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Abstract 

Learning by observation allows non-technical experts to transfer 
their skills to an agent by shifting the knowledge-transfer task 
to the agent. However, for the agent to learn regardless of expert, 
domain, or observed behavior, it must learn in a general-purpose 
manner. Existing learning by observation agents allow for 
domain-independent learning and reasoning but require human 
intervention to model the agent’s inputs and outputs. We 
describe Domain-Independent Deep Feature Learning by 
Observation (DIDFLO), an agent that uses convolutional neural 
networks to learn without explicitly defining input features. 
DIDFLO uses the raw visual inputs at two levels of granularity 
to automatically learn input features using limited training data. 
We evaluate DIDFLO in scenarios drawn from a simulated 
soccer domain and provide a comparison to other learning by 
observation agents in this domain. 

1. Introduction  

Learning by observation (LbO) agents learn to perform 

behaviors by observing an expert demonstrate those same 

behaviors. Whereas traditional methods for training an agent 

may involve computer programming or knowledge 

engineering, LbO only requires the expert to be able to 

perform a behavior. This shifts the knowledge-acquisition 

task from the expert, who would normally be responsible for 

formally encoding their knowledge or programming the 

agent, to the agent itself, thereby allowing LbO agents to 

learn from a variety on non-technical experts (e.g., 

healthcare professionals, disaster relief personnel, military 

commanders).  

 LbO is well-suited for situations where learning a 

particular behavior is more important than learning an 

optimal behavior. A sub-optimal behavior may be necessary 

if a user finds that behavior more trustworthy or preferable 

(Shapiro and Shachter 2002). For example, consider a self-

driving car. A car driving at high speeds and taking sharp 
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turns may reach the destination safely and efficiently, but a 

user may prefer a car that drives the speed limit and takes 

scenic routes. Since LbO does not optimize against a 

domain’s predefined performance metrics (e.g., safety and 

efficiency for a self-driving car), it learns exclusively using 

an expert’s demonstration of the behavior. 

 For an LbO agent to learn a behavior regardless of expert 

or domain, it should learn in a general, non-biased manner. 

We describe Domain-Independent Deep Feature Learning 

by Observation (DIDFLO), a learning agent that overcomes 

several limitations of existing general-purpose LbO agents. 

Specifically, we remove the need for input features to be 

manually modeled for each domain. Instead, we use deep 

learning (DL) techniques (LeCun, Bengio, and Hinton 

2015) to learn a feature representation from the agent’s raw 

visual inputs. DIDFLO trains two DL models: one uses the 

agent’s complete visual inputs while the other uses close-

range visuals. The output of the two models are combined 

to select actions to perform in response to visual inputs 

during deployment (i.e., when the agent attempts to replicate 

the expert’s behavior). 

 Our work has three primary contributions. First, we 

describe an application of deep feature learning in a learning 

by observation agent. While deep feature learning has been 

used with other learning techniques, we are unaware of any 

applications in LbO. Second, we demonstrate the 

performance of DIDFLO in a partially observable domain 

with limited training data and training time. These 

constraints result in significant design differences from 

existing deep feature learning systems that use large data 

sets and training times.  Third, we provide a detailed 

comparison of three LbO agents that operate in a simulated 

soccer domain, highlighting the strengths and limitations of 

each. 

 



 We discuss related work in Section 2, with a specific 

focus on how DIDFLO differs from existing LbO and deep 

feature learning systems. Section 3 describes how DIDFLO 

observes, learns, and reasons. We evaluate our approach 

using scenarios defined in a simulated soccer domain in 

Section 4, and conclude with a discussion of future work in 

Section 5.  

2. Related Work 

Learning by observation has been used in a variety of 

domains (e.g., Grollman and Jenkins 2007; Ontañón et al. 

2007; Rubin and Watson 2010). However, most existing 

LbO systems are designed to learn in a single domain. 

Substantial knowledge-engineering or redesign is necessary 

to deploy these systems in new domains or, in some 

situations, to learn non-standard behaviors (e.g., an expert 

that attempts to achieve a different set of goals). Two 

domain-independent approaches for LbO have been 

proposed: MMPM (Gómez-Martín et al. 2010) and jLOAF 

(Floyd and Esfandiari 2011). MMPM and jLOAF are 

similar in that they separate the agent’s learning and 

reasoning from how it interacts with the environment. This 

is advantageous because it allows the development of 

general-purpose observation, learning, and reasoning 

components. Additionally, since algorithms are designed in 

a domain-independent manner, it helps prevent biasing them 

to any specific expert, behavior, or domain. However, 

before these systems can be deployed in a new domain they 

require the agent’s inputs (i.e., what objects it can observe 

in the environment) and outputs (i.e., what actions it can 

perform) to be defined. Although this process only needs to 

be performed once, it still represents a non-trivial 

knowledge engineering task. 

 Floyd, Bicakci, and Esfandiari (2012) partially automate 

input and output modeling by using a robot architecture that 

allows sensors and effectors to be dynamically added or 

removed. Each component registers when connected to the 

robot or deregisters when disconnected from the robot, 

allowing the LbO agent to dynamically modify its input and 

output models. While this does not require human 

intervention before deployment in a new domain, it does 

require human intervention for each new type of sensor or 

effector the system can use. Our approach differs in that it 

does not require any knowledge engineering as long as the 

domain provides a visual representation of the environment. 

 Our feature learning method is inspired by the deep 

reinforcement learning work of Mnih et al. (2015). They 

learn input features from raw visual inputs as the agent plays 

a variety of Atari 2600 games. Their work differs from 

DIDFLO in the method of learning used and the amount of 

training time required. Reinforcement learning requires a 

reward function to be defined in each domain, thereby 

adding an additional knowledge engineering step than is not 

required in LbO. While the method they use to measure 

reward, the game score, is suitable for a variety of Atari 

games, a different reward function would be necessary for 

any domain that does not provide a score. Similarly, their 

system requires a significant amount of time for the agent to 

interact with the environment (i.e., exploration and 

exploitation). Such an approach would not be possible if the 

domain is not fully specified in advance and rapid training 

is necessary (e.g., a search and rescue domain). Deep 

reinforcement learning has also been used in simulated 

soccer (Hausknecht and Stone 2016). Unlike Mnih et al. 

(2015), their reward functions are more heavily biased to a 

specific domain and partially encode the behavior being 

learned (e.g., move to ball reward and kick to goal reward). 

 Deep LbO is used for initial training of AlphaGo (Silver 

et al. 2016), with subsequent training using deep 

reinforcement learning. However, their LbO methodology 

has several limitations that make it unsuitable for our 

requirements. First, they trained their system with over 30 

million observations. Large datasets may be available for 

established games like Go, but little or no data may exist for 

less popular games or experts with novel 

behaviors/strategies. Second, such a large dataset requires 

months of training using datacenters composed of state-of-

the-art hardware. This makes their approach impractical if 

an agent needs to be trained rapidly with limited 

computational resources. Finally, LbO is performed using 

images of a turn-based board game. This minimizes the 

influence of object occlusion (i.e., each Go piece is on its 

own square), observation error (e.g., due to erroneous or 

delayed responses by the expert), and provides the learning 

agent with full observability. Instead, we examine the 

feasibility of using deep learning by observation with 

limited observations and training time in partially 

observable, real-time domains.  

3. Domain-Independent Deep Feature 

Learning by Observation 

Domain-Independent Deep Feature Learning by 

Observation (DIDFLO) has four stages: modeling, 

observation, learning, and deployment. This section 

describes how each stage is implemented. 

3.1 Modeling 

Agents typically receive their sensory inputs in the form of 

periodic messages from a server (e.g., in games or 

simulations) or from a set of sensors (e.g., a physical robot). 

Although the set of possible inputs may be well-defined 

(e.g., in a game’s user manual, in a robot’s design 

document), some human intervention is required to encode 

the input definitions into a format that is understandable by 



an agent. For example, in a simulated soccer domain it 

would be necessary to provide mechanisms for parsing 

sensory input messages and internally representing the 

observable objects (e.g., soccer balls, players, goal nets, 

boundary markers). Although modeling is only necessary 

the first time an agent is deployed in a new or modified 

environment, it is still a process that cannot be fully 

automated by the agent itself. 

 DIDFLO removes the need to explicitly model an agent’s 

sensory inputs by using a raw visual representation of the 

environment (i.e., an image of what can currently be 

observed). This is beneficial because many domains provide 

sensory information in this format (e.g., a game’s 

visualization, a robot’s onboard camera). We assume that 

this information will be provided in a raw format without 

any additional processing or annotation (e.g., object 

identification or labeling). This allows the agent to be 

deployed in a new environment without modification, so 

long as the environment provides visual inputs. For 

example, an agent can transition between a soccer game, 

where the inputs represent the field, to a chess game, where 

the inputs represent the board, without any background 

information about what appears in the images. 

 We use the visual inputs at two levels of granularity: the 

full visual representation and the zoomed visual 

representation. Figure 1 shows an example of the full and 

zoomed representations in a simulated soccer game. The full 

representation 𝑉𝑓𝑢𝑙𝑙  contains the player’s entire field of 

vision, whereas the zoomed representation 𝑉𝑧𝑜𝑜𝑚  contains 

an enlarged view of objects within a fixed-sized region 

surrounding the player. The visual representations contain 

what the player can currently observe, which may be a 

partial observation of the entire environment (i.e., if the 

player has a limited field of vision). By using the zoomed 

representation, the agent receives a higher fidelity view of 

nearby objects and is provided a better observation of 

objects that are partially occluded. However, since the 

zoomed representation only contains objects in a fixed-sized 

region surrounding the player, it may not contain as many 

objects as the full representation. Since the number of 

observations may be limited, storing each observation at two 

levels of granularity provides additional training data to use 

during learning and reasoning. Both  𝑉𝑓𝑢𝑙𝑙  and 𝑉𝑧𝑜𝑜𝑚 are 

stored as 256 × 256 pixel RGB images. 

3.2 Observation 

The observation process involves the expert acting in the 

environment (i.e., performing its behavior) and the learning 

agent observing the expert. During observation, the learning 

agent records the visual inputs received by the expert (i.e., 

𝑉𝑓𝑢𝑙𝑙  and 𝑉𝑧𝑜𝑜𝑚) and the resulting actions. The agent 

assumes that an action 𝐴 is performed by the expert after 

reasoning about the most recent visual inputs, so 

observations as stored as input-actions pairs (i.e., 〈𝑉𝑓𝑢𝑙𝑙 , 𝐴〉 
and 〈𝑉𝑧𝑜𝑜𝑚 , 𝐴〉). Over the course of observation, the learning 

agent collects all such input-action pairs and stores them in 

two observation sets, 𝒪𝑓𝑢𝑙𝑙  and 𝒪𝑧𝑜𝑜𝑚 (𝒪𝑓𝑢𝑙𝑙 =  {〈𝑉𝑓𝑢𝑙𝑙
′ , 𝐴′〉, 

〈𝑉𝑓𝑢𝑙𝑙
′′ , 𝐴′′〉, … } and 𝒪𝑧𝑜𝑜𝑚 =  {〈𝑉𝑧𝑜𝑜𝑚

′ , 𝐴′〉, 〈𝑉𝑧𝑜𝑜𝑚
′′ , 𝐴′′〉, … } ).  

 The observations serve as labelled training data that the 

agent can use to learn how to select actions in a similar 

manner as the expert (i.e., what action to perform in 

response to a given visual input). Additionally, in the case 

of an agent that learns exclusively by observation (i.e., no 

additional knowledge or feedback is provided by the 

expert), observations are the only source of information that 

is available to the agent.  

Figure 1: The full visual representation (left) and zoomed 

visual representation (right) in a simulated soccer game 

3.3 Training 

The training stage involves using the collected observations 

to learn models of the expert’s behavior. DIDFLO trains two 

models, one model 𝑀𝑓𝑢𝑙𝑙  that maps full visual inputs to 

actions and one model 𝑀𝑧𝑜𝑜𝑚 that maps zoomed visual 

inputs to actions (𝑀𝑓𝑢𝑙𝑙 : 𝒱𝑓𝑢𝑙𝑙 → 𝒜 and 𝑀𝑧𝑜𝑜𝑚: 𝒱𝑧𝑜𝑜𝑚 →
𝒜, where 𝒱𝑓𝑢𝑙𝑙  and 𝒱𝑧𝑜𝑜𝑚 are the sets of all visual inputs, 

and 𝒜 is the set of all actions). For both models, learning is 

performed using convolutional neural networks (CNN) 

(Krizhevsky, Sutskever, and Hinton 2012). The motivation 

for training two models is that each representation has 

certain strengths and weaknesses, so combining the models 

will produce better performance than either model in 

isolation. For example, a nearby soccer ball would be easier 

to detect in the zoomed image because it appears larger, 

whereas a goal net on the other side of the field can only be 

detected using the full image. The collected observation sets 

𝒪𝑓𝑢𝑙𝑙  and 𝒪𝑧𝑜𝑜𝑚 are used to train the respective CNNs. 

 The CNN architecture used is a modified version of 

CaffeNet (Jia et al. 2014), containing an input layer, five 

convolution layers, five pooling layers, two fully connected 

layers, and one softmax loss layer. The CNNs take as input 

the pixel values of an image using all three color channels 

(i.e., red, green, and blue). Both 𝑉𝑓𝑢𝑙𝑙  and 𝑉𝑧𝑜𝑜𝑚 are 256 ×
256 pixel images, resulting in each CNN having 256 ×
256 × 3 inputs. Each CNN outputs a set 𝒞 containing the 

confidence values 𝑐1, … , 𝑐𝑛 for each of the 𝑛 possible actions 



(𝒞 =  {𝑐1, … , 𝑐𝑛}, with each confidence value in the range 

[0.0, 1.0]). In the simulated soccer example, three actions 

are used1: kick, dash (i.e., move), and turn. This results in 

each CNN outputting three confidence values 

(𝑐𝑘𝑖𝑐𝑘 , 𝑐𝑑𝑎𝑠ℎ , 𝑐𝑡𝑢𝑟𝑛). 

 DIDFLO was designed under the assumption that training 

data would be limited, so rather than fully train each CNN, 

a subset of layers are pretrained on other data sources. The 

convolution and pooling layers are extracted from a publicly 

available network trained on ImageNet data (Jia et al. 2014). 

This leaves only the fully connected layers and softmax loss 

layer to be trained using the collected observations. This 

approach has two primary advantages. First, the pretrained 

ImageNet layers can identify many important visual features 

already (e.g., lines, curves, shapes, objects). This removes 

the need to relearn common features by leveraging a 

preexisting network that was trained on a dataset containing 

millions of images across a variety of topics. Since the 

pretrained layers contain both low-level and high-level 

features across a variety of image categories, it does not bias 

DIDFLO to any particular domain. Second, the limited 

number of available training observations makes it 

impractical to train the entire network. Instead, training 

focuses exclusively on learning how existing features can be 

used to classify visual inputs. Both 𝑀𝑓𝑢𝑙𝑙  and 𝑀𝑧𝑜𝑜𝑚 are 

trained using an identical CNN architecture (i.e., they differ 

only in the observation sets used to train them).  

3.4 Deployment 

During deployment, DIDFLO is placed in the environment 

in a similar role as the expert (e.g., as a soccer player). Like 

the expert, DIDFLO receives sensory inputs from the 

environment and selects actions to perform. The primary 

goal of deployment is for the agent to select similar actions 

to the expert when presented with similar sensory inputs.  

Each received sensory input is used as input to both the full 

and zoomed CNNs, resulting in two sets of confidence 

values 𝒞𝑓𝑢𝑙𝑙  and 𝒞𝑧𝑜𝑜𝑚, that can be combined into an overall 

confidence value set 𝒞𝑜𝑣𝑒𝑟𝑎𝑙𝑙  (𝒞𝑜𝑣𝑒𝑟𝑎𝑙𝑙 ← 𝒞𝑓𝑢𝑙𝑙 ∪ 𝒞𝑧𝑜𝑜𝑚). 

Since the two CNNs use different input representations and 

are trained independently, they may select different actions 

to perform (e.g., one is most confident in kick and the other 

is most confident in turn). DIDFLO selects a single action 

to perform by selecting the highest confidence value 𝑐𝑚𝑎𝑥  

from 𝒞𝑜𝑣𝑒𝑟𝑎𝑙𝑙  and using its associated action (∃𝑐𝑚𝑎𝑥 ∈
 𝒞𝑜𝑣𝑒𝑟𝑎𝑙𝑙  such that ∀𝑐𝑖 ∈ 𝒞𝑜𝑣𝑒𝑟𝑎𝑙𝑙 , 𝑐𝑚𝑎𝑥 ≥ 𝑐𝑖). 

 By using this combined approach, DIDFLO leverages the 

strengths of each individual CNN during action selection. 

For example, we would expect the zoomed CNN to perform 

better when important objects are near the agent, whereas 

                                                 
1 The actions can also be parameterized (e.g., turn direction, running speed) 
but for simplicity we only consider the class of action. 

the full CNN would perform better when information from 

the entire field of vision is necessary.  

4. Evaluation 

In this section we evaluate our claim that DIDFLO can learn 

from observations without an explicit model of its inputs. 

Our evaluation tests the following hypotheses: 

H1: Representing inputs at two levels of granularity will 

improve learning performance 

H2: DIDFLO will achieve comparable performance to 

other domain-independent learning by observation 

systems in a simulated soccer domain 

4.1 Experimental Setup 

To evaluate the performance of DIDFLO, we collected 

simulated soccer data from the RoboCup Simulation League 

(RoboCup 2016). DIDFLO observed a series of 5 vs. 5 

soccer games where AI agents controlled each of the ten 

players. The specific agent used to control each player was 

a simple scripted agent named Krislet. Krislet performs 

simple soccer behavior that involves locating the ball, 

running towards the ball, and kicking the ball towards the 

opponent’s goal. In each match, a single Krislet agent was 

used as the expert and had its inputs and actions recorded.  

 DIDFLO observed 10 full soccer matches resulting in 

approximately 40,000 observations (approximately 100 

minutes of observation). The observations are highly 

imbalanced (approximately 73% dash, 26% turn, 1% kick), 

so random sampling was performed to create a training set 

of 1500 observations (i.e., 1500 full representation training 

examples and 1500 zoomed representation training 

examples). This process was repeated to create 25 randomly 

sampled training sets. Additional soccer matches were 

observed and a similar random sampling method was used 

to create 25 test sets of 1029 observations each. For each 

evaluation, a single training set was used to train the CNNs 

and a single testing set was used to evaluate the 

performance. The CNNs were trained using a base learning 

rate of 0.01, polynomial rate decay with a power of 3, and 

13,000 training iterations. 

4.2 Results  

Table 1 shows the average F1 score (and 95% confidence 

interval) over each of the 25 training runs. The F1 score 

calculates the harmonic mean of the precision and recall 

values, with values ranging from 0.0 (low) to 1.0 (high). The 

table shows the performance at predicting each individual 

action along with the overall performance. In addition to the 

combined approach, we also evaluated the performance 



when only the full or zoomed CNN was used for action 

prediction. 

 

Table 1: Results of trained CNNs on RoboCup test data 

Model F1 Kick F1 Dash F1 Turn 
F1 

Overall 

Full 0.66±0.03 0.60±0.02 0.48±0.01 0.58±0.01 

Zoomed 0.89±0.01 0.60±0.01 0.56±0.01 0.68±0.01 

Combined 0.90±0.01 0.63±0.01 0.58±0.01 0.71±0.01 

  

 The results show that the combined approach is a 

statistically significant improvement over using either the 

full or zoomed representation alone (using a paired t-test 

with 𝑝 < 0.001). These results provide support for H1. For 

all three action types, the combined performance is better 

than any individual representation. This demonstrates that 

both the full and zoomed representation are providing a 

positive contribution to the overall performance. Although 

the zoomed representation significantly outperforms the full 

representation at selecting kick and turn actions,  the 

improved performance of the combined approach at 

predicting those actions demonstrates that there are certain 

inputs the full representation is better at selecting actions 

for. For example, the zoomed representation is particularly 

good at selecting kick actions because the ball is larger and 

more visible. However, the presence or absence of the 

opponent’s goal net is often only visible in the full 

representation (i.e., to differentiate between kicking towards 

the net and turning to see the net).  

 Overall, these results demonstrate that DIDFLO can learn 

a suitable model for action selection. Although each model 

is trained on relatively few training instance (i.e., 1500), 

DIDFLO is able to achieve reasonable performance. For 

example, a random baseline that randomly selects actions to 

perform has an overall F1 score of approximately 0.33.  

4.3 Comparison to Existing LbO Systems 

RoboCup has been used as a domain in previous learning by 

observation work (Floyd, Esfandiari, and Lam 2008; Floyd 

and Esfandiari 2011; Young and Hawes 2015). Although 

differences in evaluation methodology do not allow for a 

direct empirical comparison, this subsection provides a 

comparison of the relative strengths of each approach. 

 Floyd et al. (2008) use case-based reasoning to perform 

learning by observation. Each observed state-action pair is 

stored as a case by the agent and during deployment the 

agent retrieves the case that is most similar to its current 

sensory input. This system is specifically designed to be 

domain-independent and has also been deployed in Tetris, 

obstacle avoidance, and robotic arm control (Floyd and 

Esfandiari 2011).  This approach will be referred to as F&E. 

Young and Hawes (2015) use Qualitative Spatial Relations 

to modify how objects are represented in the environment. 

Rather than use the observed quantitative values, each 

object is represented by a set of qualitative relations to other 

objects. The resulting representation can then be used as 

input to a variety of existing classification algorithms. 

Although this system has only been deployed in a single 

domain, the authors minimize that amount of soccer-specific 

information by allowing the system to evaluate a number of 

possible spatial relationships when determining how to 

represent observations. This approach will be referred to as 

Y&H. 

 The primary strength of DIDFLO is that it requires less 

knowledge engineering than the other two approaches. Both 

F&E and Y&H require a definition of the possible objects in 

the environment, whereas DIDFLO learns an object model 

during training. Representation learning during a 

preprocessing stage is performed by F&E (i.e., learning 

important object types) and Y&H (i.e., learning the best 

qualitative representation), but both rely on an existing 

object model. However, although DIDFLO requires the 

least knowledge engineering, only F&E has been 

successfully deployed in multiple domains. 

 The strength of Y&H is that their primary contribution is 

a representation framework rather than a learning algorithm. 

This allows the qualitative representation to be used to train 

a variety of classifiers and the best performing classifier (or 

an ensemble) to be selected for deployment. The qualitative 

representation of Y&H could potentially be integrated with 

F&E (i.e., case-based reasoning) or DIDFLO (i.e., deep 

learning). Although the training data used and evaluation 

methodology differ, Y&H appears to have the highest action 

selection accuracy in the RoboCup domain. These results 

are what we would expect given that it is the most domain-

dependent of the three approaches. Of the two domain-

independent approaches, DIDFLO appears to outperform 

F&E in RoboCup. These results provide some support for 

H2.  

 The instance-based learning of F&E is its primary 

strength. Although it does not perform as well in RoboCup 

as DIDFLO or Y&H, it requires no training time after 

observations are collected (i.e., no generalization is 

performed). This is also advantageous because it allows 

newly acquired observations to be added without retraining. 

This could allow an agent to be rapidly created and deployed 

until the more computationally expensive models used by 

DIDFLO or Y&H are trained. Additionally, F&E have the 

only approach that has been successfully used to learn from 

state-based experts. (i.e., DIDFLO and Y&H can only learn 

from reactive experts). However, as the number of cases 

increase so too does the time required to retrieve a similar 

case. This places a limit on the number of training 

observations that can be used by the agent in real-time. 

 Overall, the three learning by observation systems used in 

the RoboCup domain have significant strengths based on 



their design motivations. DIDFLO, F&E, and Y&H all aim 

to provide slightly different usages or functionality, thereby 

influencing how they approach the learning by observation 

problem. Each system has one or more elements that could 

potentially be integrated into the other systems or a novel 

LbO agent.  

5. Conclusions and Future Work 

We described Domain-Independent Deep Feature Learning 

by Observation, a learning by observation agent that can 

learn without being provided an explicit model of the objects 

it observes. Our approach uses observations of an expert’s 

response to raw visual inputs to train a pair of convolutional 

neural networks. The CNNs differ in the granularity of 

observations they use, with one using the expert’s entire 

field of vision and the other using a fixed-sized region 

surrounding the expert.   

 In our study, DIDFLO was able to learn from the expert 

and perform reasonably well at selecting a similar action to 

perform when presented with similar input. Our results 

demonstrated that combining the output of both CNNs 

resulted in significant improvements over either CNN in 

isolation. This indicates that even with limited training 

observations, partial observability, and noisy observations, 

it is possible to train an agent that can learn an expert’s 

behavior without an explicit object model. 

 Several areas of future work remain. First, although 

DIDFLO removes the need to model observable objects, it 

still requires modeling possible actions. We plan to 

investigate methods for learning action models from 

observations. Second, our approach only reasons over visual 

inputs. In real-world scenarios it may be necessary to reason 

over additional inputs (e.g., audio). Third, we have only 

examined a two-CNN architecture. Future work will 

examine if further performance improvement is possible by 

training additional CNNs (e.g., other levels of granularity) 

or modifying how CNN outputs are combined. Fourth, 

although we have developed DIDFLO to be domain 

independent, further evaluation in other domains is 

necessary to validate this claim. Finally, we plan to examine 

how this approach can be extended to incorporate features 

of other learning by observation systems (e.g., learning from 

state-based experts, active observation acquisition, inferring 

high-level goals from observations). 
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