
Improving Trust-Guided Behavior Adaptation
Using Operator Feedback

Michael W. Floyd1, Michael Drinkwater1, and David W. Aha2

1 Knexus Research Corporation; Springfield, VA; USA
2 Navy Center for Applied Research in Artificial Intelligence;

Naval Research Laboratory (Code 5514); Washington, DC; USA
{first.last}@knexusresearch.com | david.aha@nrl.navy.mil

Abstract. It is important for robots to be trusted by their human team-
mates so that they are used to their full potential. This paper focuses
on robots that can estimate their own trustworthiness based on their
performance and adapt their behavior to engender trust. Ideally, a robot
can receive feedback about its performance from teammates. However,
that feedback can be sporadic or non-existent (e.g., if teammates are
busy with their own duties), or come in a variety of forms (e.g., different
teammates using different vocabularies). We describe a case-based algo-
rithm that allows a robot to learn a model of feedback and use that model
to adapt its behavior. We evaluate our system in a simulated robotics
domain by showing that a robot can learn a model of operator feedback
and use that model to improve behavior adaptation.

Keywords: inverse trust, behavior adaptation, adaptable autonomy

1 Introduction

Robots can be valuable members of teams if they provide the team with addi-
tional skills, reduce task load, or minimize potential risks to humans. In some
scenarios, the robots’ contributions could be vital to achieving team goals or
successfully completing missions. We focus on semi-autonomous robots that can
be issued high-level commands by an operator (e.g., “move to the river”, “patrol
for threats”). However, for the operator to use the robot to its full potential it
needs to trust the robot. A lack of trust could result in unnecessarily monitoring
the robot’s actions, underutilizing the robot, or not using it at all [1].

We have previously examined how a robot can evaluate its trustworthiness
using an inverse trust metric and adapt its behavior in an effort to engender
trust [2]. Unlike traditional trust metrics that can be used to measure a robot’s
trust in its operator, an inverse trust metric estimates how much trust the oper-
ator has in the robot. Our inverse trust metric uses the robot’s performance to
estimate trust and measures general trends in trustworthiness (i.e., increasing,
decreasing, remaining constant). Behavior adaptation is performed using case-
based reasoning (CBR) and allows the robot to adapt to changes in operators,
missions, or contexts. However, our earlier approach assumes that no explicit

feedback is provided by the operator so only observable indicators of the robot’s
performance are used. Although such an assumption is beneficial in scenarios
where the operator does not have time to provide explicit feedback, it limits the
robot’s ability to use this information when it is available.

In this paper we describe an extension of our previous work, which only
used implied feedback (i.e., the operator allowed the robot to complete a task
or interrupted it), to allow the robot to utilize explicit operator feedback. No
assumptions are made about the format of feedback so it is applicable when
feedback comes in different modes (e.g., text, gestures, interface commands) or
expressions (e.g., synonymous phrases, different languages). Similarly, no as-
sumptions are made about the frequency of feedback. The robot uses case-based
reasoning to learn a model for what the various pieces of feedback mean and
uses that model to assist in behavior adaptation (e.g., if the operator says “go
faster” the robot should increase its speed).

The remainder of this paper describes how a robot can learn a model of op-
erator feedback and use that feedback to adapt its behavior. In Section 2, we
provide a summary of our previous work on how a robot can adapt its behavior
in an attempt to be a more trustworthy member of a team. Section 3 provides
a discussion of related work. Section 4 describes the type of feedback that an
operator can give to the robot, and Section 5 presents an approach for learning
the meaning of feedback and using feedback to improve behavior adaptation. In
Section 6, we evaluate our approach using scenarios from a simulated robotics
domain. They indicate that the robot can use a learned feedback model to im-
prove its behavior adaptation performance. Concluding remarks are discussed in
Section 7.

2 Trust-Based Behavior Adaptation

The robot receives high-level commands from the operator (e.g., “move to the
building”, “patrol for threats”, “transport supplies to the hospital”) and au-
tonomously performs the tasks it is assigned. As the robot performs these tasks,
it can control and modify its behavior by changing modifiable components. Each
modifiable component i represents a single aspect of the robot’s behavior and
the robot is responsible for selecting a value mi for that component from the
set Mi of possible values (mi ∈ Mi). For example, the robot could select a
parameter value from a set of possible values, an algorithm to use from a set of
path planning algorithms, or data to use from a set of alternative data sources.
Without loss of generality, we assume that the possible values are totally or-
dered, with an ordering relation between each pair of values (mj

i ≺ mk
i , where

mj
i ,m

k
i ∈Mi).

If the robot has n modifiable components, its current behavior B is a tuple
containing the currently selected value for each modifiable component (B =
〈m1,m2, . . . ,mn〉). In our work, the robot modifies its behavior in an attempt to
increase its trustworthiness. Unlike traditional trust metrics [3] where the robot
measures its trust in another agent, an inverse trust metric [2] is used to estimate

how much trust an agent has in the robot. Since inverse trust is measured from
the robot’s perspective, only observable indicators of human-robot trust can
be used (i.e., none of the human’s internal reasoning information). The robot
estimates its trustworthiness based on when it successfully completes assigned
tasks, when it fails to complete assigned tasks, and when it is interrupted while
performing a task.

The inverse trust metric evaluates the trustworthiness of the current behavior
B and tracks trends in trust over time. If the robot has received c commands,
the metric will include information from each of those commands. Successfully
completed commands will increase the trust estimate, and failed commands or
interruptions will decrease the estimate (cmdi ∈ {−1, 1}, with a weight wi based
on the command’s relative importance):

TrustB =

c∑
i=1

wi × cmdi

The robot updates this value as more commands are issued and compares it to
two thresholds: the trustworthy threshold (τT) and the untrustworthy threshold
(τU). If the estimate reaches the trustworthy threshold (TrustB ≥ τT), the
robot concludes it has found a sufficiently trustworthy behavior but continues
to estimate trust in case there is a change in operator, mission, or goals. If
the estimate reaches the untrustworthy threshold (TrustB ≤ τU), the robot
concludes its behavior is untrustworthy and should be changed. Otherwise (τU <
TrustB < τT), the robot continues to monitor the trust estimate until it is more
confident about its trustworthiness.

When the untrustworthy threshold is reached, the robot changes its behavior
from B to a new behavior B′ and begins measuring the trustworthiness of that
behavior (i.e., TrustB′). The behavior that was found to be untrustworthy, along
with the time t it took to reach the untrustworthy threshold, are stored as an
evaluated pair E (E = 〈B, t〉).

As the robot evaluates more behaviors, it maintains a set of previously evalu-
ated behaviors Epast that contains all of the behaviors it has found to be untrust-
worthy (Epast = {E1, E2, . . . }). These previously evaluated behaviors represent
the search path the robot has taken while searching for a trustworthy behavior
Bfinal. In a CBR context, the previously evaluated behaviors are the problem
and the final behavior is the solution. We use the following case representation:

C = 〈Epast, Bfinal〉
When the robot successfully finds a trustworthy behavior, it creates a new case
and stores it in its case base. The motivation for using this case representation is
that two operators who find similar behaviors untrustworthy in a similar amount
of time may find similar behaviors to be trustworthy. When the robot needs to
adapt its behavior (i.e., the trust metric reaches the untrustworthy threshold), it
compares the behaviors it has previously evaluated (Epast) to each of the cases. If
a case is sufficiently similar and its final behavior has not already been evaluated
as untrustworthy, the robot switches to use that case’s final behavior.

If no cases are sufficiently similar, the robot performs a random walk. This
form of behavior adaptation finds the evaluated behavior that took the longest
to be labeled as untrustworthy and modifies that behavior. This works under the
assumption that the behavior that took the longest to reach the untrustworthy
threshold was the closest to being trustworthy, so a slight modification could
make it more trustworthy. A more detailed description of case creation, case
retrieval, case-based behavior adaptation, and random walk behavior adaptation
can be found in [2].

Our previous work only accounted for implied feedback (i.e., successes, fail-
ures, and interruptions). The primary contribution of this paper is extending
our previous work to allow for explicit feedback from the operator.

3 Related Work

Kaniarasu et al. [4] have also examined an online, performance-based estimate
of operator trust. Their measure tracks only negative factors (e.g., how often
the robot is warned of poor performance, or the operator manually controls the
robot), so it can identify only decreases in operator trust. To also track increases
in trust, they extended their measure to incorporate performance information
from the operator at regular intervals [5] (e.g., the operator provides the robot
feedback about its performance every 30 seconds). However, this approach is
unable to track trust for any periods where explicit feedback in unavailable.
Saleh et al. [6] estimate operator trust using a set of expert-authored rules.
Since the rules could be different for each operator, mission, or context, this
measure requires an expert redefine the rules whenever a change occurs.

In case-based reasoning, research has focused on traditional trust rather than
inverse trust, and has generally been examined in the context of agent collab-
oration [7] or recommendation systems [8]. Case provenance [9] also deals with
trust but focuses on the trustworthiness of a case’s source rather than the trust-
worthiness of an agent or system.

Our work on inverse trust is related to learning a user’s preferences. The
ability to incorporate a user’s preferences has been examined in areas such as
learning interface agents and preference-based planning [10]. Learning interface
agents build a model of a user by watching the user perform a task (e.g., e-
mail sorting [11] or schedule management [12]) and later assisting the user in
performing that task. Similarly, preference-based planners can learn a user’s
planning preferences by observing the user perform a planning task [13]. In
our work, these demonstration-based approaches would be equivalent to the
operator manually controlling the robot and performing the task. This would
not be practical in time-sensitive situations or when the operator does not have
a fully constructed plan for how a task should be performed.

Both user preferences and feedback play an important role in human-in-the-
loop CBR systems, such as conversational case-based reasoning systems [14].
These interactions tend to be in the form of dialogs between the user and the
system, whereas in our work interactions are one-sided (i.e., information is passed

only from the operator to the robot) and sporadic. Conversational recommender
systems [15] use feedback to refine a model of the user and iteratively improve
the recommendations that are provided. Similarly, feedback can also be used to
tailor what questions to ask a user [16], thereby influencing what feedback will
be provided in the future. Whereas our system is designed to work in a variety
of tasks and missions, these approaches focus on a single task (i.e., recommen-
dation).

The meaning of explicit operator feedback is learned by the robot by deter-
mining a relationship between its behavior when the feedback was received and
its final trustworthy behavior. Relationships are similar to compound critiques
[17] in recommender systems in that they represent the changes that should be
made to a set of features. More generally, learning behavior relationships is sim-
ilar to rule-induction [18]. The primary difference between these approaches and
our own is that behavior relationships are generated using two data points (e.g.,
the behavior when feedback was received and the trustworthy behavior), rather
than a full or partial subset of observations.

4 Operator Feedback

The primary methods used by the operator to interact with the robot are issuing
commands and interrupting (i.e., implied feedback). However, the operator can
also provide additional information to the robot in the form of explicit feedback.
For the remainder of this paper, when referring to feedback we mean explicit
feedback rather than implied feedback.

Feedback is provided at the operator’s discretion, so no assumptions are
made about when it will occur or how often it will be provided. The frequency
of feedback is operator-specific (i.e., some operators prefer to provide more feed-
back) but is also influenced by the operator’s workload. For example, an operator
would likely have less time to provide feedback to the robot during an emergency
situation. In the extreme case, the robot would not receive any feedback from
the operator.

For a robot that supports multimodal interaction, feedback can be provided
by any of the available modes (e.g., written text, speech, gestures, user interface
commands). This allows the operator to provide the same feedback in a variety
of ways. For example, the operator can tell the robot to stop by saying the word
“stop”, making a hand gesture, or pressing a keyboard button. Similarly, the
operator can provide the same feedback in a variety of ways using a single mode
of interaction (e.g., “go faster”, “speed up”, “get going”, saying it in other lan-
guages). The robot could use computational semantics or machine translation to
group similar utterances, but this might not be feasible due to the robot’s com-
putational constraints. Similarly, the robot would need a method for grouping
similar pieces of feedback from different modalities.

In some domains, the format of feedback can be formally defined such that
the robot has a prior model of what feedback it can receive and what each
piece of feedback means. However, this requires the operator to be aware of the

format and structure its feedback accordingly. It would be difficult to enforce
this requirement if the robot is expected to interact with a variety of operators
with minimal training (e.g., a robot that is part of an ad-hoc team or a mass-
produced consumer robot). Even if the operator is fully aware of how to correctly
provide feedback, the format might limit how expressive the feedback can be.
This would make it difficult to provide feedback if the team encounters new
environments, new tasks, or unforeseen events. Instead, we will examine how the
robot can learn a model of operator feedback without any prior knowledge about
the frequency, format, or modality of feedback.

Each time feedback is provided by the operator, the robot stores a pair F
containing the feedback f and the behavior B that was being used by the robot
when the feedback was received (F = 〈f,B〉). This representation encodes the
circumstances under which the operator decided to provide feedback (i.e., how
the robot was behaving) as well as the information the operator was trying to
convey to the robot (i.e., the feedback). This makes the assumption that the
operator’s feedback is a direct response to how the robot is currently behaving.
If the operator provides feedback about a previous behavior (e.g., “You were
driving too slowly five minutes ago.”), this encoding will erroneously attribute
that feedback to the current behavior. However, we anticipate that such delayed
feedback will be relatively rare compared to feedback about the current behavior
or delayed feedback that is still valid for the current behavior (e.g., the robot
was driving slowly five minutes ago and is still driving slowly).

Over the course of operation, the robot will maintain a set Freceived of re-
ceived feedback (Freceived ⊆ F , where F is the set of all possible feedback items).
This set, which will be empty initially, will be extended when the robot receives
a new feedback item (Freceived =

⋃n
i=1 Fi, where n is the number of feedback

items received).

5 Feedback Model

We have described how the robot can record feedback but not how it can leverage
that information. This section will present methods that allow the robot to learn
from feedback and use that feedback in an attempt to improve its behavior
adaptation performance.

5.1 Learning the Feedback Model

Since the meaning of feedback is initially unknown to the robot, it needs to
learn a feedback model. The feedback items themselves do not provide enough
information to build the model because they capture only what the robot’s
behavior was at the time the feedback was received. The robot also needs to
know what it should have done in response to the feedback. Since feedback
is received while searching for a trustworthy behavior, when the robot finds a
trustworthy behavior it can use that behavior to build its feedback model.

The feedback model is structured as a case base that contains guidelines for
how the robot should adapt its behavior in response to feedback. We refer to
this case base as the feedback base to differentiate it from the case base used for
case-based behavior adaptation. A case FR is defined as:

FR = 〈f,R, cnt〉

Each case contains a piece of feedback f , a relationship R, and a frequency count
cnt. The relationship represents guidelines for how the robot should adapt its
behavior in response to the feedback. For any pair of behaviors (e.g., the behavior
when feedback was received and a final trustworthy behavior), the relationship
encodes how the two behaviors differ (relation : B × B → R, where B is the
set of all behaviors and R is the set of all relationships). More specifically, the
relationship encodes how the modifiable components of each behavior differ. A
relationship can be determined for each pair of modifiable components (rel :
Mi×Mi → O,O = {≺,�,=}). The relationship Rij between two behaviors Bi

and Bj contains the relationship between each of their modifiable components
(|Bi| = |Bj | = |Rij |, Rij = 〈rel(Bi.m1, Bj .m1), rel(Bi.m2, Bj .m2), . . . 〉).

Consider an example where the robot has two modifiable components: its
speed and its object padding (how far it attempts to stay away from obstacles
when planning its movement). If the robot receives the feedback “go faster” while
using a speed of 1 meter/second and a padding of 0.5 meters (B1 = 〈1, 0.5〉),
and eventually finds a behavior with a speed of 5 meters/second and a padding
of 0.5 meters (B2 = 〈5, 0.5〉) to be trustworthy, the relationship will show the
speed increased and the padding remained constant (R12 = 〈≺,=〉).

The cnt value stores the number of times that feedback f resulted in the
relationship R being observed. The motivation for storing this value is that it
is possible to observe unnecessary relationships or erroneous relationships. An
unnecessary relationship would occur if the robot changed one or more modifi-
able components when it did not need to (e.g., in an attempt to go faster the
robot changed both its speed and its padding), whereas an erroneous relationship
would occur when the operator gives incorrect feedback (e.g., telling the robot
to go faster when it is already driving fast enough). We make the assumption
that correct relationships, even if they contain unnecessary modifications, will
occur more frequently than erroneous relationships. Using this case definition,
the feedback can be thought of as the problem, the relationship as the solution,
and the frequency count a measurement of the quality of a relationship.

Algorithm 1 shows the process the robot uses to refine its feedback model.
The algorithm is used at the end of a search when the robot has found a trust-
worthy behavior (this is also when it creates and stores behavior adaptation
cases). It receives as input the set of received feedback items Freceived, the trust-
worthy behavior Bfinal that was found, and its feedback base FeedbackBase.
The algorithm iterates through each of the feedback items (line 1) and checks
to see if the behavior when feedback was received differs from the final behavior
(line 2). This check is performed to ensure the robot stores only cases when feed-
back required it to adapt its behavior (i.e., it would never store the relationship

〈=,=,=, . . . 〉). If the behaviors differ, the relationship between the behaviors is
computed (line 3). If the feedback base already contains a case with that feed-
back and relationship, the frequency count for that case is increased (line 5-8).
Otherwise, a new case is created and added to the feedback base (lines 9-11).
Once all feedback items have been processed, the set is emptied (line 12) and
can again be extended as new feedback is received.

Algorithm 1: Process the feedback items received during a search

Function: processFeedback(Freceived, Bfinal, FeedbackBase);

1 foreach Fi ∈ Freceived do
2 if Fi.B 6= Bfinal then
3 Ri ← relation(Fi.B,Bfinal);
4 exists← false;
5 foreach FRj ∈ FeedbackBase do
6 if FRj .f = Fi.f and FRj .R = Ri then
7 FRj .cnt← FRj .cnt + 1;
8 exists←true;

9 if !exists then
10 FRnew ← 〈Fi.f, Ri, 1〉;
11 FeedbackBase← FeedbackBase ∪ FRnew;

12 Freceived ← ∅;

5.2 Using the Feedback Model

We have previously described how the robot stores the feedback it receives (Sec-
tion 4) and will now describe how the robot uses the feedback model it has
learned to adapt its behavior. Algorithm 2 is called when the operator provides
the robot with feedback. A new feedback item is created from the received feed-
back and current behavior (line 1), and is stored in the set of feedback items
(lines 2). The algorithm iterates through all feedback relationships in the feed-
back base (line 5) and stores the most frequent feedback relationship for the
given feedback (lines 6-8). This is because there can be multiple feedback rela-
tionships for each type of feedback, so only the best relationship (i.e., the one
with the highest frequency value) is used. If no feedback relationship is found
(i.e., the feedback base is empty or no relationship has been found for that feed-
back yet), the robot does not change its behavior (lines 9-10). However, if a
feedback relationship is found, then the robot uses the applyRelationship(. . .)
function to modify its behavior.

The applyRelationship(. . .) function does the following:

1. The current behavior Bcurr is stored along with its current trust estimate
TrustBcurr

and evaluation time tcurr. These are stored because behavior

Algorithm 2: Receive feedback from the operator

Function: receiveFeedback(f , Bcurr, Freceived, FeedbackBase) returns Bnew;

1 Fnew ← 〈f,Bcurr〉;
2 Freceived ← Freceived ∪ Fnew;
3 bestFrequency ← 0;
4 Rbest ← ∅;
5 foreach FRi ∈ FeedbackBase do
6 if FRi.f = f and FRi.cnt > bestFrequency then
7 bestFrequency ← FRi.cnt;
8 Rbest ← FRi.R;

9 if Rbest = ∅ then
10 return Bcurr;

11 return applyRelationship(Bcurr, Rbest);

adaptation is triggered by feedback, not by the behavior being labelled as
trustworthy or untrustworthy. Since the feedback can result in unnecessary
behavior changes (e.g., erroneous feedback or incorrect feedback relation-
ships), this allows the robot to continue evaluating the behavior at a later
time.

2. A new behavior Bnew is selected under the conditions that it has not al-
ready been found to be untrustworthy (∀Ei ∈ Epast, Ei.B 6= Bnew) and it
satisfies the relationship Rbest. Ideally, the new behavior will satisfy the en-
tire relationship (relation(Bcurr, Bnew) = Rbest). However, if no behaviors
meet the entire relationship (e.g., the relationship requires decreasing the
robot’s speed but the speed is already at its minimum value), Bnew will be
a behavior that partially satisfies the relationship.

3. If the new behavior has already been partially evaluated (i.e., its trust es-
timate and time were previously stored in Step 1), the trust estimate and
evaluation time are loaded. This allows the robot to continue its previous
evaluation of the behavior and avoids spending longer than necessary evalu-
ating behaviors.

The feedback process works under the assumption that errors, either in the
feedback provided by the operator or in the feedback model learning, are un-
avoidable. However, the relationships’ frequency counts are used to reinforce
correct relationships while ignoring poor relationships. For example, consider
the situation where feedback is received, a relationship is selected, and applying
the relationship results in a trustworthy behavior being found. Since the feedback
is stored (lines 1-2 of Algorithm 2), the robot will generate the relationship again
when it processes the feedback items (using Algorithm 1). This increases the re-
lationship’s frequency count and can increase the chance that it is used again in
the future (i.e., that it will have the highest frequency count for that feedback).
Similarly, if applying a relationship does not result in a trustworthy behavior
being found, the robot will continue to adapt its behavior until a trustworthy

behavior is found (e.g., using further feedback, case-based adaptation, or random
walk adaptation). When feedback items are eventually processed, a different re-
lationship will likely be generated and have its frequency count increased. Since
the unsuccessful relationship does not increase its frequency count it may be less
likely to be used in the future (i.e., it may no longer have the highest frequency
for that feedback).

6 Evaluation

In this section, we evaluate our claim that learning a feedback model and using op-
erator feedback can improve the performance of behavior adaptation. Case-based
behavior adaptation has previously been found to allow a robot to efficiently
locate a trustworthy behavior [2]. However, it requires using the significantly
less efficient random walk behavior adaptation to acquire cases. Since the robot
starts with an empty case base and learns cases during during deployment, ran-
dom walk behavior adaptation serves as a bottleneck. We focus on evaluating
the improvements the feedback model provides compared to random walk adap-
tation. Our evaluation tests the following hypotheses:

H1: Learning and using a feedback model will demonstrate improved per-
formance compared to random walk behavior adaptation.
H2: The performance improvement will increase as the model learns from
feedback.

6.1 eBotworks Simulator

We use the eBotworks simulator [19] for our evaluation. eBotworks allows au-
tonomous agents to control simulated robotic vehicles while interacting with
human operators using a variety of command modalities (e.g., speech, text, user
interface commands). This simulator was selected based on its built-in agent
design framework, autonomy modules (e.g., natural language command inter-
pretation and path planning), and experimentation and data collection capa-
bilities. Additionally, eBotworks allows for non-deterministic environments and
noisy sensory inputs.

In our evaluation, the robot is a wheeled unmanned ground vehicle (UGV)
operating in an urban environment that is composed of ground features (e.g.,
paved roads, grass), objects (e.g., houses, vehicles, road barriers, traffic cones),
and other agents (e.g., humans, other robots). The scenario we use in the evalu-
ation involves the robot receiving commands from an operator to patrol between
an initial location and a goal location. While patrolling, the robot continuously
scans for suspicious objects. If a suspicious object is found, the robot moves to-
ward it and uses its sensor for detecting explosives to determine if the object is a
threat or harmless. After classifying each suspicious object, the robot continues
patrolling.

In this scenario, the robot has four modifiable components of its behav-
ior: speed, padding, scan time, and scan distance. Speed, measured in meters

per second, controls how quickly the robot moves through the environment,
while padding, measured in meters, controls how far the robot attempts to
stay away from obstacles when planning its path (i.e., lower padding makes
it more likely to bump into objects). Scan time, measured in seconds, is how
much time the robot spends scanning each suspicious object, and scan distance,
measured in meters, is how close the robot gets to suspicious objects while scan-
ning. Longer scan times and smaller scan distances increase the probability that
the robot will successfully classify objects as threats or harmless. The possi-
ble values for each modifiable component are: Mspeed = {0.5, 1.0, . . . , 10.0},
Mpadding = {0.1, 0.2, . . . , 2.0}, Mscantime = {0.5, 1.0, . . . , 5.0}, Mscandistance =
{0.25, 0.5, . . . , 1.0}.

6.2 Experimental Conditions

Our study uses simulated operators that issue natural language commands to
the robot and monitor its performance. The simulated operators were selected
to represent a subset of the control strategies of human operators, and each
operator’s preferences influence when the robot is able to complete a task and
when it is interrupted. The operators evaluate the robot based on how quickly
the task is completed, how safely it is completed, and how well it identifies and
correctly classifies suspicious objects. Two simulated operators are used: speed-
focused and detection-focused. The speed-focused operator prefers the task to be
completed quickly (i.e., 95% probability of interrupting if the robot exceeds 120
seconds) and correctly (i.e., 100% probability of interrupting if the robot misses
a suspicious object or incorrectly classifies it), with less focus on safety (i.e., 5%
probability of interrupting if the robot hits an obstacle). The detection-focused
operator prefers the task be completed correctly, but is less concerned with speed
(i.e., 5% probability of interrupting if the robot exceeds 120 seconds) or safety.

The operators can give four types of natural language feedback in the fol-
lowing categories: speed feedback, safety feedback, false positive feedback (i.e.,
classifying a harmless object as a threat), and false negative feedback (i.e., miss-
ing a suspicious object or classifying a threat as harmless). Each category of
feedback has three synonymous pieces of feedback that the operators can use
interchangeably and with equal probability (e.g., “go faster”, “speed up”, “get
going”). Although we use a simulated operator, this is done to represent that
human operators may not use a fixed vocabulary for feedback. Every time an
operator interrupts the robot it can, with probability pf , give the robot feedback.

For each feedback probability pf ∈ {0.00, 0.05, 0.10, . . . , 1.00}, we perform
50 experimental trials and start from an initially empty feedback base (i.e., the
robot has no feedback model at the start of the first trial with each feedback
probability). At the start of each trial the robot is assigned a random initial
behavior and a random operator (both with uniform distribution). A trial con-
cludes when the robot successfully finds a trustworthy behavior or has evaluated
all possible behaviors. Each trial is composed of numerous experimental runs.
At the start of each run the environment is reset, the robot is placed at the
start position, and six suspicious objects are placed in the environment (their

Fig. 1. Mean number of behaviors evaluated before a trustworthy behavior is found
using a variety of feedback probabilities.

appearance and location are randomly selected each run). Between 0 and 3 of
the objects (inclusive) are selected randomly to be threats while the remaining
objects are harmless. A run concludes when the robot successfully completes
the assigned tasks, fails, or is interrupted. At the end of a trial the robot up-
dates its trust estimate and may adapt its behavior (either using random walk
behavior adaptation or based on feedback). The robot stores and uses feedback
(Algorithm 2) at the end of any run where feedback is provided, and updates
the feedback base (Algorithm 1) at the end of each trial where a trustworthy
behavior is found.

Since we are assessing how using feedback improves random walk behavior
adaptation, which is used by case-based behavior adaptation to acquire cases, the
robot uses only random walk adaptation. The robot uses a trustworthy threshold
of τT = 5.0 and an untrustworthy threshold of τU = −5.0. These thresholds were
selected to allow some fluctuation between increasing and decreasing trust while
still identifying trustworthy and untrustworthy behaviors quickly.

6.3 Results

The mean number of behaviors that were evaluated before a trustworthy be-
havior was found is shown in Figure 1. The results are further divided into the
mean for the first 25 trials and last 25 trials. When comparing the results when
no feedback model is learned or used (i.e., pf = 0.0) to when feedback is used
(i.e., pf > 0.0), using feedback results in a statistically significant improvement
(using a paired t-test with p < 0.001). This provides evidence that hypothesis
H1 is supported.

Figure 1 also shows evidence that when feedback is used the performance
increases in later trials. When pf > 0.0, the performance in the last 25 trials
(i.e., when the robot has had time to build a feedback model) is an improvement
over the first 25 trials (i.e., when the model is empty or still being refined).
Figure 2 examines this further by displaying the running mean (i.e., the value
for trial N is the mean of the first N trials) using four feedback probabilities
(pf ∈ {0.00, 0.05, 0.50, 1.00}). In early trials, performance is poor because the

Fig. 2. Running mean number of behaviors evaluated over 50 trials.

feedback model is still being learned. The differences in performance in the first
trials is because each of those trials starts at a random behavior, some of which
are further from a trustworthy behavior than others. However, regardless of their
early performance, all evaluations that used feedback (i.e., all but pf = 0.0) had
a mean that decreased as the number of trials increased. The improvement occurs
because the robot refines its feedback model over time and improves its ability
to adapt in response to feedback. This shows support for hypothesis H2.

6.4 Discussion

Even when feedback is relatively rare (e.g., pf = 0.05), the robot can still improve
its performance significantly. Additionally, there is no statistically significant
difference in performance when pf values between 0.15 and 1.0 are used. This
indicates that this approach does not require near-constant feedback, but can
perform well using moderate amounts of feedback. Similarly, since feedback is
most important when the robot needs to do random walk behavior adaptation,
the robot could request additional feedback when case-based behavior adaptation
fails. This would be beneficial because it would not only improve the robot’s
ability to acquire additional behavior adaptation cases but would also inform
the operator that a period of sub-optimal behavior should be expected (i.e.,
using random walk behavior adaptation to acquire cases rather than the more
efficient case-based behavior adaptation).

At the end of the evaluation, the feedback bases contained between 81 and 309
feedback cases (mean of 175.25), with the majority of cases having low frequency
counts (i.e., their relations were rarely found for their feedback item). The cases
with the highest frequency counts tended to contain the relationships we would
expect given the feedback. However, some cases with high frequency counts dis-
played unexpected relationships. For example, with speed-related feedback the
relationships often indicated that speed should be increased and padding de-
creased. This relationship arises because lower padding allows the robot to navi-
gate through narrow pathways and make tighter turns, ultimately increasing its
speed.

7 Conclusions

In this paper, we presented an extension of our work on trust-guided behavior
adaptation to allow for the incorporation of explicit operator feedback. Since
the robot learns the feedback model, it does not require that the operator limits
feedback to a fixed vocabulary (e.g., the operator can use synonyms for feed-
back). Similarly, behavior adaptation is not dependent on feedback so feedback
is used only when it is available. Our approach is beneficial because it does not
require a predefined feedback model but learns one over time. This model is
continuously refined and updated as more information becomes available, im-
proving the robot’s response to feedback over time. However, a limitation of our
approach is that new feedback is incorporated into the feedback model only after
a trustworthy behavior is found. Until that point, the robot can use feedback to
adapt but cannot refine the feedback model.

We evaluated our approach in a simulated robotics environment where the
robot was responsible for patrolling an urban environment, identifying suspicious
objects, and classifying them as threats or harmless. Our results indicate that
by learning a feedback model and using it to assist in behavior adaptation the
robot can significantly improve its behavior adaptation performance. Although
the robot did not initially have a feedback model, it quickly learned one and
used it to improve future performance.

One area of future work we plan to address is using the feedback base to al-
low the robot to explain its reasoning behind behavior adaptation. In this sense,
the robot would search for similar solutions to its proposed solution (i.e., the
relationship between the current behavior and the new behavior) and retrieve
their associated problems (i.e., what feedback the operator might have been con-
sidering). This adds transparency between the robot and operator by providing
information about the robot’s reasoning process and can further increase trust
[20]. We also plan to investigate how the robot can reason about its goals and
the team’s goals to ensure they compliment each other, and to detect any unex-
pected goal changes. Additionally, we plan to evaluate our trust-guided behavior
adaptation approach in a series of user studies.

Acknowledgments

Thanks to the Naval Research Laboratory and the Office of Naval Research for
supporting this research.

References

1. Oleson, K.E., Billings, D.R., Kocsis, V., Chen, J.Y., Hancock, P.A.: Antecedents
of trust in human-robot collaborations. In: Proceedings of the 1st International
Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and
Decision Support. (2011) 175–178

2. Floyd, M.W., Drinkwater, M., Aha, D.W.: How much do you trust me? Learning
a case-based model of inverse trust. In: Proceedings of the 22nd International
Conference on Case-Based Reasoning, Springer (2014) 125–139

3. Sabater, J., Sierra, C.: Review on computational trust and reputation models.
Artificial Intelligence Review 24(1) (2005) 33–60

4. Kaniarasu, P., Steinfeld, A., Desai, M., Yanco, H.A.: Potential measures for detect-
ing trust changes. In: 7th International Conference on Human-Robot Interaction.
(2012) 241–242

5. Kaniarasu, P., Steinfeld, A., Desai, M., Yanco, H.A.: Robot confidence and trust
alignment. In: 8th International Conference on Human-Robot Interaction. (2013)
155–156

6. Saleh, J.A., Karray, F., Morckos, M.: Modelling of robot attention demand in
human-robot interaction using finite fuzzy state automata. In: International Con-
ference on Fuzzy Systems. (2012) 1–8

7. Briggs, P., Smyth, B.: Provenance, trust, and sharing in peer-to-peer case-based
web search. In: 9th European Conference on Case-Based Reasoning. (2008) 89–103

8. Tavakolifard, M., Herrmann, P., Öztürk, P.: Analogical trust reasoning. In: 3rd
International Conference on Trust Management. (2009) 149–163

9. Leake, D., Whitehead, M.: Case provenance: The value of remembering case
sources. In: 7th International Conference on Case-Based Reasoning. (2007) 194–
208

10. Baier, J.A., McIlraith, S.A.: Planning with preferences. AI Magazine 29(4) (2008)
25–36

11. Maes, P., Kozierok, R.: Learning interface agents. In: 11th National Conference
on Artificial Intelligence. (1993) 459–465

12. Horvitz, E.: Principles of mixed-initiative user interfaces. In: 18th Conference on
Human Factors in Computing Systems. (1999) 159–166

13. Li, N., Kambhampati, S., Yoon, S.W.: Learning probabilistic hierarchical task
networks to capture user preferences. In: 21st International Joint Conference on
Artificial Intelligence. (2009) 1754–1759

14. Aha, D.W., McSherry, D., Yang, Q.: Advances in conversational case-based rea-
soning. Knowledge Eng. Review 20(3) (2005) 247–254

15. McGinty, L., Smyth, B.: On the role of diversity in conversational recommender
systems. In: 5th International Conference on Case-Based Reasoning. (2003) 276–
290

16. Mahmood, T., Ricci, F.: Improving recommender systems with adaptive conversa-
tional strategies. In: 20th ACM Conference on Hypertext and Hypermedia. (2009)
73–82

17. McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: On the dynamic generation of
compound critiques in conversational recommender systems. In: 3rd International
Conference on Adaptive Hypermedia and Adaptive Web-Based Systems. (2004)
176–184

18. Quinlan, J.R.: Generating production rules from decision trees. In: 10th Interna-
tional Joint Conference on Artificial Intelligence. (1987) 304–307

19. Knexus Research Corporation: eBotworks. http://www.knexusresearch.com/

products/ebotworks.php (2015) [Online; accessed May 6, 2015].
20. Kim, T., Hinds, P.: Who should I blame? Effects of autonomy and transparency on

attributions in human-robot interaction. In: 15th IEEE International Symposium
on Robot and Human Interactive Communication. (2006) 80–85

