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1. Introduction 
There is a need for underwater vehicles to be able to find sources of material (i.e., plumes) in aquatic 
situations. As part of the Integrated Microfluidic Sensor-AUV Platforms for ISR and Autonomy project 
for NRL’s Intelligent Decision Aids Group, we introduce WandaLearning, a Java program that allows 
Wanda, a UUV, to make autonomous decisions based on its environment sensors to find the source of a 
plume in a bounded area. It utilizes MOOS-IvP, an autonomy framework for underwater vehicles, and 
BURLAP, the Brown-UMBC Reinforcement Learning and Planning code library. 

RL focuses on finding some mapping or function of actions to rewards that allows the agent to 
succeed at a user-defined task. It primarily does so by directly interacting in its environment to determine 
the benefit or harm of performing a particular action in a state. It utilizes this information to update its 
mapping, which balances between new information and past information. Unlike supervised learning, RL 
does not need training data to indicate what is right or wrong; all the information needed can be collected 
through exploration in the environment, whether by random choice or predicting by using current 
approximations. 

MOOS-IvP is composed of two sets of C++ modules, combined to provide greater assistance to the 
UUV community. Developed by Paul Newman at MIT (now at Oxford), MOOS was created as 
middleware, allowing an interface for programs to communicate to robots. It utilizes a central database to 
handle communication among processes, requiring programs to subscribe to and post messages. Created 
by Mike Benjamin at the Naval Undersea Warfare Center (and now MIT), IvP Helm is a module that 
utilizes interval programming to reconcile environment data and autonomy demands, finding the best 
action to take at the current state. MOOS-IvP also refers to many other assisting programs bundled with 
the two core modules. uSimMarine is a module that simulates the actions of a vehicle. pMarineViewer is 
a module that can display the trajectory and history of uSimMarine or other programs using logs. 
NCARAI has created an additional module, pPlumeSimulator, for the purpose of imitating plumes in a 
designated search area. 

The BURLAP code library is a Java framework for the development of RL algorithms and 
environments. It has been utilized for its flexibility in defining environments, though we have chosen to 
modify its source code for serialization purposes. 

2. Method 
Given our decision to not discretize our environment so as to better represent reality, we employed 
continuous-domain RL algorithms. We chose to integrate the two applicable methods built-in to the 
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BURLAP code library: Least-Squares Policy Iteration (LSPI) and Gradient-Descent Sarsa(λ) (i.e., Sarsa). 
Both can be modified such as by changing discount factors or Bases specificity, though this can impact 
accuracy, memory usage, and time required to process. Based on a small sampling of tests, Sarsa so far 
appears to be more stable and accurate, though it usually requires much greater amounts of time due to 
being an on-policy method. 

To imitate reality, WandaLearning can add diversity to the environment. An argument to the program 
allows users to set whether the starting position of the agent and the plume’s characteristics (i.e. direction 
and position) should be static. To prevent situations where the agent could not find a plume (because it 
did not wander into it in the large search-area), plume randomization creates a relationship between 
direction and location by splitting the navigable area into quadrants and determining “good” directions to 
increase chance of contact. 

Currently, WandaLearning has three main modes. One can create policies from scratch using either 
LSPI or Sarsa. The environment can be made diverse, as stated earlier, and one can enter maximum steps 
and sampling amount as arguments. The second mode is continuing from previous efforts. This is utilized 
if previous attempts crashed, usually from communication errors between WandaLearning and MOOS-
IvP, or if previous attempts were not accurate enough. The last mode is running policies, a way to test 
policies post-completion. This was not integrated into the other two modes as the long running time may 
cause required log files to become quite large. 

3. Discussion 
Throughout the development process, various issues arose that led to fundamental changes. One of these 
changes regarded our state representation. In earlier implementations of WandaLearning, there were many 
“Objects” the state tracked. An oddity in the state representation was that the number of objects to track 
varied. This was to done to reflect discovering new information as the agent wandered in its environment. 
However, BURLAP was not designed for working with a variable amount of information, which led to 
issues with computation time, memory usage, and incompatibilities with matrix computations. Now, there 
is just one “Object”: the agent. All the remaining attributes allow people to view how the agent acted 
using MOOS-IvP’s uSimMarine. 

Original State Current State 

• (1) Agent 
o X Position 
o Y Position 
o Heading 
o Speed 
o Time 

• (Variable) Location 
o X Position 
o Y Position 
o Concentration Value 

• (1) Agent 
o X Position [-1, 100] 
o Y Position [-1, 100] 
o Heading [0, 360] 
o Concentration [0, 10000] 
o Current Direction [0, 360] 

 

Due to the matrix library used by BURLAP being single-threaded, WandaLearning’s time 
bottleneck is matrix computation. To provide redundancy, WandaLearning should have multiple 
iterations running. In doing so, one would also have to create multiple MOOSDB environments, due to 
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MOOS’ reliance on a centralized database.  To help maintain multiple copies of WandaLearning, a script 
was created to replace commonly modified files. Also as a result of this specific module, memory usage 
can be quite large. Combined with the number of threads started by Java and MOOS-IvP, a desktop 
computer may run out of memory; this can be somewhat mitigated by reducing the number of samples. 

4. Next Steps and Conclusion 
WandaLearning so far only has been tested on uSimMarine and pPlumeSimulator, not in an actual 
autonomous vehicle. Inherently, this can only be done once the simulations get more realistic and the 
program matured to increase stability and obtain better results. In addition, more algorithms relating to 
continuous domains can be implemented later, and alternatives to the current matrix library may make 
WandaLearning run faster and more efficiently than its current state. 

Currently, WandaLearning’s results are mixed. It works very well when it is very near the source of 
the plume, approximately 15 steps away. If too far away, it usually acts nearly randomly or sticks to the 
edges of the search area. This behavior is primarily due to how it learns and its small action set. The agent 
can only move straight, turn left, or turn right. It starts out moving randomly, though only leaving its 
current position one-third of the time. Added to the fact that for most of the search area plume-substance 
concentration is negligible, it would be hard for the agent to find the plume without extensive searching. 
To mitigate the issue, we are experimenting with the reward function to encourage the agent to stay away 
from the edges and increase exploration distance. 
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