

Using Deep Learning to Automate Feature Modeling in

Learning by Observation

Michael W. Floyd1, JT Turner1, and David W. Aha2
1Knexus Research Corporation; Springfield, Virginia; USA

2Navy Center for Applied Research in AI; Naval Research Laboratory (Code 5514); Washington, DC; USA
{michael.floyd, jt.turner}@knexusresearch.com | david.aha@nrl.navy.mil

Abstract

Learning by observation allows non-technical experts to transfer
their skills to an agent by shifting the knowledge-transfer task
to the agent. However, for the agent to learn regardless of expert,
domain, or observed behavior, it must learn in a general-purpose
manner. Existing learning by observation agents allow for
domain-independent learning and reasoning but require human
intervention to model the agent’s inputs and outputs. We
describe Domain-Independent Deep Feature Learning by
Observation (DIDFLO), an agent that uses convolutional neural
networks to learn without explicitly defining input features.
DIDFLO uses the raw visual inputs at two levels of granularity
to automatically learn input features using limited training data.
We evaluate DIDFLO in scenarios drawn from a simulated
soccer domain and provide a comparison to other learning by
observation agents in this domain.

1. Introduction

Learning by observation (LbO) agents learn to perform

behaviors by observing an expert demonstrate those same

behaviors. Whereas traditional methods for training an agent

may involve computer programming or knowledge

engineering, LbO only requires the expert to be able to

perform a behavior. This shifts the knowledge-acquisition

task from the expert, who would normally be responsible for

formally encoding their knowledge or programming the

agent, to the agent itself, thereby allowing LbO agents to

learn from a variety on non-technical experts (e.g.,

healthcare professionals, disaster relief personnel, military

commanders).

 LbO is well-suited for situations where learning a

particular behavior is more important than learning an

optimal behavior. A sub-optimal behavior may be necessary

if a user finds that behavior more trustworthy or preferable

(Shapiro and Shachter 2002). For example, consider a self-

driving car. A car driving at high speeds and taking sharp

Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

turns may reach the destination safely and efficiently, but a

user may prefer a car that drives the speed limit and takes

scenic routes. Since LbO does not optimize against a

domain’s predefined performance metrics (e.g., safety and

efficiency for a self-driving car), it learns exclusively using

an expert’s demonstration of the behavior.

 For an LbO agent to learn a behavior regardless of expert

or domain, it should learn in a general, non-biased manner.

We describe Domain-Independent Deep Feature Learning

by Observation (DIDFLO), a learning agent that overcomes

several limitations of existing general-purpose LbO agents.

Specifically, we remove the need for input features to be

manually modeled for each domain. Instead, we use deep

learning (DL) techniques (LeCun, Bengio, and Hinton

2015) to learn a feature representation from the agent’s raw

visual inputs. DIDFLO trains two DL models: one uses the

agent’s complete visual inputs while the other uses close-

range visuals. The output of the two models are combined

to select actions to perform in response to visual inputs

during deployment (i.e., when the agent attempts to replicate

the expert’s behavior).

 Our work has three primary contributions. First, we

describe an application of deep feature learning in a learning

by observation agent. While deep feature learning has been

used with other learning techniques, we are unaware of any

applications in LbO. Second, we demonstrate the

performance of DIDFLO in a partially observable domain

with limited training data and training time. These

constraints result in significant design differences from

existing deep feature learning systems that use large data

sets and training times. Third, we provide a detailed

comparison of three LbO agents that operate in a simulated

soccer domain, highlighting the strengths and limitations of

each.

 We discuss related work in Section 2, with a specific

focus on how DIDFLO differs from existing LbO and deep

feature learning systems. Section 3 describes how DIDFLO

observes, learns, and reasons. We evaluate our approach

using scenarios defined in a simulated soccer domain in

Section 4, and conclude with a discussion of future work in

Section 5.

2. Related Work

Learning by observation has been used in a variety of

domains (e.g., Grollman and Jenkins 2007; Ontañón et al.

2007; Rubin and Watson 2010). However, most existing

LbO systems are designed to learn in a single domain.

Substantial knowledge-engineering or redesign is necessary

to deploy these systems in new domains or, in some

situations, to learn non-standard behaviors (e.g., an expert

that attempts to achieve a different set of goals). Two

domain-independent approaches for LbO have been

proposed: MMPM (Gómez-Martín et al. 2010) and jLOAF

(Floyd and Esfandiari 2011). MMPM and jLOAF are

similar in that they separate the agent’s learning and

reasoning from how it interacts with the environment. This

is advantageous because it allows the development of

general-purpose observation, learning, and reasoning

components. Additionally, since algorithms are designed in

a domain-independent manner, it helps prevent biasing them

to any specific expert, behavior, or domain. However,

before these systems can be deployed in a new domain they

require the agent’s inputs (i.e., what objects it can observe

in the environment) and outputs (i.e., what actions it can

perform) to be defined. Although this process only needs to

be performed once, it still represents a non-trivial

knowledge engineering task.

 Floyd, Bicakci, and Esfandiari (2012) partially automate

input and output modeling by using a robot architecture that

allows sensors and effectors to be dynamically added or

removed. Each component registers when connected to the

robot or deregisters when disconnected from the robot,

allowing the LbO agent to dynamically modify its input and

output models. While this does not require human

intervention before deployment in a new domain, it does

require human intervention for each new type of sensor or

effector the system can use. Our approach differs in that it

does not require any knowledge engineering as long as the

domain provides a visual representation of the environment.

 Our feature learning method is inspired by the deep

reinforcement learning work of Mnih et al. (2015). They

learn input features from raw visual inputs as the agent plays

a variety of Atari 2600 games. Their work differs from

DIDFLO in the method of learning used and the amount of

training time required. Reinforcement learning requires a

reward function to be defined in each domain, thereby

adding an additional knowledge engineering step than is not

required in LbO. While the method they use to measure

reward, the game score, is suitable for a variety of Atari

games, a different reward function would be necessary for

any domain that does not provide a score. Similarly, their

system requires a significant amount of time for the agent to

interact with the environment (i.e., exploration and

exploitation). Such an approach would not be possible if the

domain is not fully specified in advance and rapid training

is necessary (e.g., a search and rescue domain). Deep

reinforcement learning has also been used in simulated

soccer (Hausknecht and Stone 2016). Unlike Mnih et al.

(2015), their reward functions are more heavily biased to a

specific domain and partially encode the behavior being

learned (e.g., move to ball reward and kick to goal reward).

 Deep LbO is used for initial training of AlphaGo (Silver

et al. 2016), with subsequent training using deep

reinforcement learning. However, their LbO methodology

has several limitations that make it unsuitable for our

requirements. First, they trained their system with over 30

million observations. Large datasets may be available for

established games like Go, but little or no data may exist for

less popular games or experts with novel

behaviors/strategies. Second, such a large dataset requires

months of training using datacenters composed of state-of-

the-art hardware. This makes their approach impractical if

an agent needs to be trained rapidly with limited

computational resources. Finally, LbO is performed using

images of a turn-based board game. This minimizes the

influence of object occlusion (i.e., each Go piece is on its

own square), observation error (e.g., due to erroneous or

delayed responses by the expert), and provides the learning

agent with full observability. Instead, we examine the

feasibility of using deep learning by observation with

limited observations and training time in partially

observable, real-time domains.

3. Domain-Independent Deep Feature

Learning by Observation

Domain-Independent Deep Feature Learning by

Observation (DIDFLO) has four stages: modeling,

observation, learning, and deployment. This section

describes how each stage is implemented.

3.1 Modeling

Agents typically receive their sensory inputs in the form of

periodic messages from a server (e.g., in games or

simulations) or from a set of sensors (e.g., a physical robot).

Although the set of possible inputs may be well-defined

(e.g., in a game’s user manual, in a robot’s design

document), some human intervention is required to encode

the input definitions into a format that is understandable by

an agent. For example, in a simulated soccer domain it

would be necessary to provide mechanisms for parsing

sensory input messages and internally representing the

observable objects (e.g., soccer balls, players, goal nets,

boundary markers). Although modeling is only necessary

the first time an agent is deployed in a new or modified

environment, it is still a process that cannot be fully

automated by the agent itself.

 DIDFLO removes the need to explicitly model an agent’s

sensory inputs by using a raw visual representation of the

environment (i.e., an image of what can currently be

observed). This is beneficial because many domains provide

sensory information in this format (e.g., a game’s

visualization, a robot’s onboard camera). We assume that

this information will be provided in a raw format without

any additional processing or annotation (e.g., object

identification or labeling). This allows the agent to be

deployed in a new environment without modification, so

long as the environment provides visual inputs. For

example, an agent can transition between a soccer game,

where the inputs represent the field, to a chess game, where

the inputs represent the board, without any background

information about what appears in the images.

 We use the visual inputs at two levels of granularity: the

full visual representation and the zoomed visual

representation. Figure 1 shows an example of the full and

zoomed representations in a simulated soccer game. The full

representation 𝑉𝑓𝑢𝑙𝑙 contains the player’s entire field of

vision, whereas the zoomed representation 𝑉𝑧𝑜𝑜𝑚 contains

an enlarged view of objects within a fixed-sized region

surrounding the player. The visual representations contain

what the player can currently observe, which may be a

partial observation of the entire environment (i.e., if the

player has a limited field of vision). By using the zoomed

representation, the agent receives a higher fidelity view of

nearby objects and is provided a better observation of

objects that are partially occluded. However, since the

zoomed representation only contains objects in a fixed-sized

region surrounding the player, it may not contain as many

objects as the full representation. Since the number of

observations may be limited, storing each observation at two

levels of granularity provides additional training data to use

during learning and reasoning. Both 𝑉𝑓𝑢𝑙𝑙 and 𝑉𝑧𝑜𝑜𝑚 are

stored as 256 × 256 pixel RGB images.

3.2 Observation

The observation process involves the expert acting in the

environment (i.e., performing its behavior) and the learning

agent observing the expert. During observation, the learning

agent records the visual inputs received by the expert (i.e.,

𝑉𝑓𝑢𝑙𝑙 and 𝑉𝑧𝑜𝑜𝑚) and the resulting actions. The agent

assumes that an action 𝐴 is performed by the expert after

reasoning about the most recent visual inputs, so

observations as stored as input-actions pairs (i.e., 〈𝑉𝑓𝑢𝑙𝑙 , 𝐴〉
and 〈𝑉𝑧𝑜𝑜𝑚 , 𝐴〉). Over the course of observation, the learning

agent collects all such input-action pairs and stores them in

two observation sets, 𝒪𝑓𝑢𝑙𝑙 and 𝒪𝑧𝑜𝑜𝑚 (𝒪𝑓𝑢𝑙𝑙 = {〈𝑉𝑓𝑢𝑙𝑙
′ , 𝐴′〉,

〈𝑉𝑓𝑢𝑙𝑙
′′ , 𝐴′′〉, … } and 𝒪𝑧𝑜𝑜𝑚 = {〈𝑉𝑧𝑜𝑜𝑚

′ , 𝐴′〉, 〈𝑉𝑧𝑜𝑜𝑚
′′ , 𝐴′′〉, … }).

 The observations serve as labelled training data that the

agent can use to learn how to select actions in a similar

manner as the expert (i.e., what action to perform in

response to a given visual input). Additionally, in the case

of an agent that learns exclusively by observation (i.e., no

additional knowledge or feedback is provided by the

expert), observations are the only source of information that

is available to the agent.

Figure 1: The full visual representation (left) and zoomed

visual representation (right) in a simulated soccer game

3.3 Training

The training stage involves using the collected observations

to learn models of the expert’s behavior. DIDFLO trains two

models, one model 𝑀𝑓𝑢𝑙𝑙 that maps full visual inputs to

actions and one model 𝑀𝑧𝑜𝑜𝑚 that maps zoomed visual

inputs to actions (𝑀𝑓𝑢𝑙𝑙 : 𝒱𝑓𝑢𝑙𝑙 → 𝒜 and 𝑀𝑧𝑜𝑜𝑚: 𝒱𝑧𝑜𝑜𝑚 →
𝒜, where 𝒱𝑓𝑢𝑙𝑙 and 𝒱𝑧𝑜𝑜𝑚 are the sets of all visual inputs,

and 𝒜 is the set of all actions). For both models, learning is

performed using convolutional neural networks (CNN)

(Krizhevsky, Sutskever, and Hinton 2012). The motivation

for training two models is that each representation has

certain strengths and weaknesses, so combining the models

will produce better performance than either model in

isolation. For example, a nearby soccer ball would be easier

to detect in the zoomed image because it appears larger,

whereas a goal net on the other side of the field can only be

detected using the full image. The collected observation sets

𝒪𝑓𝑢𝑙𝑙 and 𝒪𝑧𝑜𝑜𝑚 are used to train the respective CNNs.

 The CNN architecture used is a modified version of

CaffeNet (Jia et al. 2014), containing an input layer, five

convolution layers, five pooling layers, two fully connected

layers, and one softmax loss layer. The CNNs take as input

the pixel values of an image using all three color channels

(i.e., red, green, and blue). Both 𝑉𝑓𝑢𝑙𝑙 and 𝑉𝑧𝑜𝑜𝑚 are 256 ×
256 pixel images, resulting in each CNN having 256 ×
256 × 3 inputs. Each CNN outputs a set 𝒞 containing the

confidence values 𝑐1, … , 𝑐𝑛 for each of the 𝑛 possible actions

(𝒞 = {𝑐1, … , 𝑐𝑛}, with each confidence value in the range

[0.0, 1.0]). In the simulated soccer example, three actions

are used1: kick, dash (i.e., move), and turn. This results in

each CNN outputting three confidence values

(𝑐𝑘𝑖𝑐𝑘 , 𝑐𝑑𝑎𝑠ℎ , 𝑐𝑡𝑢𝑟𝑛).

 DIDFLO was designed under the assumption that training

data would be limited, so rather than fully train each CNN,

a subset of layers are pretrained on other data sources. The

convolution and pooling layers are extracted from a publicly

available network trained on ImageNet data (Jia et al. 2014).

This leaves only the fully connected layers and softmax loss

layer to be trained using the collected observations. This

approach has two primary advantages. First, the pretrained

ImageNet layers can identify many important visual features

already (e.g., lines, curves, shapes, objects). This removes

the need to relearn common features by leveraging a

preexisting network that was trained on a dataset containing

millions of images across a variety of topics. Since the

pretrained layers contain both low-level and high-level

features across a variety of image categories, it does not bias

DIDFLO to any particular domain. Second, the limited

number of available training observations makes it

impractical to train the entire network. Instead, training

focuses exclusively on learning how existing features can be

used to classify visual inputs. Both 𝑀𝑓𝑢𝑙𝑙 and 𝑀𝑧𝑜𝑜𝑚 are

trained using an identical CNN architecture (i.e., they differ

only in the observation sets used to train them).

3.4 Deployment

During deployment, DIDFLO is placed in the environment

in a similar role as the expert (e.g., as a soccer player). Like

the expert, DIDFLO receives sensory inputs from the

environment and selects actions to perform. The primary

goal of deployment is for the agent to select similar actions

to the expert when presented with similar sensory inputs.

Each received sensory input is used as input to both the full

and zoomed CNNs, resulting in two sets of confidence

values 𝒞𝑓𝑢𝑙𝑙 and 𝒞𝑧𝑜𝑜𝑚, that can be combined into an overall

confidence value set 𝒞𝑜𝑣𝑒𝑟𝑎𝑙𝑙 (𝒞𝑜𝑣𝑒𝑟𝑎𝑙𝑙 ← 𝒞𝑓𝑢𝑙𝑙 ∪ 𝒞𝑧𝑜𝑜𝑚).

Since the two CNNs use different input representations and

are trained independently, they may select different actions

to perform (e.g., one is most confident in kick and the other

is most confident in turn). DIDFLO selects a single action

to perform by selecting the highest confidence value 𝑐𝑚𝑎𝑥

from 𝒞𝑜𝑣𝑒𝑟𝑎𝑙𝑙 and using its associated action (∃𝑐𝑚𝑎𝑥 ∈
 𝒞𝑜𝑣𝑒𝑟𝑎𝑙𝑙 such that ∀𝑐𝑖 ∈ 𝒞𝑜𝑣𝑒𝑟𝑎𝑙𝑙 , 𝑐𝑚𝑎𝑥 ≥ 𝑐𝑖).

 By using this combined approach, DIDFLO leverages the

strengths of each individual CNN during action selection.

For example, we would expect the zoomed CNN to perform

better when important objects are near the agent, whereas

1 The actions can also be parameterized (e.g., turn direction, running speed)
but for simplicity we only consider the class of action.

the full CNN would perform better when information from

the entire field of vision is necessary.

4. Evaluation

In this section we evaluate our claim that DIDFLO can learn

from observations without an explicit model of its inputs.

Our evaluation tests the following hypotheses:

H1: Representing inputs at two levels of granularity will

improve learning performance

H2: DIDFLO will achieve comparable performance to

other domain-independent learning by observation

systems in a simulated soccer domain

4.1 Experimental Setup

To evaluate the performance of DIDFLO, we collected

simulated soccer data from the RoboCup Simulation League

(RoboCup 2016). DIDFLO observed a series of 5 vs. 5

soccer games where AI agents controlled each of the ten

players. The specific agent used to control each player was

a simple scripted agent named Krislet. Krislet performs

simple soccer behavior that involves locating the ball,

running towards the ball, and kicking the ball towards the

opponent’s goal. In each match, a single Krislet agent was

used as the expert and had its inputs and actions recorded.

 DIDFLO observed 10 full soccer matches resulting in

approximately 40,000 observations (approximately 100

minutes of observation). The observations are highly

imbalanced (approximately 73% dash, 26% turn, 1% kick),

so random sampling was performed to create a training set

of 1500 observations (i.e., 1500 full representation training

examples and 1500 zoomed representation training

examples). This process was repeated to create 25 randomly

sampled training sets. Additional soccer matches were

observed and a similar random sampling method was used

to create 25 test sets of 1029 observations each. For each

evaluation, a single training set was used to train the CNNs

and a single testing set was used to evaluate the

performance. The CNNs were trained using a base learning

rate of 0.01, polynomial rate decay with a power of 3, and

13,000 training iterations.

4.2 Results

Table 1 shows the average F1 score (and 95% confidence

interval) over each of the 25 training runs. The F1 score

calculates the harmonic mean of the precision and recall

values, with values ranging from 0.0 (low) to 1.0 (high). The

table shows the performance at predicting each individual

action along with the overall performance. In addition to the

combined approach, we also evaluated the performance

when only the full or zoomed CNN was used for action

prediction.

Table 1: Results of trained CNNs on RoboCup test data

Model F1 Kick F1 Dash F1 Turn
F1

Overall

Full 0.66±0.03 0.60±0.02 0.48±0.01 0.58±0.01

Zoomed 0.89±0.01 0.60±0.01 0.56±0.01 0.68±0.01

Combined 0.90±0.01 0.63±0.01 0.58±0.01 0.71±0.01

 The results show that the combined approach is a

statistically significant improvement over using either the

full or zoomed representation alone (using a paired t-test

with 𝑝 < 0.001). These results provide support for H1. For

all three action types, the combined performance is better

than any individual representation. This demonstrates that

both the full and zoomed representation are providing a

positive contribution to the overall performance. Although

the zoomed representation significantly outperforms the full

representation at selecting kick and turn actions, the

improved performance of the combined approach at

predicting those actions demonstrates that there are certain

inputs the full representation is better at selecting actions

for. For example, the zoomed representation is particularly

good at selecting kick actions because the ball is larger and

more visible. However, the presence or absence of the

opponent’s goal net is often only visible in the full

representation (i.e., to differentiate between kicking towards

the net and turning to see the net).

 Overall, these results demonstrate that DIDFLO can learn

a suitable model for action selection. Although each model

is trained on relatively few training instance (i.e., 1500),

DIDFLO is able to achieve reasonable performance. For

example, a random baseline that randomly selects actions to

perform has an overall F1 score of approximately 0.33.

4.3 Comparison to Existing LbO Systems

RoboCup has been used as a domain in previous learning by

observation work (Floyd, Esfandiari, and Lam 2008; Floyd

and Esfandiari 2011; Young and Hawes 2015). Although

differences in evaluation methodology do not allow for a

direct empirical comparison, this subsection provides a

comparison of the relative strengths of each approach.

 Floyd et al. (2008) use case-based reasoning to perform

learning by observation. Each observed state-action pair is

stored as a case by the agent and during deployment the

agent retrieves the case that is most similar to its current

sensory input. This system is specifically designed to be

domain-independent and has also been deployed in Tetris,

obstacle avoidance, and robotic arm control (Floyd and

Esfandiari 2011). This approach will be referred to as F&E.

Young and Hawes (2015) use Qualitative Spatial Relations

to modify how objects are represented in the environment.

Rather than use the observed quantitative values, each

object is represented by a set of qualitative relations to other

objects. The resulting representation can then be used as

input to a variety of existing classification algorithms.

Although this system has only been deployed in a single

domain, the authors minimize that amount of soccer-specific

information by allowing the system to evaluate a number of

possible spatial relationships when determining how to

represent observations. This approach will be referred to as

Y&H.

 The primary strength of DIDFLO is that it requires less

knowledge engineering than the other two approaches. Both

F&E and Y&H require a definition of the possible objects in

the environment, whereas DIDFLO learns an object model

during training. Representation learning during a

preprocessing stage is performed by F&E (i.e., learning

important object types) and Y&H (i.e., learning the best

qualitative representation), but both rely on an existing

object model. However, although DIDFLO requires the

least knowledge engineering, only F&E has been

successfully deployed in multiple domains.

 The strength of Y&H is that their primary contribution is

a representation framework rather than a learning algorithm.

This allows the qualitative representation to be used to train

a variety of classifiers and the best performing classifier (or

an ensemble) to be selected for deployment. The qualitative

representation of Y&H could potentially be integrated with

F&E (i.e., case-based reasoning) or DIDFLO (i.e., deep

learning). Although the training data used and evaluation

methodology differ, Y&H appears to have the highest action

selection accuracy in the RoboCup domain. These results

are what we would expect given that it is the most domain-

dependent of the three approaches. Of the two domain-

independent approaches, DIDFLO appears to outperform

F&E in RoboCup. These results provide some support for

H2.

 The instance-based learning of F&E is its primary

strength. Although it does not perform as well in RoboCup

as DIDFLO or Y&H, it requires no training time after

observations are collected (i.e., no generalization is

performed). This is also advantageous because it allows

newly acquired observations to be added without retraining.

This could allow an agent to be rapidly created and deployed

until the more computationally expensive models used by

DIDFLO or Y&H are trained. Additionally, F&E have the

only approach that has been successfully used to learn from

state-based experts. (i.e., DIDFLO and Y&H can only learn

from reactive experts). However, as the number of cases

increase so too does the time required to retrieve a similar

case. This places a limit on the number of training

observations that can be used by the agent in real-time.

 Overall, the three learning by observation systems used in

the RoboCup domain have significant strengths based on

their design motivations. DIDFLO, F&E, and Y&H all aim

to provide slightly different usages or functionality, thereby

influencing how they approach the learning by observation

problem. Each system has one or more elements that could

potentially be integrated into the other systems or a novel

LbO agent.

5. Conclusions and Future Work

We described Domain-Independent Deep Feature Learning

by Observation, a learning by observation agent that can

learn without being provided an explicit model of the objects

it observes. Our approach uses observations of an expert’s

response to raw visual inputs to train a pair of convolutional

neural networks. The CNNs differ in the granularity of

observations they use, with one using the expert’s entire

field of vision and the other using a fixed-sized region

surrounding the expert.

 In our study, DIDFLO was able to learn from the expert

and perform reasonably well at selecting a similar action to

perform when presented with similar input. Our results

demonstrated that combining the output of both CNNs

resulted in significant improvements over either CNN in

isolation. This indicates that even with limited training

observations, partial observability, and noisy observations,

it is possible to train an agent that can learn an expert’s

behavior without an explicit object model.

 Several areas of future work remain. First, although

DIDFLO removes the need to model observable objects, it

still requires modeling possible actions. We plan to

investigate methods for learning action models from

observations. Second, our approach only reasons over visual

inputs. In real-world scenarios it may be necessary to reason

over additional inputs (e.g., audio). Third, we have only

examined a two-CNN architecture. Future work will

examine if further performance improvement is possible by

training additional CNNs (e.g., other levels of granularity)

or modifying how CNN outputs are combined. Fourth,

although we have developed DIDFLO to be domain

independent, further evaluation in other domains is

necessary to validate this claim. Finally, we plan to examine

how this approach can be extended to incorporate features

of other learning by observation systems (e.g., learning from

state-based experts, active observation acquisition, inferring

high-level goals from observations).

References

Floyd, M. W., Bicakci, M. V. and Esfandiari, B. 2012. Case-based
learning by observation in robotics using a dynamic case
representation. In Proceedings of the 25th International Florida
Artificial Intelligence Research Society Conference, 323-328.
Marco Island, USA: AAAI Press.

Floyd, M. W., and Esfandiari, B. 2011. A case-based reasoning
framework for developing agents using learning by observation. In
Proceedings of the 23rd IEEE International Conference on Tools
with Artificial Intelligence, 531-538. Boca Raton, USA: IEEE
Computer Society Press.

Floyd, M. W., Esfandiari, B., and Lam, K. 2008. A case-based
reasoning approach to imitating RoboCup players. In Proceedings
of the 21st International Florida Artificial Intelligence Research
Society Conference, 251-256. Coconut Grove, USA: AAAI Press.

Gómez-Martín, P. P., Llansó, D., Gómez-Martín, M. A., Ontañón,
S., and Ram, A. 2010. MMPM: A generic platform for case-based
planning research. In Proceedings of the International Conference
on Case-Based Reasoning Workshops, 45-54. Alessandria, Italy.

Grollman, D. H., and Jenkins, O. C. 2007. Learning robot soccer
skills from demonstration. In Proceedings of the IEEE
International Conference on Development and Learning, 276-281.
London, UK: IEEE Press.

Hausknecht, M., and Stone, P. 2016. Deep reinforcement learning
in parameterized action space. In Proceedings of the International
Conference on Learning Representations. San Juan, Puerto Rico.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick,
R. B., Guadarrama, S., and Darrell, T. 2014. Caffe: Convolutional
architecture for fast feature embedding. In Proceedings of the ACM
International Conference on Multimedia, 675-678. Orlando, USA:
ACM.

LeCun, Y., Bengio, Y. and Hinton, G. E. 2015. Deep learning.
Nature, 521, 436-444.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. 2012.
Classification with deep convolutional neural networks. In
Proceedings of the 26th Annual Conference on Neural Information
Processing Systems, 1106-1114. Lake Tahoe, USA.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I.,
King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D.
2015. Human-level control through deep reinforcement learning.
Nature, 518, 529-533.

Ontañón, S., Mishra, K., Sugandh, N., and Ram, A. 2007. Case-
based planning and execution for real-time strategy games. In
Proceedings of the 7th International Conference on Case-Based
Reasoning, 164-178. Belfast, UK: Springer.

RoboCup. 2016. RoboCup Official Site. Retrieved from
[http://www.robocup.org]

Rubin, J., and Watson, I. 2010. Similarity-based retrieval and
solution re-use policies in the game of Texas Hold’em. In
Proceedings of the 18th International Conference on Case-Based
Reasoning, 465-479. Alessandria, Italy: Springer.

Shapiro, D., Shachter, R. 2002. User-agent value alignment. In
Proceedings of the Stanford Spring Symposium - Workshop on Safe
Learning Agents. Palo Alto, USA.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam,
V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner,
N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K.,
Graepel, T., and Hassabis, D. 2016. Mastering the game of Go with
deep neural networks and tree search. Nature, 529, 484-503.

Young, J., and Hawes, N. 2015. Learning by observation using
qualitative spatial relations. In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems, 745-
751. Istanbul, Turkey: ACM.

