by taking advantage of do-
main knowledge. Some techniques include agent partition-
ing, which focuses mainly on how to divide the problem
by the state space, actions, or goals (Curran, Agogino, and
Tumer 2013; Jordan and Jacobs 1993; Reddy and Tade-
palli 1997); generalizing over the state space with techniques
such as tile coding (Whiteson, Taylor, and Stone 2007), neu-
ral networks (Haykin 1998), or k-nearest neighbors (Mar-
tin H., de Lope, and Maravall 2009); and learning with tem-
porally defined actions, such as options (Sutton, Precup, and
Singh 1999). Our framework is designed to be used with
these approaches. In this paper, we use the title coding gen-
eralization.

2.2 Dimensionality Reduction for Learning
Previous work in dimensionality reduction focuses on re-
ducing the space for classification or function approxima-
tion. Principal Component Analysis (PCA) (Jolliffe 2002)
is effective in many machine learning and data mining ap-
plications at extracting features from large data sets (Pech-
enizkiy, Puuronen, and Tsymbal 2003; Turk and Pentland
1991). Feature selection, which aims at reducing the dimen-
sionality by selecting a subset of most relevant features, has
also been proven to be an effective and efficient way to han-
dle high-dimensional data (Cobo et al. 2011).

In our work, we use PCA to discover the low-dimensional
representation of the state space during learning. It does this
by computing a transform to convert correlated data to lin-
early uncorrelated data. This transformation ensures that the
first principal component captures the largest possible vari-
ance. Each additional component captures the largest possi-
ble variance uncorrelated with all previous components. Es-
sentially, PCA represents as much of the demonstrated state
space as possible in a lower dimension.

Rather than transferring knowledge from a simple repre-
sentation to a complex one, Taylor, Kulis, and Sha (2011)
learn directly which states are irrelevant. They collect data
while the agent explores the environment, calculate a state
similarity metric, and ignore state variables that do not add
additional information and scale those that do. Similarly,
Thomas et al. (2011) use demonstrations to develop a subset
of features from the original space. The learning algorithm
then used this subspace to predict the action that a human
expert would take. Both approaches find state variables to
ignore or emphasize. This works well if there are unimpor-
tant state variables, but would have issues where there are in-
frequent or non-demonstrated state variables with critically
important data. In our IDRRL framework, we iteratively add
additional state information until it learns in the full state
space, essentially combining the speed of low-dimensional
learning and the expressiveness of the full state space.

Similar to our approach, Colomé et al. (2014) apply
dimensionality reduction techniques to exploit underlying
manifolds in the state space. They learn probabilistic motor
primitives in a low-dimensional space discovered by proba-
bilistic dimensionality reduction. Bitzer et al. (2010) also ap-
plies dimensionality reduction to solve reinforcement learn-
ing planning problems in a reduced space that automatically
satisfies their task constraints. Although these approaches
greatly accelerate learning, they learn entirely in the low-
dimensional space and could discard potentially important
data.

2.3 Transfer Learning
The core idea of transfer learning is that experience gained
in learning to perform one task can help improve learning
performance in a related, but different, task. If the relation-
ship between the first (source) task and the second (target)
task is not trivial, there must be a mapping between the two
tasks so that a learner can apply the older knowledge to the
new task (Taylor and Stone 2009). An inter-task mapping is
a general structure that defines how two tasks are related.



The mappings χS and χA are defined as a mapping between
state variables and actions in two tasks, respectively.

In this work, we transfer from a low-dimensional repre-
sentation to a higher-dimensional representation. Therefore,
the states between representations are not the same. Addi-
tionally, the number of state variables we represent change
as we change the number of dimensions in the problem.
To perform the state projection, we compute a mapping us-
ing dimensionality reduction. This mapping is χS , which is
what we use during transfer. Our action representation re-
mains the same, and therefore we do not need to compute
χA.

2.4 Learning from Demonstration
Learning a policy using traditional reinforcement learning
is difficult in real-world applications. Initializing, or boot-
strapping, the policy close to the desired robot behavior
makes finding an optimal or near-optimal solution easier.
LfD learns a policy using examples or demonstrations pro-
vided by a human. These examples are typically state-action
pairs that are recorded during the teacher’s demonstration.
These state-action samples are used to initialize a policy that
can then either be directly utilized, or improved using rein-
forcement learning (Argall et al. 2009).

There are a variety of techniques that LfD algorithms use
when deriving a policy. The demonstrated data can be used
to initialize a policy (Peters and Schaal 2006), develop a re-
ward function (Thomaz and Breazeal 2006), or build a state
transition function (Argall et al. 2009). Our approach takes
the demonstrated data and uses it to discover a representa-
tive lower-dimensional hyperplane using dimensionality re-
duction.

3 Dimensionality Reduced Reinforcement
Learning (DRRL)

To learn in high-dimensional state spaces, our algorithm first
computes a mapping between the high-dimensional space
and a lower-dimensional space. To perform this computa-
tion, we need trajectories across a representative set of the
agent’s state space. We can then use any dimensionality re-
duction technique to learn the transform. In this work, we
use PCA. Note that we use PCA due to its popularity and
ease of access. DRRL and IDRRL can use alternative di-
mensionality reduction techniques.

First, we project the state down onto a low-dimensional
hyperplane. We then compute the action using the chosen
RL algorithm, and execute that action in simulation. The
simulation calculates the new state given the executed ac-
tion, which we then project that state down to the same
lower-dimensional space. We can then perform a learning
update.

By learning in a smaller space, reinforcement learning
algorithms should converge faster. However, in most cases
one principal component cannot represent all of the variance
in all of the demonstrations. Therefore, even given infinite
time, the converged learning performance in a non-trivial
case will always be strictly worse than learning in the full
space. This leads to a critical trade-off. By projecting onto a

low-dimensional hyperplane, we are throwing out low vari-
ance, yet possibly critically important data. However, we ex-
perimentally validate that with our DRRL framework, learn-
ing can still converge to a good policy much faster than the
reinforcement learning algorithm alone.

3.1 Iterative DRRL (IDRRL)
The key aspect of performing iterative learning is transfer-
ring what was learned in the low-dimensional space to the
high-dimensional space. To do this, we borrow from the field
of transfer learning. In this work, we want to transfer all of
the knowledge from the source to the target task. Addition-
ally, the mapping from the source to the target task (χS(s)) is
given by the dimensionality reduction mapping. This eases
the transfer problem greatly. We only need to choose when
to transfer. If we transfer too early, the value function in the
source domain is far from optimal. This bad knowledge can
be spread throughout the value function in the target task.

To choose when to transfer, we borrow from the definition
of convergence in Policy Iteration (Sutton and Barto 1998).
In Policy Iteration, the value function is updated at each iter-
ation until the policy does not change between updates. We
make this policy comparison and ensure that the most re-
cently executed policy is at least 95% converged (unchanged
before and after an update) before transferring to the higher
space.

Since IDRRL is a general framework, we can use any
transfer learning approach within the constraints of the
learning algorithm. We use Q-Value Reuse (Taylor, White-
son, and Stone 2007). Q-Value Reuse is a simple technique
applicable when the source and target task both use TD
learning, as in our case. In Q-Value Reuse, a copy of the
source task’s value function is retained and used to calculate
the target task’s Q-Value. This computed Q-Value is a com-
bination of the source task’s saved value function and the
target task’s value function:

Q(s, a) = Qsource(χS(s), a) +Qtarget(s, a) (3)
where χS is the transfer function between the source and
target tasks’ states and actions. This transfer function is the
PCA projection. We then compute the Q-Learning update
step as normal, but only the target’s value function is up-
dated.

3.2 Convergence Guarantees
Q-Value Reuse can be seen as a heuristic for action-value
initialization. Strehl, Li, and Littman (Strehl, Li, and Littman
2009) demonstrated that if the action-values are admissi-
ble, then this initialization can decrease the sample com-
plexity while maintaining PAC-MDP (i.e. bounded conver-
gence) guarantees. Admissible heuristics provide valuable
prior knowledge to PAC-MDP RL algorithms, but the spec-
ified prior knowledge does not need to be exact. An initial-
ization heuristic (H) is said to be admissible if:

V ∗(s) ≤ Q∗(s, a) ≤ H∗(s, a) ≤ Rmax
1− γ

(4)

where V ∗(s) is the optimal value function, Q∗(s, a) is the
optimal action-value function, H∗(s, a) is the initialization
heuristic, and Rmax

1−γ is the maximum possible value.



Mann and Choe (Mann and Choe 2012) extend PAC-MDP
theory to intertask transfer learning. They introduce the con-
cept of weakly admissible heuristics and show that they can
still maintain PAC-MDP guarantees. To be weakly admissi-
ble, a heuristic needs to be admissible for only one action in
each state. They combine weakly admissible heuristics and
intertask mappings and prove they are also PAC-MDP if for
each state s there is an action ã such that:

V ∗trg(s)− α ≤ Q∗trg(s, ã) ≤ Q∗src(χS(s), χA(ã)) (5)

where α is the smallest non-negative value satisfying this
inequality.

Q-Learning does not provide PAC-MDP bounds. How-
ever, we still enforce an admissible heuristic to make use
of the optimism in the face of uncertainty bias (Brafman
and Tennenholtz 2003). This bias has been shown to re-
duce the chance of converging to a locally optimal pol-
icy. As it stands, Q-Value Reuse is not admissible. It is
guaranteed to be less than Rmax

1−γ , but is not greater than
Q∗(s, a). We remove this issue by simply adding Rmax to
each Qsource(χS(s), a) function.

Although this paper uses Q-learning, we remind the
reader that IDRRL is a general framework. Thus, this proof
is relevant when IDRRL is combined with PAC-MDP algo-
rithms like R-Max (Jong and Stone 2007).

4 Experimental Setup
In our experiments, we combine both DRRL and IDRRL
with Q-Learning (Sutton and Barto 1998). We show that
DRRL combined with Q-Learning converges quickly, but
could converge to a locally optimal solution due to the less
informative state representation. Alternatively, we also show
IDRRL with Q-Learning converges quickly without reduc-
ing performance. We also show that our IDRRL framework
scales well with the size of the state and action space.

4.1 Mountain Car
To test the efficacy of DRRL, we first consider the Mountain
Car 3D domain. Mountain Car is a standard reinforcement
learning domain (Dutech et al. 2005). In this problem an un-
derpowered car must drive up a steep hill. The problem is
engineered such that the car cannot overcome the effects of
gravity, and cannot simply drive up the hill. Since the car
starts in a valley, the agent must learn to build up enough in-
ertia by driving partially up the opposite hill before it is able
to make it to the goal.

In 2D Mountain Car, there are two states defined as
the continuous position (−1.2 ≤ x ≤ 0.6) and velocity
(−.007 ≤ v ≤ .007) of the car. There are three actions: Ac-
celerate left, accelerate right, and neutral. The starting state
is a random position at a random velocity. Lastly, the reward
is -1 at each time step, and 100 at the goal. The 3D and
4D variant of Mountain Car are similar. There are two new
states (position and velocity) and two new actions (acceler-
ate/decelerate in that direction) in the 3D variant and four
new states and actions in the 4D variant. Note that the 4D
variant is not physically possible and is used to show DRRL
and IDRRL scaling to a more high-dimensional state space.

4.2 Swimmers
The Swimmers domain (Coulom 2002) is a more complex
system than Mountain Car. It includes complex physics with
a large state and action space. In the Swimmers domain,
there is a simple swimmer (Figure 1) connected by joints
that moves in a two dimensional pool. The action space is a
torque applied at each joint. The goal of the Swimmers do-
main is to swim as fast as possible to the right, by using the
friction of the water.

We define the state of the swimmer as the angular posi-
tion and velocity at each joint. Therefore a n-link swimmer
has 2n states. The action space consists of the n − 1 con-
trol torques at each joint. At each control step the learner
chooses between a −3Nm, 0Nm or 3Nm torque, making
3(n−1) actions. We reward the swimmer for moving as fast
as possible to the right (∆x). In this work we use a 3-link
and 6-link swimmer.

To move the swimmer, the reinforcement learner must
learn to control an n-link object using the torques at each
joint. It must learn to leverage the viscous friction and learn
the nonlinear dynamics of the system. This is reminiscent of
robot arms. The state and action spaces are identical and in-
volve passive dynamics acting on the agent. In future work
we intend to apply the IDRRL framework to learning the
control of a robot arm.

Figure 1: N-link swimmer. The swimmer must learn to lever-
age the viscous friction of the water to swim.

5 Results and Analysis
We applied DRRL and IDRRL with Q-Learning to three do-
mains: Mountain Car 3D, Mountain Car 4D and Swimmers.
For each experiment we use the following parameter settings
for 20 statistical runs: α = 0.1 and γ = 0.99. Error bars are
shown in each graph and represent error in the mean. If an
error bar is not visible, the error was negligible.

5.1 Mountain Car
In our formulation of Mountain Car we used 16 tiles and a
10n tiling, where n is the number of state variables. There
are 4 state variables and 5 actions in the 3D variant, and 6
state variables and 7 actions in the 4D variant. We first learn
using good demonstrations and single dimensions to test the
efficacy of DRRL. We also show that if the hyperplane does
not represent enough variance in the data, the learning algo-
rithm will converge to a poor policy. We then demonstrate
that this issue is alleviated by IDRRL. Lastly, we test the ro-
bustness of the demonstrations with respect to quality and
performance. We then use the Mountain Car 4D domain to



show scalability. To gather the demonstrations we learned
good and bad policies with Q-Learning and computed ran-
dom policies. We define good and bad policies by the re-
ward they received during learning. Good demonstrations
reached the goal within 300 time steps, and bad demonstra-
tions within 500–1000 steps. Bad demonstrations reached
the goal state, just less efficiently.

In 3D and 4D Mountain Car there was no single state
variable more important than all other state variables. Our
PCA analysis showed that the first two principal compo-
nents weighed all of the state variables equally, independent
of demonstration quality. Since the demonstrations explored
much of the configuration space of the agent, this showed
us which states were important to the agents general move-
ment.

Learning in only one d-dimensional hyperplane con-
verged faster than learning in the full state space (Figure
2). DRRL converged to the optimal solution using only 2 or
3 dimensional hyperplane, rather than the full dimensional
space of 4. This tells us that the Mountain Car domain is
simple enough to be learned in a 2 dimensional space. It
also converged very quickly to a poor solution in a 1 dimen-
sional hyperplane. However, by using only a single dimen-
sion, DRRL does not have a rich enough state space to learn
optimally.

Figure 2: We compare Q-Learning to Q-Learning when
combined with DRRL using good quality demonstrations.
Q-Learning combined with DRRL converged faster to an op-
timal solution when learning in the 2 and 3 dimensional hy-
perplanes. The single dimensional hyperplane did not con-
tain enough information to learn effectively.

Combining standard reinforcement learning with IDRRL
led the agent to converge faster with the same converged per-
formance (Figure 3). DRRL converged slightly faster than
IDRRL, but IDRRL benefits by eventually learning in the
entire state space. This means IDRRL does not lose any state
information to speed up learning. Moreover, it does not re-
quire the algorithm designer to know beforehand which is
the best hyperplane to learn in.

Since IDRRL represents the state space in low-
dimensional and sparse hyperplanes, it converges very
quickly. With each additional dimension, it starts with a
richer state space and the experience gained from all pre-
vious dimensions. By episode 1,000, IDRRL bootstrapped

learning in the full dimensional space, and was near an op-
timal solution. This results in much faster convergence than
learning entirely in the full dimensional space (Figure 3).

Figure 3: We compare Q-Learning to Q-Learning when
combined with IDRRL with demonstrations of varying qual-
ity. IDRRL converged at the same speed to the optimal so-
lution when given good, bad or random demonstrations. In
Mountain Car 3D IDRRL is robust to suboptimal demon-
strations.

To analyze the robustness of the approach, we varied the
quality of demonstration data as well as the amount. Fig-
ure 3 shows the relationship between demonstration quality
and performance. There is no significant difference between
good, bad, and random demonstrations. This is due to the
equal weighing of all state variables by PCA.

To test the robustness of IDRRL we also varied the
amount of demonstration data. For this analysis, we used
random demonstrations and varied the amount of demon-
stration data used between 1,000 and 25,000 demonstra-
tion states. We only test with random demonstrations, since
demonstration quality was not a factor in performance for
Mountain Car 3D. None of the random demonstrations
reached the goal state, and each demonstration trajectory
was approximately 2,000 samples. The experiment with
1,000 demonstration points converged slightly slower, and
there were no significant difference between 10,000 and
25,000 states.

Figure 4: In Mountain Car 3D, there is no significant dif-
ference in the performance of IDRRL when using 10,000 or
25,000 demonstration states.



IDRRL scales well with the size of the state space. We
modified Mountain Car 3D to add an additional fourth di-
mension. Mountain Car 4D has 6 continuous states and 7
actions. There are position and velocity states and accel-
eration/deceleration actions for each of the x, y and z di-
mensions. The trends seen previously in Mountain Car 3D
are emphasized with additional states (Figure 5). By using
IDRRL, the agent converges much faster to a good solution.

Figure 5: In Mountain Car 4D, Q-Learning with IDRRL
scales well with the size of the state space.

5.2 Swimmers
In our formulation of Swimmers we used 32 tiles and a 10n

tiling, where n is the number of state variables. There are 6
state variables and 9 actions in the 3-link swimmer and 12
state variables and 243 actions per state in the 6-link swim-
mer. Similar to our Mountain Car experiments, we gather
demonstrations by learning in the domain with Q-Learning
and collecting demonstrations. These demonstrations repre-
sent the best policies found with Q-Learning. In swimmers,
the performance is measured by how far the swimmer has
moved to the right (∆x). In the 3-link swimmer problem,
the best policy performed well, but in the 6-link problem the
policies were highly suboptimal due to the large state and
action space.

The Swimmers Domain is a more complex system than
Mountain Car. It includes complex physics with a large state
and action space. This is where IDRRL can greatly increase
learning performance when added to an existing algorithm.
When adding IDRRL to Q-Learning, the new learning al-
gorithm can learn a controller for a 3-link Swimmer faster
(Figure 6).

IDRRL scales effectively to a state space of 12 dimen-
sions with 243 possible actions at each state (Figure 7). By
initially projecting the state space onto a hyperplane, IDRRL
samples many of the actions in a smaller space. It then gen-
eralizes what was learned in the low-dimensional space to
the higher-dimensions. This generalization causes IDRRL
to scale well with the size of both the state and action space.

6 Conclusion and Future Work
The DRRL and IDRRL frameworks improve the perfor-
mance of an existing algorithm by combining the speed
of low-dimensional learning and the expressiveness of the

Figure 6: Swimmers is a high-dimensional problem with
many state dimensions. Q-Learning with IDRRL converges
faster than standard Q-Learning when learning a control pol-
icy for a 3-link swimmer with 6 state dimensions and 9 ac-
tions.

Figure 7: A 6-link swimmer is difficult to control due to
an extremely large state and action space. Q-Learning with
IDRRL learns a swimmers control policy quickly in 12 state
dimensions and 243 actions per state.

full state space. By projecting the state space onto a low-
dimensional hyperplane, our methods are able to repre-
sent a complex state with only a few state variables. Then,
by incrementally transferring the knowledge from low-
dimensional spaces into higher-dimensional ones, IDRRL
learns good policies faster than the reinforcement learning
algorithm alone.

In future work we would like to analyze task demonstra-
tions for learning. We hypothesize that by using IDRRL, the
robot will learn efficiently and be robust to demonstration
quality, a classic issue in learning from demonstration liter-
ature (Argall et al. 2009). Therefore, we would like to test
this approach on a robot platform. We also want to give the
robot agent additional state information and see if it can effi-
ciently leverage the new states and learn an effective policy.
However, as it stands, too many iterations are needed to be
practical on robots. This is a function of the reinforcement
learning algorithm known. In future work, we will use R-
Max (Jong and Stone 2007) to greatly speed up learning. By
combining R-MAX with our IDRRL approach, we believe
we can greatly improve performance in robot applications.



References
Albus, J. S. 1981. Brains, behavior, and robotics. Byte
Books.
Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and Autonomous Systems 57(5):469–483.
Bitzer, S.; Howard, M.; and Vijayakumar, S. 2010. Using
dimensionality reduction to exploit constraints in reinforce-
ment learning. In Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on, 3219–3225.
Brafman, R. I., and Tennenholtz, M. 2003. R-MAX - a
General Polynomial Time Algorithm for Near-optimal Rein-
forcement Learning. Journal of Machine Learning Research
3:213–231.
Cobo, L. C.; Zang, P.; Isbell, C. L.; and Thomaz, A. L. 2011.
Automatic state abstraction from demonstration. In Pro-
ceedings of the 22nd Second International Joint Conference
on Articial Intelligence.
Colome, A.; Neumann, G.; Peters, J.; and Torras, C. 2014.
Dimensionality reduction for probabilistic movement prim-
itives. In 2014 IEEE-RAS International Conference on Hu-
manoid Robots, 794–800.
Coulom, R. 2002. Reinforcement Learning Using Neural
Networks, with Applications to Motor Control. Ph.D. Dis-
sertation, Institut National Polytechnique de Grenoble.
Curran, W. J.; Agogino, A.; and Tumer, K. 2013. Address-
ing hard constraints in the air traffic problem through parti-
tioning and difference rewards. In Proceedings of the 2013
International Conference on Autonomous Agents and Multi-
agent Systems, 1281–1282.
Dutech, A.; Edmunds, T.; J. Kok, M. L.; Littman, M.; Ried-
miller, M.; Russell, B.; Scherrer, B.; Sutton, R.; Timmer, S.;
Vlassis, N.; White, A.; ; and Whiteson, S. 2005. NIPS work-
shop: Reinforcement Learning Benchmarks and Bake-offs
II.
Haykin, S. 1998. Neural Networks: A Comprehensive Foun-
dation. Upper Saddle River, NJ, USA: Prentice Hall PTR,
2nd edition.
Jolliffe, I. 2002. Principal Component Analysis. Springer
Series in Statistics. Springer.
Jong, N. K., and Stone, P. 2007. Model-based exploration
in continuous state spaces. In The Seventh Symposium on
Abstraction, Reformulation, and Approximation.
Jordan, M., and Jacobs, R. A. 1993. Hierarchical mixtures
of experts and the EM algorithm. In Proceedings of 1993 In-
ternational Joint Conference on Neural Networks, volume 2,
1339–1344 vol.2.
Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996.
Reinforcement learning: A survey. Journal of Artificial In-
telligence Research 4(1):237–285.
Kober, J., and Peters, J. 2012. Reinforcement learning in
robotics: A survey. In Reinforcement Learning, volume 12
of Adaptation, Learning, and Optimization. Springer Berlin
Heidelberg. 579–610.

Kormushev, P.; Calinon, S.; and Caldwell, D. G. 2013. Rein-
forcement learning in robotics: Applications and real-world
challenges. Robotics 2(3):122.
Mann, T. A., and Choe, Y. 2012. Directed exploration in
reinforcement learning with transferred knowledge. JMLR
Workshop and Conference Proceedings: EWRL 24:59–76.
Martin H., J.; de Lope, J.; and Maravall, D. 2009. The kNN-
TD Reinforcement Learning Algorithm. In Methods and
Models in Artificial and Natural Computation. A Homage to
Professor Miras Scientific Legacy, volume 5601 of Lecture
Notes in Computer Science. 305–314.
Pechenizkiy, M.; Puuronen, S.; and Tsymbal, A. 2003. Fea-
ture extraction for classification in knowledge discovery sys-
tems. In Knowledge-Based Intelligent Information and En-
gineering Systems, volume 2773 of Lecture Notes in Com-
puter Science. Springer. 526–532.
Peters, J., and Schaal, S. 2006. Policy gradient methods
for robotics. In 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2219–2225.
Reddy, C., and Tadepalli, P. 1997. Learning goal-
decomposition rules using exercises. In Proceedings of the
14th International Conference on Machine Learning, 278–
286.
Strehl, A. L.; Li, L.; and Littman, M. L. 2009. Reinforce-
ment Learning in Finite MDPs: PAC Analysis. Journal of
Machine Learning Research 10:2413–2444.
Sutton, R. S., and Barto, A. G. 1998. Introduction to Rein-
forcement Learning. Cambridge, MA, USA: MIT Press, 1st
edition.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A Framework for Temporal Ab-
straction in Reinforcement Learning. Journal of Artificial
Intelligence 112(1-2):181–211.
Taylor, M. E., and Stone, P. 2009. Transfer learning for rein-
forcement learning domains: A survey. Journal of Machine
Learning Research 10:1633–1685.
Taylor, M. E.; Kulis, B.; and Sha, F. 2011. Metric Learning
for Reinforcement Learning Agents. In Proceedings of the
2011 International Conference on Autonomous Agents and
Multiagent Systems.
Taylor, M. E.; Whiteson, S.; and Stone, P. 2007. Transfer via
inter-task mappings in policy search reinforcement learning.
In Proceedings of the 2007 International Conference on Au-
tonomous Agents and Multiagent Systems.
Thomaz, A. L., and Breazeal, C. 2006. Reinforcement learn-
ing with human teachers: Evidence of feedback and guid-
ance with implications for learning performance. In Pro-
ceedings of the 21st National Conference on Artificial Intel-
ligence, 1000–1005.
Turk, M., and Pentland, A. 1991. Face recognition using
eigenfaces. In IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, 586–591.
Whiteson, S.; Taylor, M. E.; and Stone, P. 2007. Adaptive
tile coding for value function approximation. Technical Re-
port AI-TR-07-339, University of Texas at Austin.


