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Abstract

In complex and dynamic scenarios, autonomous vehicles
often need to intelligently adapt their behavior to unex-
pected changes in the their environment. Goal Reasoning
provides a methodology for autonomous agents to delib-
erate and adapt their goals to more intelligently react to
changing conditions. This paper implements a Goal Rea-
soning system based on the Goal Lifecycle, and grounds
the implementation in the information measures and ex-
pectations used by the vehicles to asses their performance.
The implemented system, termed Goal Reasoning with
Information Measures (GRIM), is demonstrated using a
disaster relief scenario in which a small team of vehicles
is tasked with surveying a pre-defined set of geographi-
cal regions. This demonstration shows how area search
goals can be progressively refined, and how they can be
adapted to resolve problems encountered by the vehicles
during execution.

1 Introduction
Complex applications of robotics often require one
or more autonomous vehicles to react intelligently to
changes in the operational scenario. A change in the
observed state of the environment (e.g., the robot senses
an unexpected event) or the internal state of the vehicle
(e.g., the vehicle is consuming fuel faster than expected)
may necessitate a change in the robot’s behavior. This
change can manifest as a change to the vehicle’s plans,
tasks, or even the underlying goals that it is trying to
achieve. Intelligent adaptation to unexpected changes is
vital to the design of autonomous systems for complex
applications.

Goal Reasoning (GR) research aims to develop au-
tonomous agents that can deliberate on, and change,
their own goals (Vattam et al. 2013). Such agents would
be able to adapt to new and unexpected observations
about their environment by creating new goals to pursue.
Similarly, they would be able to modify their existing
goals to account for unplanned changes by reprioritiz-
ing and reordering their goals. Such capabilities become
even more valuable in applications where multiple robots
must act collaboratively to accomplish their goals; GR

would allow the robots to adjust their goals to align with
those of the other agents, or to leverage the assistance of
other robots.

An example application that would benefit from GR
is the control of autonomous vehicles in the Foreign Dis-
aster Relief (FDR) domain (U.S. Department of Defense
2011). The FDR domain focuses on providing human-
itarian aid in the wake of natural disasters, and is an
area that could greatly benefit from the deployment of
autonomous vehicles. In such situations, autonomous ve-
hicles could be used to provide rapid surveys of the disas-
ter area, identifying important locations and traversable
routes for the responders. Additionally, the vehicles
could be used to enhance the reliability and range of
communications, by serving as mobile communication
relay points.

To apply GR techniques to applications like FDR op-
erations, it is important for them to be grounded in the
information and capabilities that regulate the behavior
of the vehicles. That is, deliberation about the goals
of an autonomous agent should be performed based on
the metrics that define and govern those goals. This
paper investigates that by grounding the systems de-
scribed in Roberts et al. (2015a)1 and Apker, Johnson,
and Humphrey (2016). This grounding frames the goal
refinement process in terms of information gathered dur-
ing the execution of the goal, and is implemented in a
system called Goal Reasoning with Information Mea-
sures (GRIM). The GRIM system also includes a set of
strategies to resolve problems that arise during execution.
The work here presents early steps in creating a full

GR system for a team of robots assisting with FDR oper-
ations with multiple, possibly conflicting, goals for the
system. The paper demonstrates a multi-vehicle system
performing GR with respect to a set of area-survey goals.

The paper is structured as follows. Section 2 describes
a motivating example. Section 3 provides a more in-
depth description of GR and the instantiation that is

1ActorSim, an implementation of the Goal Lifecycle, is
available online at http://makro.ink/actorsim/



Figure 1: Map of the example scenario. Two vehicles
begin in a base region, and are tasked with surveying
three different regions of interest: the Airport and the
two Office Buildings.

extended in this work. Section 4 demonstrates the GRIM
system with respect to the motivating example. Section 5
discusses this work in the scope of other, related work,
as well as the future expansion of the system. Finally,
Section 6 concludes the paper.

2 Motivating Example
Consider, as a motivating example, an unmanned FDR
mission where a team of Unmanned Air Vehicles (UAVs)
must survey several pre-defined regions to identify and
locate an important official. Figure 1 shows a map of
such a scenario, in which a team of UAVs must survey
three different regions, each with different characteris-
tics. The Airport is the largest of the regions, composed
primarily of flat, open space. Each of the two Office
Buildings, on the other hand, are significantly smaller
and have considerably more complicated terrain. There
is also a Base region, where the UAVs begin the scenario.

The system’s first task is to search the regions to locate
the official. Once the location of the official is known,
the system must then establish and maintain a commu-
nications relay for that official. The establishing of a
relay is made more difficult in the Office Buildings (in
comparison to the Airport) due to the more complicated
and cluttered terrain.

These goals are further complicated by other restric-
tions and factors involved in the mission, such as:

• The need for the UAVs to refuel at the nearby base
station.

• Changes to the set of resources (e.g., vehicles) that
are available to the system.

• The presence of uncontrolled or adversarial environ-
mental factors (e.g., wind or road blockages).

• Additional goals, with varying or dynamic priori-
ties/importance (e.g., the discovery of a medical emer-
gency that must be immediately addressed).
The system controls a team of two UAVs and can

assign them to any of the search areas. Furthermore, due
to uncontrolled factors, it is assumed that the vehicles
will under-perform their expectations during execution,
resulting in slower-than-expected searches of the areas.

3 Goal Reasoning and the Goal Lifecycle
GR focuses on developing agents that can deliberate on
and modify their goals during execution within a dy-
namic environment. The work presented here leverages
and adapts the Goal Lifecycle of Roberts et al. (2014),
Roberts et al. (2015a), and Roberts et al. (2015b), an
adaptation of which is shown in Figure 2. This pro-
vides a framework for the refinement of goals and the
resolution of problems that arise during execution.

The set of goals (“goal nodes” in (Roberts et al.
2015b)) G are stored in a data structure called the Goal
Memory. GR is performed by transitioning each goal
g ∈ G through the modes (represented by boxes) of
the Goal Lifecycle via strategies (the arcs). Progression
through the modes in the Goal Lifecycle represents in-
creasing refinement in the goal detail. The step-like
structure of the goal modes enforces the concept that
each mode builds on the previous mode: each transi-
tion strategy can only occur from specific modes in the
Lifecycle.

The remainder of this section briefly summarizes the
key strategies of the Goal Lifecycle; specific details are
given in Section 4, as the strategies relate to the goals for
the motivating scenario described in Section 2. For the
remainder of the paper, transition strategies are denoted
with small caps (e.g., FORMULATE) and the resulting
goal modes are denoted by monospace small caps (e.g.,
FORMULATED).

The FORMULATE strategy determines when a new goal
g is created and enters the Goal Lifecycle from an exter-
nal source (e.g., user input, or a triggering event). This
strategy takes an abstract goal as an input, and transi-
tions it to a FORMULATED mode, by defining the initial
constraints, the measures defining success or failure, and
its prerequisites. The result of FORMULATE is that a new
goal is entered into the Goal Memory with the infor-
mation (i.e., constraints , measures, and prerequisites)
required for further refinement.

The SELECT strategy takes a FORMULATED goal g,
and determines whether the system activates it. A goal

2



Figure 2: An adapted version of the Goal Lifecycle, from Roberts et al. (2015a). Goals transition through the modes
(boxes) via the strategies (arcs), where higher-level modes represent a higher level of goal refinement.

transitions to SELECTED (meaning that it will be ac-
tively pursued by the system) only if its prerequisites are
satisfied and the system has the available resources to
pursue, both of which are defined by the FORMULATE
strategy. As such, some goals may not be SELECTED

and will instead remain in the FORMULATED mode un-
til their prerequisites are met and the required resources
become available.

The EXPAND strategy takes a SELECTED goal g and
generates one or more expansions (i.e., plans) x ∈ X to
achieve the goal. An EXPANDED goal defines how the
system can satisfy the constraints that were created dur-
ing the FORMULATE strategy, and generates expectations
for how each expansion will perform when executed. If
one or more feasible plans are created, the goal transi-
tions to an EXPANDED mode. Otherwise, the EXPAND
strategy fails and the goal remains in the SELECTED

mode.
Once a goal g has been successfully EXPANDED the

COMMIT strategy chooses one of the feasible expan-
sions x for execution. Such a choice involves assess-
ing the costs of each of the expansions, as well as the
likelihood that they will successfully execute the goal
(per the FORMULATED constraints). A COMMITTED

expansion defines how the system will satisfy g, and
provides the set of expectations for the performance of
the plan’s execution.

The DISPATCH strategy sends the COMMITTED ex-
pansion x to the executive to run. This process amounts
to allocating resources and generating metrics for plan
execution. A successfully DISPATCHED expansion de-
fines the criteria by which a goal is evaluated to ensure

that it detects and reacts to discrepancies in the expected
performance of the expansion.

During execution, two strategies manage updates that
impact the mode of the goal g. First, EVALUATE is a
passive strategy that is called whenever new information
impacts the goal. It can be called by an external process
or by the goal itself. In contrast, the MONITOR strategy,
when enabled, proactively tracks the execution of the
DISPATCHED expansion x to ensure that its expected
performance will still result in successful completion
of the goal. Additionally, MONITOR ensures that the
prerequisite conditions for the goal remain met and that
the allocated resources remain available. If MONITOR
detects a problem, it triggers EVALUATE directly, and
x progresses to an EVALUATED mode, indicating that
there is some discrepancy in the performance of the
expansion that should be addressed.

When a goal transitions to EVALUATED, the RESOLVE
strategy assesses any discrepancies that were detected,
and determines how the system should resolve the dis-
crepancy (i.e., which mode the goal should transition to).
If the EVALUATED goal g is determined to have met
all of the constraints and success-conditions that were
generated during the goal formulation, it is resolved with
FINISH and marked as completed. If g violates the for-
mulated constraints, DROP marks it as unsuccessful (it
can then be reformulated with new constraints). Both
FINISH and DROP results in the removal of g from Goal
Memory.

Otherwise, if g still meets its formulated constraints
but does not meet its success conditions, the RESOLVE
strategy transitions the goal to one of the earlier modes

3



in the Goal Lifecycle. If EVALUATE determines that
the DISPATCHED plan x is still feasible, the goal is
resolved back to the DISPATCHED mode (referred to
as CONTINUE). If the COMMITTED plan can be fixed
without major changes by reallocating system resources,
it resolves back to the COMMITTED mode (REPAIR). If
the committed plan is infeasible, but another feasible
plan x̄ ∈ X exists, the goal g is resolved back to the
EXPANDED mode and commits to a different, feasible
plan x̄ (REEXPAND). If no feasible expansion exists given
the currently available resources, g is resolved back to
the SELECTED mode, where it can be expanded once
the necessary resources become available (DEFER). Fi-
nally, if the goal no longer meets its prerequisites for
selection, but it still satisfies its constraints, it is resolved
back to a FORMULATED mode until the prerequisites
for selection are met once again (UNSELECT).

4 Goal Refinement with
Information Metrics

Goal Refinement for unmanned FDR missions can be
framed in terms of refining a set of constraints and ex-
pectations for a set of measurable information measures.
This section describes a GR system, called Goal Rea-
soning with Information Measures (GRIM), and demon-
strates this system via simulation. The GRIM system
instantiates the Goal Lifecycle (discussed in Section 3),
and provides centralized control for a small team of 2
UAVs. Returning to the motivating example, described
in Section 2, the goal refinement strategies of the Goal
Lifecycle are defined here for the area search goals,
while the relay goal (which will be the focus of future
research) is only included as an abstract goal (i.e., it is
not specified below). The information measures for an
area search goal, defined in this section, describe the
degree to which the defined region has been “searched”.

The metric used to evaluate the uncertainty in an area
search will differ based on the sensors and algorithms
used to conduct the search. For simplicity, the vehicles
conduct searches in this example by following a lawn-
mower waypoint pattern, and the information measure
used is the length of that search pattern that has yet to be
traversed, though this metric could easily be adjusted to
a more accurate measure of uncertainty. This measure
was chosen as a simple approximation for the informa-
tion gathered during the survey task, and future work
will explore more accurate measures of the uncertainty
in an area survey.

Formulate

The FORMULATE strategy, in the case of the area survey,
defines three parameters that describe the constraints
under which each can be considered as successful or
failed. These parameters are:

1. maximum uncertainty: the upper bound on the uncer-
tainty in the search area (i.e., the uncertainty of the
area before any information has been gathered),

2. acceptable uncertainty: the level of uncertainty at
which the goal is considered complete, and

3. deadline: the time by which the search must be com-
plete.

The maximum uncertainty specifies amount of uncer-
tainty in the search area prior to any search, and repre-
sents the total information that can be gathered about
an area during a survey. The acceptable uncertainty pa-
rameter defines the level of uncertainty at which the area
can be reliably deemed to be empty of an official (i.e., a
finishing criteria for the search). Finally, the deadline is
set by estimating the time required to arrange follow-on
interactions with a located official, as a function of the
area’s type and terrain. It defines the point in time at
which the search must be finished, in order for it to be
considered successful. For both (1) and (2), the con-
straints are defined by the metric used for uncertainty:
the length of the search path (in meters) that has yet to
be traversed by the vehicles. For (3), the constraint is
defined in terms of mission time (seconds).

Figure 3 displays the constraints on each of the for-
mulated goals as a function of the area uncertainty (in
meters of untraversed search path) and the execution
time. Each of the dashed lines in this figure represents
the allowable area of uncertainty for a survey area (i.e.,
the Airport and the Office Buildings) at a given time. Be-
cause of the more complicated interactions of the Office
Buildings, the deadline (i.e., the time at which the area
uncertainty must be within the defined acceptable level
of uncertainty) for each of these is earlier than the dead-
line for the Airport. At all times up until the deadline, no
constraint is placed on the allowable area of uncertainty,
so it is set as the full length of the search path for each
of the search areas (28,267 meters for the Airport, and
10,303 and 7,537 meters for the smaller Office Build-
ings). At the deadline, the area of uncertainty is required
to not exceed the defined acceptable level of uncertainty.
This acceptable level of uncertainty was defined as 500
meters for each of the search areas, but is omitted from
Figure 3 for clarity.

The result is a FORMULATED goal g ∈ G, which
defines the constraints on the execution of the goal (max-
imum uncertainty and deadline), as well as the criteria
for successful completion of the goal (acceptable uncer-
tainty).

Select
The next strategy in the Goal Lifecycle is for GRIM
to SELECT one or more goals to pursue. The SELECT
strategy requires comparing high-level estimates of ex-
pected performance and value (cost/reward) for each
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Figure 3: Maximum uncertainty and deadline constraints
for the Airport and Office Building search goals. The per-
formance of each goal must remain within the pictured
constraints during execution, by reaching the acceptable
uncertainty level before the deadline.

goal, and assessing the available resources for the sys-
tem. This strategy determines which goals are opera-
tional (i.e., those that are selected). For the motivating
example presented here, only a single goal is allowed to
be SELECTED at a given time.

Figure 4 shows the results of this process, where
GRIM elects to pursue the Airport search goal because
it is deemed most likely to be successfully searched
within the formulated constraints. For this example, the
SELECT strategy choses the goal with the smallest ra-
tio of maxuncertainty

deadline . Due to the significantly longer
deadline, the ratio for the Airport is (despite the larger
uncertainty) smaller than the ratio for the Office Build-
ings, and GRIM selects the Airport goal.

In short, a SELECTED goal g is one that is being pur-
sued by the GRIM system via later strategies in the Goal
Lifecycle, while a goal that is not SELECTED remains
paused in the FORMULATED mode.

Expand
After selecting a particular goal g, EXPAND generates a
set of plans2 X to accomplish it. For each plan x ∈ X
that is generated, a set of expectations is also generated
that describe its expected performance with respect to the
metrics used in the formulation strategy. A successful
EXPAND strategy generates at least one feasible plan (i.e.,
it is expected to satisfy the formulated constraints). In
the example used here, a feasible plan is one where the
expected value of the uncertainty at the deadline is no
greater than the defined acceptable uncertainty.

2The original Goal Lifecycle (Roberts et al. 2015a) used
the term expansion to refer to the possible plans that could be
applied to a goal; the remainder of this paper uses the term
plan interchangeably with the term expansion.

Figure 4: GRIM selects the Airport search goal g, while
the Office Building search goals remain unselected. The
selected search goal progresses progresses to the EXPAND
strategy.

Figure 5: Plots of expected survey performance for each
expansion x of the Airport search goal. The “fast” plans
increase the vehicle speed to result in a quicker expected
completion time, at a higher fuel cost.

Figure 5 displays the expectations of four feasible
plans that are generated during the EXPAND strategy, for
the selected goal g. The expectations are shown as the
expected change in the uncertainty of g (i.e., the length
of the search pattern that has been traversed) over time,
and each expanded plan uses the same set of waypoints.
The resulting plans are for a single vehicle moving at
normal speed (“1vehicleNorm”), a single vehicle moving
at a faster speed (“1vehicleFast”), two vehicles moving
at normal speed (“2vehicleNorm”), and two vehicles
moving at a faster speed (“2vehicleFast”). It is assumed
that a faster vehicle speed improves the search rate at the
cost of higher fuel consumption and that, for each plan,
the bulk of the UAVs effort will be expended determining
where the official is not located (i.e., a nearly complete
search of the area will be required).
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Figure 6: GRIM commits to the 1-vehicle, normal-speed
expansion. This plan was selected to conserve resources
while still resulting in successful completion.

The result is an EXPANDED goal g, which has one
or more feasible plans x ∈ X , each with a set of perfor-
mance expectations that satisfy the completion criteria
generated by the FORMULATE strategy.

Commit
Once the goal g has been EXPANDED into a set of fea-
sible plans, GRIM must COMMIT to a single plan. To
do so, it assesses the costs (i.e., the expended resources,
including time) of each feasible plan, and commits to
the least costly plan.

Figure 6 highlights the COMMITTED plan (“1vehi-
cleNorm”), which was chosen because the expectations
lie well within the formulated constraints while conserv-
ing the most resources. By using only a single vehicle,
GRIM leaves the second vehicle available in reserve,
and by committing to the plan that moves the vehicle
at the normal speed the system preserves fuel for other
tasks, such as searching another area or providing a relay
for a discovered official.

In short, the COMMITTED expansion x ∈ X is the
plan that GRIM chooses to enact in order to pursue the
goal g.

Dispatch
Once GRIM has a COMMITTED plan, it must then DIS-
PATCH that plan to the appropriate vehicles. To do this,
it must also determine the expected performance bounds
for successful plan execution. These bounds represent
the worst-case scenario from which the plan can still be
expected to satisfy the formulated constraints. To gener-
ate these bounds, GRIM uses the expected performance
of the plan adjusted such that it is expected to just barely
satisfy the constraints; that is, the worst-case bounds
represent the execution for which the expectations reach
the acceptable level of uncertainty at the deadline. If

Figure 7: GRIM dispatches the committed expansion x
(with expectations) to the applicable vehicle. As part
of the plan dispatch, the system generates worst-case
bounds on the successful performance of the plan.

the performance exceeds these bounds during execution,
GRIM will need to adapt the goal g, by applying the
RESOLVE strategies described in Section 3. Figure 7 dis-
plays the expectations and worst-case execution bounds
of the dispatched plan.

In GRIM, a plan is dispatched by scheduling pre-
defined commands for execution by vehicles. When
the vehicles receive these commands, they are passed
to a synthesized Finite State Automaton (FSA) that is
running on the vehicle, and executed according to the
rules that were used to synthesize that FSA. A more
thorough description can be found in Apker, Johnson,
and Humphrey (2016). In the case of the dispatched
“1vehicleNorm” plan, the command to search the Air-
port region is sent to a single vehicle, and the vehicle’s
speed is left at its default, more fuel-efficient value. The
other vehicle is allowed to determine its own behavior
(it proceeds to search a different area).

The DISPATCHED plan x is the one that is being
enacted by GRIM, and defines both the expected perfor-
mance of the plan and bounds on when that expected
performance will fail to satisfy the constraints and com-
pletion criteria of the formulated goal g.

Monitor
During execution, GRIM will actively MONITOR the
progress of the DISPATCHED expansion to ensure that
it will satisfy the constraints of the selected goal. Fig-
ure 8 shows the system’s estimate of the search area
uncertainty over time, as well as the constraints, expecta-
tions, and worst-case bound. In Figure 8a the execution
is proceeding slower than expected, but still remains
within the worst-case bound; if the execution were to
proceed from this point forward at the expected rate,
it would satisfy the formulated constraints on the goal.
Figure 8b shows the execution at a later point in time,
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where it first exceeds the worst-case bound; if it were
to continue to execute at the expected rate, it would not
complete the search within the formulated constraints.
As such, MONITOR triggers the EVALUATE strategy.

In summary, the MONITOR strategy actively tracks the
execution performance of the dispatched plan x, and
triggers the EVALUATE strategy when the performance
violates any of the goal’s constraints or the plan’s worst-
case bounds.

Evaluate and Resolve
Once the monitor detects that an execution has vio-
lated some constraint or bound, it passes the goal to
the EVALUATE strategy. If the execution had satisfied
the acceptable level of uncertainty constraint that was
generated during formulation, the goal would be passed
to the FINISH strategy, where it would be marked as suc-
cessfully completed. If it violated the other formulated
constraints (i.e., it passed the deadline without reaching
the acceptable level of uncertainty), the DROP strategy
would mark it as failed. In this example, the execution vi-
olates the worst-case bound generated during DISPATCH
and the goal g is passed to the RESOLVE strategy, where
GRIM attempts to change the execution such that it may
still satisfy the constraints on g.

The RESOLVE strategy attempts to fix g by working
through previous modes in the Goal Lifecycle. In the sys-
tem described here, the RESOLVE strategy set is limited
to the REPAIR, REEXPAND, and UNSELECT strategies.

First, GRIM attempts to REPAIR the expansion by ad-
justing the expansion chosen in the COMMIT strategy.
This involves changing the vehicle speed by committing
to a different instance of the 1-vehicle plan from the
original expansion: “1vehicleFast”. The new instance
of the expansion is COMMITTED, and it is dispatched
and monitored as before. Figure 9 shows the expectation
and worst-case bound for the newly repaired plan, which
now requires the vehicle to move more quickly and ex-
pend more fuel. However, as the execution continues,
the repaired plan also fails to meet expectations, and at
time 39,975 the system execution crosses the new bound
and triggers the EVALUATE strategy, again activating the
RESOLVE strategies.

This time, when GRIM attempts to RESOLVE the fail-
ing goal, it finds that neither instance of the originally
expanded plan can be expected to satisfy the formulated
constraints. Thus, it cannot REPAIR the expansion, and it
instead attempts to REEXPAND goal g. Doing so allows
GRIM to attempt to generate new plans that might be fea-
sible by incorporating resources that were not used by the
current expansion. In the example shown here, the sec-
ond vehicle (which was not used in the originally com-
mitted expansion) is available for the newly expanded
plans. As a result, the re-expansion strategy finds two
new feasible plans (the single-vehicle plans are deemed
infeasible): using both vehicles at their default (“2vehi-

cleNorm”) and fast (“2vehicleFast”) speeds. With these
new plans, the goal g returns to the EXPANDED mode,
and progresses through the Goal Lifecycle again, com-
mitting and dispatching the “2vehicleNorm” plan.

Figure 10 shows the expectation and worst-case
bounds for the newly re-expanded and DISPATCHED

plan p, which now assigns both vehicles to search the
area. Because the 2nd UAV must first traverse to the
search region, it does not arrive in time to assist the
search before the deadline, and the new plan also fails to
meet expectations. At time 43,670 the execution violates
the bounds of the new expansion, and GRIM uses the RE-
PAIR strategy to increase the speed of both vehicles. At
time 44,380 MONITOR again triggers the EVALUATE and
RESOLVE strategies, but both the REPAIR and REEXPAND
strategies fail. GRIM then proceeds to UNSELECT the
Airport search goal and consider other goals to pursue.
In this case, which was designed specifically to fail (in
order to demonstrate the RESOLVE strategies), both of the
other search goals have already passed their deadlines,
and are dropped as they are deemed to have failed. Once
the execution time passes the deadline for the Airport
search goal, it will also be dropped.

The EVALUATE strategy assesses the performance of
the goal and determines which RESOLVE strategy to acti-
vate; the RESOLVE strategy will FINISH a completed goal,
DROP a failed goal, or REPAIR, REEXPAND, or UNSELECT
a goal with an infeasible expansion.

5 Discussion
This paper describes initial efforts towards grounding a
GR system, termed GRIM, in the information measures
used by the controlled vehicles during execution. In par-
ticular, this work adapts the Goal Lifecycle introduced
in Roberts et al. (2014; 2015a) and instantiates it in the
GRIM system: a centralized GR system that provides
commands to independent vehicles. Each vehicle in-
terprets the commands via a play-calling architecture
that leverages a formally synthesized FSA and executes
the required behaviors via an application of artificial
physics, termed physicomimetics; more details can be
found in Apker, Johnson, and Humphrey (2016) for the
play-calling architecture, Kress-Gazit, Fainekos, and
Pappas (2009) for the controller synthesis process, and
Apker and Martinson (2014) for physicomimetic vehicle
control.

Other implementations of GR systems have been de-
veloped. Vattam et al. (2013) describes a GR agent as
an autonomous agent that is “aware of its own goals and
[can] deliberate upon them,” and provides a useful survey
of related GR research. Autonomous agents that delib-
erate on their goals are not an isolated concept, and sig-
nificant research has been conducted towards those ends
(Norman and Long 1996; Altmann and Trafton 2002;
Cox 2007; Molineaux, Klenk, and Aha 2010; Thangara-
jah et al. 2010; Harland et al. 2014).
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(a) Execution monitor at time 15,000. (b) Execution monitor at time 32,824.

Figure 8: GRIM monitors the performance of the dispatched plan during execution. Violation of the goal constraints or
plan performance bounds will trigger the EVALUATE strategy, causing the system to react to the change in the goal.

Figure 9: After a violation of the original plan’s bounds,
the plan is repaired to increase the UAV speed), and new
expectations and bounds are generated for the repaired
plan. GRIM continues to monitor the execution of the
goal until time 39,975.

Figure 10: After a violation of the repaired plan’s bounds,
the goal is reexpanded and the 2-vehicle plan is selected.
New expectations and bounds are generated for the reex-
panded plan, and GRIM continues to monitor the execu-
tion of the goal until time 43,670.
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The individual strategies used in the Goal Lifecycle
are, themselves, important research topics, and each
can be accomplished in a variety of ways. Goal for-
mulation, for example, may occur externally to the
system (i.e., a user may provide a goal), or may be
conducted autonomously during execution. For exam-
ple, Klenk, Molineaux, and Aha (2013) present a GR
system in which the autonomous agent automatically
detects and explains discrepancies during execution,
which then facilitates the generation of new goals for
the agent. Alternatively, new goals can also be learned
or guided by human input through methods such as
case-based reasoning (Weber, Mateas, and Jhala 2012;
Jaidee, Muoz-Avila, and Aha 2013). As with goal for-
mulation, the specific method for goal selection can
vary widely, from domain-specific rule-based selection
(Shapiro et al. 2012; Thangarajah et al. 2010) to the
evaluation of domain-independent heuristics (Wilson,
Molineaux, and Aha 2013), or goal priorities (Young
and Hawes 2012).

Similarly, the plan generation strategy can vary among
applications or systems, and may involve trajectory
generation (Yilmaz et al. 2008; LaValle and Kuffner
2001) or occur at a more abstract level (Blythe 1999;
Kress-Gazit, Fainekos, and Pappas 2009). In many cases,
plan generation will also generate expectations for the
plan’s execution performance, though in some cases it
may be necessary to generate expectations separately, as
in Auslander et al. (2015).

The Goal Lifecycle provides a formal structure for
these strategies, such that the resulting system can delib-
erate on and adapt its goals to dynamic and unpredictable
events. This paper extends the Goal Lifecycle within the
FDR domain by grounding its implementation using the
vehicle’s information measures, and by implementing
and demonstrating the RESOLVE strategies. This work fo-
cused specifically on area survey goals within a disaster
relief scenario, though other related goals exist that must
also be characterized in a similar fashion. For example,
once an official is located by the vehicles conducting the
area search it may be necessary to provide a continuous
communications relay for that official, which involves
formulating a goal of a new type (relay) in GRIM. Like-
wise, other potential goals (e.g., medical evacuation or
logistics supply delivery) may arise during execution
of the FDR scenario. Each goal should be defined in
the Goal Lifecycle and grounded in the metrics used to
evaluate its performance. These are topics for future
extensions of the GRIM system.

Future extensions will also investigate the use of more
complex algorithms and metrics in the implementation
of the Goal Lifecycle. A more accurate measurement
of the uncertainty remaining in an area survey will al-
low GRIM to improve its performance estimates and
react accordingly. Additionally, more complex strategies
would improve the system’s capabilities. For example,

a planner or scheduler could be used to SELECT goals
while accounting for the likelihood of discovering an of-
ficial in each region, thus enabling GRIM to more intelli-
gently choose which goals to pursue. Likewise, adapting
the plan expectations (i.e., recognizing that the vehicles
are not completing the survey at the expected rate, and
changing the expectations accordingly) would enable
GRIM to more quickly identify and evaluate problems,
and thus improve the likelihood that it could RESOLVE
any discrepancies.

6 Conclusion
This paper demonstrated, via simulation, how a GR sys-
tem can FORMULATE, SELECT, EXPAND, COMMIT to, and
DISPATCH area search goals to a team of autonomous
vehicles using the team’s information measures and ex-
pectations. The system, GRIM, will then MONITOR the
performance of these vehicles with respect to their goals,
and trigger the EVALUATE strategy when a problem is
detected in the execution. When the execution perfor-
mance violates the pre-determined bounds for the plan,
GRIM automatically attempts to RESOLVE the problems
by repairing the plan or re-expanding the goal into a new
set of plans.

This demonstration showed how a GR system can be
useful for autonomous systems operating in dynamic
environments, and how to ground it to the information
measures used by the system to evaluate its performance.
Future work on this subject will extend the system to
process additional goal types, and use additional and
more complex strategies. This will enable a more thor-
ough evaluation of the benefits of such a system via an
experiment with randomly generated scenarios.
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