
High Assurance Human-Centric Decision Systems
Constance Heitmeyer∗, Marc Pickett†, Len Breslow†, David Aha†, J. Greg Trafton†, and Elizabeth Leonard∗

∗Center for High Assurance Computer Systems
†Center for Applied Research in Artificial Intelligence

Naval Research Laboratory, Washington, DC 20375, USA
{constance.heitmeyer, marc.pickett.ctr, len.breslow, david.aha, greg.trafton, elizabeth.leonard}@nrl.navy.mil

Abstract—Many future decision support systems will be
human-centric, i.e., require substantial human oversight and
control. Because these systems often provide critical services, high
assurance will be needed that they satisfy their requirements.
How to develop “high assurance human-centric decision systems”
is unknown: while significant research has been conducted in
areas such as agents, cognitive science, and formal methods,
how to apply and integrate the design principles and disparate
models in each area is unclear. This paper proposes a novel
process for developing human-centric decision systems where
AI (artificial intelligence) methods—namely, cognitive models
to predict human behavior and agents to assist the human—
are used to achieve adequate system performance, and software
engineering methods, namely, formal modeling and analysis, to
obtain high assurance. To support this process, the paper intro-
duces a software engineering technique—formal model synthesis
from scenarios—and two AI techniques—a model for predicting
human overload and user model synthesis from participant
studies data. To illustrate the process and techniques, the paper
describes a decision system controlling unmanned air vehicles.

I. INTRODUCTION

Many future decision systems will be human-centric—
i.e., require substantial human oversight and control. Because
these systems often provide critical services, high assurance
will be needed that they satisfy their requirements. Systems
controlling autonomous vehicles constitute one important and
growing class of human-centric decision systems which re-
quire high assurance. Currently, the largest deployed class of
systems which control autonomous vehicles manage UAVs
(unmanned air vehicles): the U.S. military alone is estimated
to deploy over 7,000 UAVs, compared to less than 50 a decade
ago [5]. Currently, these systems, which perform a range
of challenging tasks including surveillance and targeting, are
not entirely autonomous but remotely controlled by humans.
In future years, systems managing autonomous vehicles are
expected to be widely deployed in both military and non-
military applications. For example, plans exist to use au-
tonomous vehicles in law enforcement, where UAVs may be
equipped not only with cameras and scientific instruments for
surveillance and information gathering, but also with weapons,
such as rubber bullets, Tasers, and tear gas. These non-military
systems, e.g., for law enforcement and public safety, will be
natural transitions from the military’s decision systems.

How to design and build high assurance human-centric deci-
sion systems is largely unknown: while significant research has
been published in areas such as intelligent agents, cognitive
science, and formal methods, how to relate and integrate the

design principles and disparate models in each area is unclear.
In combining the research results, difficult questions arise, e.g.,
what pair-wise model interactions are beneficial? Can design
principles in one area be combined with those in another?
Designing and building high assurance human-centric decision
systems also poses major challenges. Because the human user
of these systems performs many complex tasks, he/she will at
times become overloaded. A major challenge is how to address
human overload. A second major challenge is how to obtain
high assurance that these systems behave as intended.

A promising approach to human overload is to use AI (ar-
tificial intelligence) methods—in particular, a cognitive model
and an agent. The cognitive model’s role is to predict human
overload, while the agent’s role is, upon notification by the
cognitive model of human overload, to alert the human or to
take control of one or more of the human’s tasks. This system
design raises major questions. For example, how to design the
autonomy—i.e., which tasks to assign to humans and which
to the “system,” when to switch from human to system control
and vice versa, etc.—is unclear. A promising approach to
the high assurance problem is to apply software engineering
methods—namely, formal modeling and analysis. However, a
huge problem is how to obtain the formal system require-
ments model. Difficult to obtain in general, formal models of
requirements are especially hard to obtain for human-centric
decision systems given their complexity. Moreover, even if
the problem of obtaining a formal requirements model is
overcome, major questions remain. For example, how does
the formal model represent the requirements of a system
composed of a cognitive model and an agent?

To illustrate the process and techniques described in this
paper, Section II introduces an example of a human-centric
decision system controlling a team of UAVs. To address the
research challenges, Section III proposes a novel development
process for high assurance human-centric decision systems. In
this process, a prototype system which includes a cognitive
model and an agent is built, the system requirements are
derived from the prototype and expressed as scenarios, a
formal system model is synthesized from the scenarios, and
ultimately a system is implemented based on the formal model.
Section IV describes the results of our research to support
this process: a technique for synthesizing formal models from
scenarios, a dynamic operator overload model for predicting
overload, and a technique for synthesizing user models from
human participant studies data.

U.S. Government work not protected by U.S. copyright RAISE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

35



Fig. 1. Operator display of MIT’s RESCHU simulator [3].

II. HUMAN-CENTRIC DECISION SYSTEM: EXAMPLE

Our studies are being conducted in the context of the
Research Environment for Supervisory Control of Heteroge-
neous Unmanned Vehicles (RESCHU) [3], a MIT-developed
simulator of a decision system in which one human operator
controls a team of UAVs. In RESCHU, operators assign and
move UAVs to specific target areas, reroute UAVs to avoid
threats, and order UAVs to engage targets. The operator can
alter the path of a UAV towards its target by manipulating
waypoints. Simultaneously, operators perform other tasks (e.g.,
visual acquisition, surveillance) in scenarios involving urban
coastal or inland settings. RESCHU’s operator interface (see
Fig. 1) has three windows: The Map displays UAVs, targets,
and threats. The Status window provides information, such as
UAV damage from threats, estimated time for UAVs to reach
targets, etc. The Payload window displays status information
for other mission tasks. As in other human-centric decision
systems, a serious problem in RESCHU is operator overload,
which occurs when the operator has too many concurrent
demands and is unable to handle all in a timely manner.

III. SYSTEM DEVELOPMENT PROCESS

A promising approach to achieving high assurance for
human-centric decision systems is Model-Based Development
(MBD). In MBD, one or more models of the required system
behavior are built, validated (e.g., via simulation) to capture
the intended behavior, verified to satisfy required properties,
and ultimately used to build the system implementation. Model
properties to be verified include completeness (no missing
cases), consistency (no non-determinism), and application
properties, for example, safety properties.

While the use of MBD in software practice is growing,
a major problem is the lack of good formal requirements
models. In many cases, system and software requirements
models do not exist at all. Even when they exist, these models
are usually expressed ambiguously in languages without an

explicit semantics and at a low level of abstraction. Ambiguity
makes the models hard to analyze formally while the low level
of abstraction leads to unneeded implementation bias and also
makes the models hard to understand, validate, and change.

To address these problems, researchers have introduced
techniques (see, e.g., [27]) for synthesizing formal models
from scenarios. Informally, scenarios describe how the system
interacts with humans and the system environment to provide
the required system services. Because many practitioners al-
ready use scenarios to elicit and define requirements, synthe-
sizing formal models from scenarios is highly promising.

Fig. 2 shows a four-step process, an extension of a process
introduced in [1], for developing high assurance human-centric
decision systems which uses MBD. This is an idealization of
the actual process which has more iteration and feedback and
may not always proceed in a top-down fashion. In step 1,
a prototype is built of the system’s conceptual behavior. As
Fig. 2 shows, a human operator of the system interacts with a
visual display to perform a set of tasks. Because the tasks are
complex, an agent is available to assist an overloaded operator
and a cognitive model available to predict operator overload.

In step 2, a requirements engineer elicits information about
the system requirements from the prototype, determines the
system modes (externally visible abstractions of the system
state), and expresses the requirements as a set of scenarios
and system modes. Informally, the system will behave differ-
ently in different modes; e.g., if the system is in mode A
when a new input arrives, it may respond differently than
it would in mode B. In the scenarios, implementation bias,
e.g., in RESCHU, how the display represents an endangered
UAV, can be avoided by using appropriate abstractions. The
requirements engineer also formulates and expresses in precise
natural language the required system properties. For RESCHU,
an example property is “If endangered (i.e., too close to a
threat), then a UAV is under operator control or agent control.”

In step 3, the scenarios and systems modes are automatically
synthesized into a formal system model, and the model is
checked for completeness and consistency and validated (e.g.,
via simulation) to capture the intended behavior. Moreover,
required system properties, such as the example property
above, are translated into logical formulae, and the formal
model is verified to satisfy these properties, using an appro-
priate verification tool such as a model checker. Finally, in
step 4, the model, along with information such as the platform
characteristics, the characteristic and interfaces of I/O devices,
etc., is the basis for developing source code, some generated
automatically and other code developed manually.

Fig. 2. Development process for a high assurance human-centric decision system.

36



IV. BUILDING DECISION SYSTEMS: NEW TECHNIQUES

This section describes new software engineering and AI
techniques which support the system development process
introduced in Section III. In developing and evaluating these
new techniques, we used RESCHU to build a prototype system
which relies on a cognitive model to predict operator overload.
In future work, an agent will be added to the prototype to assist
the operator in performing the assigned tasks.

Section IV-A introduces our new technique for synthesizing
formal system requirements models from scenarios and system
modes. Sections IV-B and IV-C describe new techniques for
overcoming two major problems in the design of human-
centric decision systems: how to predict operator overload and
how to evaluate agent designs. To address the first problem,
Section IV-B introduces the dynamic operator overload model.
To address the second problem, Section IV-C describes a new
technique for synthesizing user models from data collected in
earlier human participant studies.

We expect the technique described in Section IV-A for
synthesizing formal system models from scenarios to support
steps 2–4 of our development process: Code generated from
a validated, verified formal system model should provide
high assurance that the system implementation satisfies its
requirements. The techniques for predicting operator overload
and evaluating agents described in Sections IV-B and IV-C are
expected to lead to good designs of human-centric decision
systems and will therefore prove useful in developing the
prototype system called for in step 1. Moreover, we expect
the synthesized user models will also be useful in step 2, e.g.,
for identifying assumptions about the operator’s behavior, and
in step 3 as input user data useful for validating and formally
verifying the formal model synthesized in step 2.

A. Formal Modeling and Analysis

A popular notation for specifying scenarios is that of
Message Sequence Charts (MSCs) [16]. Many techniques for
synthesizing formal models from MSCs have been proposed
but, unlike ours, most (see, e.g., [19], [27], [15]) translate
MSCs into software design models rather than system require-
ments models. Like us, Damas et al. [9] synthesize formal
requirements models and have techniques for detecting model
incompleteness and generating invariants. Unlike us, however,
they use negative MSCs to prohibit certain system behaviors,
and, unlike ours, their approach does not use system modes.

Formally, a mode class is a set of system modes which
partition the system’s state space [14]. Thus each mode is an
equivalence class of system states, and a mode class can be
treated as a variable whose possible values are the modes.
A goal in choosing modes is to partition the state space in
a meaningful way. A major benefit of modes is that modes
make the requirements model more concise and thus easier
to understand. A related benefit is that modes provide an
abstract and intuitive structure for organizing the requirements
model. This is especially important for human-centric decision
systems like RESCHU, whose behavior is highly complex and
whose requirements model will be very large.

Fig. 3. MSC for operator movement of a UAV’s way point.

In our approach, a MSC describes a sequence of stimulus-
response behaviors of a state machine model with a next-state
function T : s × e → s′, where s is the current system state,
e a single system input (the stimulus), and s′ the new state
where the value of system outputs may change (the response).

To illustrate our approach, we consider UAV4 (see the top
right corner of Fig. 1) which is close to a threat and in
danger. To prevent UAV4 from being damaged or destroyed,
the operator, or agent if the operator is overloaded, can insert
a waypoint in the UAV’s trajectory to avoid the threat.

Fig. 3 contains a MSC specifying the required system
behavior when a UAV nears a threat. The label on the
outer rectangle contains the MSC’s name (Op-Control); the
internal rectangles (e.g., Operator, Display) identify the MSC’s
components, the sources and destinations of the system’s
inputs and outputs. In Fig. 3, the components on the left are
sources of system inputs; the central component represents the
system, which maps an input in the current state to zero or
more outputs in the new state; and the components on the
right produce the system outputs. A prefix m, d, or c on an
input or output variable indicates respectively that the variable
represents a quantity that is monitored (an input), displayed,
or controlled (an output). For example, the variable dUAV i

represents the status of UAV i which appears on the operator
display. Shown on the horizontal lines of the MSC are inputs
sent by each source (e.g., mUAV i=in-danger) and outputs
received by each destination (e.g., dUAV i=unsafe).

The MSC in Fig. 3 contains three stimulus-response behav-
iors, i.e., (input,output-set) pairs. The first input indicates that
UAV i is in-danger. The system responds by marking UAV i
as unsafe on the display (e.g., circling it in red). Noting from
the display that UAV i is in danger, the operator requests the
insertion of a new waypoint x in UAV i’s path to avoid the
threat. In response, the system updates the representation of
UAV i’s path on the display and inserts a new waypoint x
which allows the actual UAV i to bypass the threat. In a MSC,
all outputs that follow input i but precede input j must be
sent when input i arrives. In our approach, the order of these
outputs in the MSC does not matter; all outputs associated
with an input are scheduled simultaneously.

In the MSC in Fig. 4, the cognitive model predicts that the
operator is distracted, alerts the agent, which then inserts a
waypoint to move the UAV to safety. Because the agent is
expected to be fully integrated with the system, in this MSC,
the agent’s behavior and the system behavior are combined.

37



Fig. 4. MSC for agent movement of a UAV’s way point.

Fig. 5. Mode class diagram showing modes, mode transitions, and inputs.

The mode class diagram in Fig. 5 describes a mode
class named M i containing three modes, each specifying
the current system state relative to UAV i. The transitions
shown in Fig. 5 are labeled with the input events that trigger
them. For example, the input event @T(UAV i = in-danger)
labeling the transition from OK to Op-control occurs when
UAV i = in-danger becomes true after being false in the state
in which Mi equals OK. According to the table, if UAV i
is safe (far from a threat), Mi equals OK; if UAV i is in-
danger, then Mi equals Op control when the operator is in
control, and Agent control when the agent is in control.

Our MSC language is defined by the sound formal semantics
which underlies the SCR (Software Cost Reduction) require-
ments notation [14]. We have also developed a sound synthesis
algorithm which translates scenarios and mode class diagrams
into a formal state machine model [11]. Our synthesis algo-
rithm 1) identifies input and output variables from the MSCs;
2) based on the mode class diagrams, identifies each mode
class and its modes, and defines the new mode as a function
of an input and the old mode; and 3) from the MSCs and
the appropriate mode class, defines the value of each output
as a function of an input and the old mode. Currently, the
requirements engineer must supplement the synthesized formal
model with additional information, e.g., type definitions, the
initial state (e.g., the initial mode OK), etc.

Table I defines the current state of UAV i represented
on the operator display. This definition is part of a formal
model synthesized from the MSCs and the mode transitions
in Figures 3-5 using our synthesis algorithm [11]. The table
states that if mode Mi equals OK, then dUAV i=safe, whereas
if Mi equals either Op-control or Agent-control, then
dUAV i=unsafe (e.g., circled in red on the operator display).

An advantage of our approach is that the synthesized
requirements models can be analyzed using the SCR tools—
validated using simulation [12], analyzed automatically for
consistency and completeness [14], and verified formally using

TABLE I
TABLE SYNTHESIZED FROM MSCs AND MODES.

model checking [13], theorem proving [12], composition [17],
and automatically generated invariants [21].

Formal analysis of a requirements model for a complex
system such as RESCHU can expose many classes of require-
ments errors: Simulation of the formal model may uncover
both missing assumptions and missing system behavior. For
example, in addition to being safe or in danger, a UAV may
be damaged or destroyed; the required system behavior in
these cases needs to be specified. Completeness checking
may detect missing requirements. For example, what is the
required system behavior when neither the operator nor the
agent has time (or is available) to move an endangered UAV to
avoid a threat? Consistency checking may uncover unwanted
non-determinism. As an example, in some cases, the system
may assign control of a UAV to both the operator and the
agent, clearly an error that needs correction. Finally, the formal
model needs to satisfy safety and other critical properties. An
example of a required safety property is that the system never
allows two UAVs to be too close to one another.

Our plans are to elicit further requirements from RESCHU
and to express them as scenarios and mode classes. This
will help us evaluate the scalability of our approach We
also plan to explore the “feature interaction” problem that
arises in defining more than one mode class. If n mode
classes are defined, then at any given time the system is in
exactly n modes, one from each mode class. To illustrate
this, in addition to the mode class Mi, consider another
mode class, Navi = {TakeOff, Landing, Automatic, . . .},
describing UAVi’s navigation mode. When a UAV is taking
off or landing, being near a threat may be impossible. Hence,
the requirements model may include the constraint Navi in
{TakeOff, Landing} →Mi = OK. We also plan to investigate
techniques such as [26] which, in addition to scenarios, uses
system properties to refine and extend the requirements model.

B. Cognitive Model

While the purpose of the software engineering technique
described above is to help obtain high assurance, the goal of
our cognitive modeling research is to develop a model that can
predict when a human operator performing a set of tasks will
become overloaded. Such a model can help identify situations
in which an agent could assist the operator by taking over one
or more operator tasks.

As robots have become increasingly autonomous, one hu-
man sometimes supervises multiple robots. This single-human-
multiple-robot (SHMR) paradigm, while labor-saving, raises
human factors concerns about the capabilities and limitations
of the human operator who is multitasking in this situation.

38



Crandall, Cummings, and Mitchell [7], [8] have introduced
“fan-out” models to estimate the maximum number of robots
a single operator can supervise in a given SHMR context.
These estimates are based on neglect time (NT), the time a
robot may be neglected before its performance falls below a
predetermined threshold; interaction time (IT), the time a op-
erator needs to interact with a robot to restore its performance
to an above threshold level; wait time attention (WTA), the
time required for the operator to notice that the robot requires
maintenance; and wait time queue (WTQ), the delay in inter-
acting with the robot when other robots require maintenance
at the same time. Fan-out models have been shown to predict
the overall performance of operators on SHMR platforms with
different numbers of robots to supervise.

One limitation of fan-out models is that they do not predict
performance during the course of the SHMR session. Even
when the number of robots supervised is within the constraints
specified by a fan-out model, there will be times when the
operator is overloaded and as a result subject to error. This
becomes clear when we consider that the components of the
fan-out model (IT, NT, WTA, WTQ) fluctuate from their
typical values during the course of a session and at times will
conspire to increase the likelihood of error, whether through
the increase in the time needed to maintain a vehicle (IT) or
the increase in the wait times, WTA and WTQ, as a result of
several vehicles requiring attention at the same time.

To address this limitation, we have developed a dynamic
model to predict operator overload during the course of
a SHMR session. This dynamic operator overload (DOO)
model [23], [10], [4] uses predictor variables similar to the
fan-out variables. The model was initially developed for the
supervision of multiple unmanned air vehicles (UAVs) by one
operator. The SHMR platform on which the model was tested
is the RESCHU system introduced in Section II.

In our implementation of RESCHU, each UAV is automat-
ically assigned to a target on which to deliver ordnance and
automatically launched on a straight-line flight path towards
its target. This path appears in the Map window (see Fig. 1).
In RESCHU, the operator has two goals: to engage as many
vehicles as possible and to prevent damage to the UAVs. Our
main concern was preventing UAV damage.

In the DOO model, failure to prevent damage was the
indicator of operator overload. In the generation of the model,
the unit of analysis was a path-intersects hazard (PIH) event,
which started from the moment a UAV entered on a collision
course with a hazard (i.e., a threat) and ended either when the
UAV traversed the hazard, and consequently incurred damage,
or else when the operator changed the UAV’s trajectory to
prevent damage from occurring. Multiple PIH events can over-
lap in time. The model was created using logistic regression
analysis, with NT operationalized as the expected duration of
the PIH assuming damage occurs and WTA by the amount of
time until the operator first fixates on the relevant hazard. The
amount of time required to execute an evasive action on the
relevant vehicle (IT) was not included since it is not relevant
when damage is avoided. An initial model included WTQ,

operationalized as the amount of time spent on actions focused
on nonrelevant vehicles (i.e., other than the PIH’s vehicle),
including hazard evasions or target engagements. While this
model was fairly strong, a superior model was generated by
replacing WTQ with WTF, the number of eye fixations on
objects (UAVs, targets, hazards) not relevant to the PIH event.
WTF and WTA are based on eye fixations assessed by an eye
tracker. Thus, the predictor variables in the DOO model were
NT, WTA, and WTF.

The DOO model provided a strong fit to the data in
the baseline experiment from which it was generated. One
measure of fit, d′, was 2.7, which is quite high. The model
was evaluated in a replication of the baseline experiment
(d′ = 2.4). The model’s generalizability was assessed by
factorial comparisons [25] of the initial RESCHU platform
to platform variations, including where engagement was time-
constrained and thus harder (d′=2.2), where engagement was
automated and thus easier (d′=2.6), where UAVs moved faster
(d′=1.7) or slower (d′=2.3) than in the baseline, and where the
operator supervised heterogeneous vehicles (UAVs, HALEs,1

and UUVs) (d′=2.4), rather than only UAVs. In all cases,
except the high-speed UAVs, generalization was excellent.

Additionally, the DOO model has been incorporated into
the RESCHU platform as the basis for alerting the operator to
PIHs as soon as damage is predicted. Here the model assesses
the likelihood of damage repeatedly during the course of each
PIH event, rather than after the fact, and as soon as it predicts
damage is probable, it alerts the user to the threat. The model-
based alert system has been tested in several experiments and
has been found to reduce instances of damage by as much as
half. The model-based alerts typically occur after the elapsing
of approximately 20% of the time between identifying a UAV’s
proximity to a hazard and occurrence of damage (i.e., 20% of
NT), thus providing a timely warning.

Thus, the DOO model has practical utility in helping oper-
ators cope with overload situations in the course of SHMR
supervisory control tasks. It also has theoretical value in
highlighting the roles of attention and planning in multitasking
contexts. In the future, we will study extensions of our cog-
nitive model. Currently, the cognitive model is focused solely
on minimizing damage to UAVs from threats, which may be
too limiting for future tasks. Needed is a more comprehensive
model, or additional models, that can deal with other tasks
(e.g., when to engage a target or where to send a UAV).

C. Agents
In the model-based alert system described above, an alert

is issued when the cognitive model detects operator overload.
In a more autonomous system, instead of an alert, an agent
can be invoked to assist the user in performing tasks. Our
goal is to evaluate a large range of agent designs for a given
system (e.g., RESCHU) to determine which designs best assist
the user. However, evaluating a large number of agent designs
using human participants is infeasible given that even small
participant studies require substantial time and resources.

1High Altitude Long Endurance UAVs.

39



TABLE II
METHOD FOR SYNTHESIZING AND APPLYING USER MODELS

1. Gather traces of human behavior in an initial participant study.
2. Synthesize user models from traces.
• Extract feature vectors from traces.
• Construct an expert operator.
• Reduce capabilities of expert operator to match user feature vectors.

3. Evaluate whether the models accurately emulate humans.
• Learn a user classifier.
• Extract traces from the user models.
• Attempt to fool the classifier with the models’ traces.
• If the model fails to fool the classifier, go to Step 2.

4. Iterate agent design using the user models:
• Build/modify an agent.
• Use the models to test the agent.

5. Test agent performance with human participants.

Traditionally, developers evaluate the performance of an
agent by conducting human participant studies, iterating the
process many times as the agent is refined. The cost and
time required for such studies can lead to slow iterations. In
contrast, our approach uses synthesized user models instead of
actual people for some iterations. User models are given the
same observations that a human participant would be given
and must produce specific actions. Simulated user studies with
these models are inexpensive, can be performed quickly, and
require no human participant board approval, and thus provide
an efficient way to identify problems with an agent design.

Like others, we frame synthesization of user models as
an imitation learning task [24], where our goal is for the
models to learn to operate by imitating human participants.
Our work differs from much of the earlier work in imitation
learning because, in our case, building an observation-action
model without a significant amount of state abstraction is
infeasible. The original developers of RESCHU have learned
a user model for RESCHU [8], but their model, unlike our
user models, is descriptive and cannot be used to generate
actual operation in RESCHU. Furthermore, their model does
not describe individual users, but an aggregate of users.

Table II provides a high level description of our five-step
method for learning user models and using them to evaluate
agent designs. Full details can be found in [22]. Our method
begins (Step 1) with a set of traces of human behavior
(i.e., sequences of observed human actions and environmental
updates to the display); in our case study, these traces were ob-
tained from data collected in previous studies with RESCHU
involving human participants. The user actions in a trace are
captured at a high level of abstraction (e.g., “delete waypoint”
instead of “delete the waypoint at location X for UAV i”). In
Step 2, we synthesize a model for each human user in the data
set by first extracting a set of features from each trace for that
user and then using the resulting set of feature vectors together
with a manually specified expert operator (an implementation
that behaves like a near optimal user) to produce a model of
the user. In our case study, we generated a set of 36 features,
including: tallies over each of the high level RESCHU actions,
tallies over the ordered pairs or “bigrams” of the high level
actions (where the bigram tally A→ B is the number of times B
was the first action after A), and the average distance between
the UAVs. Each feature was assigned a weight, indicating how

TABLE III
THE HIGHEST WEIGHTED FEATURES AND THEIR DISCRIMINATION SCORES

Feature Weight
average distance to hazard before action .71
tally: change goal .49
bigram tally: engage target→change goal .29
bigram tally: change goal→engage target .23
tally: engage target .18
bigram tally: change goal→add WP .13
bigram tally: change goal→change goal .12
tally: delete WP .12
average distance between UAVs .12

Fig. 6. User models’ performance using agent. Light lines denote
individual user models’ performances; bold denotes average performance.

useful the feature is in distinguishing between users, using
a variant of the RELIEF feature weighting algorithm [18].
Table III shows the top weighted features. The expert operator
was then modified to reflect the behavior of a user, as described
by some of the most heavily weighted features; this modified
expert operator is the model for that user.

In Step 3, the behavior of the synthesized user models is
compared to that of the actual humans. To do this, a classifier
is developed from the original user traces and used to classify
traces generated from the synthesized user models (i.e., the
classifier identifies which user it thinks produced the trace).
When the classifier misidentifies the user, that information is
used to improve the synthesized models in the next iteration
of Step 2, e.g., by suggesting a different set of features.

Once sufficiently accurate, the user models may be used
to evaluate agent designs (Step 4). In our case study, we
evaluated an agent, derived from the expert operator, which
suggests an action at every step of the test. We learned eight
user models and tested their performance in RESCHU with
the agent, varying p, the probability that the user model used
the agent’s suggestion at any time step, from 0 to 100%. Fig. 6
shows the results. When p=0, each model performs as if there
is no agent. When p= 100%, the models behave identically
to the expert operator. While the increased use of the agent
improves performance for all user models, the models with
the lowest non-assisted performance benefit the most from
the agent. It would be feasible to set p= 100% because the
number of suggestions given by the agent averages 1 every 3.3
seconds (and the agent rarely gives more than one suggestion
per second). However, in a human-centric decision system,
user participation is essential, and too much automation is
inadvisable because it can lead to user disengagement.

40



Because the user models only approximate human behavior,
the performance of the agent design that is finally selected
should be validated in a study involving actual human partici-
pants (Step 5). Evaluation of the agent design for the RESCHU
case study has not yet been performed; it is future work.

Additional future work includes fully automating the pro-
cess of learning user models from traces, testing the derived
models more thoroughly, and integrating agents with the
cognitive models described in Section IV-B. Also, we plan to
extend our RESCHU case study to include multiple iterations
of agent development (i.e., iterating Steps 2-4 of the method).

One major research issue is how to determine the needed
level of autonomy for a given system. Too much automation
leads to user disengagement; too little results in worsened sys-
tem performance. Another issue is validation of user models.
The hypothesis that a user model matching a user’s feature
vectors also matches the user’s style of operation needs to be
validated. The interdependence of the user’s features needs
to be assessed (e.g., we can omit the “bigram tally: engage
target → changegoal” feature to see if a user model that
matches the other features also matches this feature).

V. RELATED WORK

Substantial research has been published on cognitive archi-
tectures for control of multi-agent systems (e.g., [6], [20]), and
many meetings provide forums for computational cognitive
models. Substantial research also exists which applies formal
verification to agents and to user interface designs. In [2],
Bolton et al. review the large body of research applying for-
mal verification to systems which include “human-automation
interaction,” including systems containing cognitive models.
To our knowledge, however, no current research is applying
formal methods, agents, and cognitive modeling to obtain high
assurance of the human-centric decision systems introduced
in this paper. Although formal verification is included in the
model-based development process described in Section III, it
is only one component of the process.

VI. SUMMARY AND FUTURE WORK

This paper has proposed a four-step, model-based process
for developing human-centric decision systems, a critical class
of systems which will require both high performance and
high assurance. To achieve adequate system performance,
the process relies on cognitive modeling to predict human
behavior and an agent to assist a human in cases of overload.
To obtain high assurance, the process relies on formal system
modeling and analysis. The paper also introduced two AI
techniques, a cognitive model for predicting operator overload
and synthesis of user models for evaluating agent designs,
and a software engineering technique, synthesis of formal
system models from scenarios and system modes, to address
the difficult problem of formulating a formal requirements
model for a large, complex system. In future work, we will
investigate many important technical issues, such as scalability.
To what extent can the process and techniques described in the
paper deal with human-centric decision systems with a large
number of challenging, heterogeneous tasks, a highly dynamic

and varied system environment, and sophisticated interaction
between a human operator and an intelligent agent?

REFERENCES

[1] R. Bharadwaj and C. Heitmeyer. Developing high assurance avionics
systems with the SCR requirements method. In Proc. 19th Digital
Avionics Sys. Conf., 2000.

[2] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu. Using formal verification
to evaluate human-automation interaction, a review. Under review.

[3] Y. Boussemart and M. Cummings. Behavioral recognition and prediction
of an operator supervising multiple heterogeneous unmanned vehicles.
In Proc., 1st Intern. Conf. on Humans Operating Unmanned Syst., 2008.

[4] L. A. Breslow, D. Gartenberg, J. M. McCurry, and J. G. Trafton.
Dynamic fan out: predicting real-time overloading of an operator su-
pervising multiple UAVs. Under review.

[5] E. Bumiller and T. Shanker. War evolves with drones, some tiny as
bugs. New York Times, June 2011.

[6] H.-Q. Chong, A.-H. Tan, and G.-W. Ng. Integrated cognitive architec-
tures: A survey. Artificial Intelligence Review, 28:103–130, 2007.

[7] J. W. Crandall, M. A. Goodrich, J. D. R. Olsen, and C. W. Nielsen.
Validating human-robot systems in multi-tasking environments. IEEE
Transactions on Systems, Man, and Cybernetics, 35(4):438–449, 2005.

[8] M. L. Cummings and P. J. Mitchell. Predicting controller capacity
in supervisory control of multiple UAVs. IEEE Systems, Man, and
Cybernetics, Part A: Systems and Humans, pages 451–460, 2008.

[9] C. Damas, B. Lambeau, P. Dupont, and A. van Lamsweerde. Generating
annotated behavior models from end-user scenarios. IEEE Trans.
Software Eng., 31(12):1056–1073, 2005.

[10] D. Gartenberg, L. Breslow, J. Park, J. McCurry, and J. Trafton. Adaptive
automation and cue invocation: The effect of cue timing on operator
error. In SIGCHI Conf. on Human Factors in Computing Systems, 2013.

[11] C. Heitmeyer. Synthesizing formal requirements models from modes
and message sequence charts. Draft., January 2013.

[12] C. Heitmeyer, M. Archer, R. Bharadwaj, and R. Jeffords. Tools for
constructing requirements specifications: The SCR toolset at the age of
ten. Intern. Journal of Computer Systems: Science and Eng., 1, 2005.

[13] C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and R. Bharadwaj.
Using abstraction and model checking to detect safety violations in
requirements specifications. IEEE Trans. on Softw. Eng., 24(11), 1998.

[14] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated
consistency checking of requirements specifications. ACM Transactions
on Software Engineering and Methodology, 5(3):231–261, 1996.

[15] D. Hirsch, J. Kramer, J. Magee, and S. Uchitel. Modes for software
architectures. In Softw. Architecture, Third Europ. Workshop, 2006.

[16] ITU. Message sequence charts. Recommendation Z.120, Intern.
Telecomm. Union, Telecomm. Standardization Section, 1996.

[17] R. D. Jeffords and C. L. Heitmeyer. A strategy for efficiently verifying
requirements. In ESEC/FSE-11: Proc. 9th Eur. Softw. Eng. Conf./11th
ACM SIGSOFT Int. Symp. on Foundations of Softw. Eng., 2003.

[18] K. Kira and L. A. Rendell. A practical approach to feature selection.
In Proc., 9th Intern. Workshop on Machine Learning, 1992.

[19] I. Kruger, R. Grosu, P. Scholz, and M. Broy. From MSCs to Statecharts.
In Intern. Workshop on Distrib. and Parallel Embedded Systems, 1998.

[20] P. Langley, J. Laird, and S. Rogers. Cognitive architectures: Research
issues and challenges. Cognitive Sys. Research, 10(2):141–160, 2009.

[21] E. Leonard, M. Archer, C. Heitmeyer, and R. Jeffords. Direct generation
of invariants for reactive models. In Proc., 10th ACM/IEEE Conf. on
Formal Methods and Models for Co-Design (MEMOCODE 2012), 2012.

[22] M. Pickett, D. W. Aha, and J. G. Trafton. Acquiring user models to
test automated assistants. In 26th Internat. FLAIRS (FLorida AI Society
Research Society) Conf., May 2013.

[23] R. Ratwani and J. G. Trafton. A real-time eye tracking system
for predicting postcompletion errors. Human Computer Interaction,
26(3):205–245, 2011.

[24] C. Sammut, S. Hurst, D. Kedzier, and D. Michie. Learning to fly. In
D. H. Sleeman and P. Edwards, editors, ML, pages 385–393. Morgan
Kaufmann, 1992.

[25] J. A. Swets. Signal detection theory and ROC analysis in psychology
and diagnostics: Collected Papers. Lawrence Erlbaum Associates, 1996.

[26] S. Uchitel, G. Brunet, and M. Chechik. Behaviour model synthesis from
properties and scenarios. In 29th Intern. Conf. on Softw. Eng., 2007.

[27] S. Uchitel, J. Kramer, and J. Magee. Synthesis of behavioral models
from scenarios. IEEE Trans. on Softw. Eng., 29(2), Feb. 2003.

41


