
Image Surveillance Assistant

Michael Maynord
Computer Science Dept.
University of Maryland

College Park, MD 20742
maynord@umd.edu

Sambit Bhattacharya
Dept. of Math & Computer Science

Fayetteville State University
Fayetteville, NC 28301
sbhattac@uncfsu.edu

David W. Aha
Navy Center for Applied Research in AI
Naval Research Laboratory, Code 5514

Washington, DC 20375
david.aha@nrl.navy.mil

Abstract

Security watchstanders who monitor multiple videos over
long periods of time can be susceptible to information over-
load and fatigue. To address this, we present a config-
urable perception pipeline architecture, called the Image
Surveillance Assistant (ISA), for assisting watchstanders
with video surveillance tasks. We also present ISA1, an
initial implementation that can be configured with a set of
context specifications which watchstanders can select or
provide to indicate what imagery should generate notifi-
cations. ISA1’s inputs include (1) an image and (2) con-
text specifications, which contain English sentences and a
decision boundary defined over object detection vectors.
ISA1 assesses the match of the image with the contexts
by comparing (1) detected versus specified objects and (2)
automatically-generated versus specified captions. Finally,
we present a study to assess the utility of using captions in
ISA1, and found that they substantially improve the perfor-
mance of image context detection.

1. Introduction

Maritime watchstanders perform critical security tasks:
they monitor ship movements and suspicious activity for
potential threats, conduct communication checks, and per-
form a variety of related duties [7]. They can benefit from
some video surveillance tools, but these usually require
monitoring multiple streams for long durations. This risks
information overload and fatigue. This is particularly true if
the tools have a high incidence of false alarms, or are other-
wise not well-aligned with the watchstander’s objectives.

Ideally, an intelligent decision aid would allow a watch-
stander to provide (and dynamically revise, as needed) a
specification that describes the contexts for which they
seek notification. For example, this could include the en-
tities/objects, relations, activities, and other scene elements
of interest, as well as the contextual conditions under which
these are of interest (e.g., time of day). The decision aid,
having been trained to recognize these elements, and having
been given (or learned) models for interpreting these condi-
tions, would then operate on video streams selected by the
watchstander.

We present an abstract perception pipeline architec-
ture for such a tool, called the Image Surveillance Assis-
tant (ISA). ISA culls uninteresting images from the input
stream, and presents imagery to a watchstander only when
it is of predicted interest. It does this by comparing input
imagery against predefined, user-selected contexts. For ex-
ample, a watchstander may wish to be notified of mechani-
cal failures, security breaches, or the appearance of certain
objects in a monitored scene.

ISA combines top-down and bottom-up processes using
a hierarchy of components that operate on data structures
at different abstraction levels. It accepts as input a watch-
stander’s specifications, and uses these to modify the con-
figuration of its mid-level components, biasing them to be
sensitive to patterns that are relevant to the watchstander’s
selected contexts. ISA’s bottom-up processing of image
content employs deep learning (DL) techniques, whose out-
put is then interpreted for context matching. However,
while this assists with constraining bottom-up perception,
many options for this interpretation task exist.

In this paper, we assess how well automatically-
generated image captions assist with image interpretation



for an initial ISA implementation named ISA1. To do this,
we compare ISA1’s performance when it uses, to a vary-
ing degree, (1) a set of trained Support Vector Machines
(SVMs) for object detection and (2) a Long-term Recurrent
Convolutional Network (LRCN) [5] for caption generation,
combined with a semantic distance metric. While the first
is an obvious choice, the second is less so, and leverages
recent progress on caption generation. Our evaluation sug-
gests that these captions can be valuable for automated de-
tection of contexts in image surveillance tasks.

We briefly summarize related work in Section 2. Section
3 describes our conceptual approach. Section 4 then details
ISA1’s implementation. We present an example of its use in
Section 5 and our empirical study in Section 6. Finally, we
discuss future work plans in Section 7 before concluding.

2. Related Work
Waterfront security concerns actions taken to defend against
threats to maritime assets (e.g., facilities, vessels). it is
of great interest to the DoD, which is encouraging a uni-
fied approach to protect maritime assets [4]. For example,
SPAWAR developed the Electronic Harbor Security System
(EHSS), which integrates electronic sensors and video sys-
tems to detect, assess, track, and archive capabilities for
waterside surface and subsurface threats. EHSS includes
the use of video surveillance, but does not address issues of
watchstander information overload.

Many maritime surveillance systems exist. They vary
according to several dimensions [1], such as their type of
coverage (e.g., some provide aerial coverage using satellite
photography, whereas we focus on ground-based sensors)
and model category (e.g., some track vessels worldwide,
whereas we focus on a local area, such as a harbor). Per-
haps the most successful are those that perform perimeter
defense; they trigger alerts when a perimeter is breached
[14]. Others focus on specific types of surveillance tasks,
such as chokepoint surveillance [15]. However, they are
not designed to allow watchstanders to dynamically spec-
ify their contexts of interest, or use current-generation tech-
niques for image processing and interactive interpretation.

This paper is an extension of our earlier proposal [18].
Here we describe a broader conceptual architecture, an ini-
tial implementation, and an empirical study on the utility
of automatically generated captions for context prediction.
Our group has also studied the use of several artificial in-
telligence (AI) techniques for maritime threat assessment,
such as probablistic graphical models [3] and plan recog-
nition [2]. However, this is our first use of DL techniques
for scene recognition, and on the task of using contexts as a
focus for triggering watchstander notifications.

We are using DL techniques to support symbolic infer-
encing tasks. Several other researchers are likewise exam-
ining integrations of DL and AI techniques for computer

vision tasks. For example, Doshi et al. [6] are using Convo-
lutional Neural Networks (CNNs) to help create episodic
memories of video scenes that are matched to previous
episodes to generate predictions (e.g., of objects that will
appear in the near future). As another example, one among
several that use Long-Short Term Memories (LSTMs) to au-
tomatically generate captions, Venugopalan et al. [19] de-
scribe a system which operates on video input and learns
languge models that can generate natural, grammatical sen-
tences. However, we are not aware of other groups that
are studying the use of integrated DL and AI techniques for
maritime surveillance tasks.

3. ISA Conceptual Architecture

Figure 1. Conceptual Architecture for the Image Surveillance As-
sistant (ISA)

Figure 1 displays our vision for ISA’s architecture, includ-
ing its modules, data sources, and their relation. ISA
conducts a top-down process that constrains the pipeline
in accordance with specifications elicited from the watch-
stander, and a bottom-up process for imagery interpreta-
tion. The following paragraphs describe this abstract archi-
tecture, which we instantiate in Section 4.

The top-down process is intended to begin with the Con-
text Elicitor prompting the watchstander (via a GUI) with
a set of pre-defined contexts (whose encodings are stored
in Context Specifications). The watchstander could select
a subset of these, and also construct (with the assistance
of the Environment Model, which could contain a variety



of semantic information) and store encodings for additional
contexts. Selected contexts are made available to the Trans-
lator, which can modify parameter settings used by the Pat-
tern Interpreter that are relevant to those contexts. This al-
lows the Pattern Interpreter to be sensitive to patterns that
are relevant to detecting watchstander-specified contexts.

We envision that a Context Specification will include at
least two data structures. First, it will contain (e.g., feature)
descriptions for each context. These could be used by the
Context Recognizer to test whether the input imagery is a
good match for a given context. Second, a Context Spec-
ification will include a set of exemplar captions for each
context. These could be used by the Pattern Interpreter to
match with a caption generated from the input imagery.

The bottom-up process includes two initial steps. First, a
Feature Extractor will extract a set of features for the Pattern
Interpreter, which could use them to assess whether they
predict the appearance of an object, action, or other scene
element in the input imagery. Second, a Caption Genera-
tor will automatically produce a sentence annotation that,
in part, may describe valuable relations among scene ele-
ments. The Pattern Interpreter could compare this with a
context’s exemplar captions (mentioned above) to assess the
degree to which they match.

The results of these interpretations will then be provided
to the Context Recognizer, which is also provided with
information on the contexts selected by the watchstander,
and their encodings. Given these inputs, its task is to pre-
dict which (if any) contexts are active in the current im-
agery, and communicate this to the watchstander via dis-
play/notification in the GUI.

4. Prototype
Section 3 described the full ISA architecture. We now de-
scribe an initial ISA implementation, ISA1 (Figure 2). ISA1

includes most but not all of the full architecture’s compo-
nents and functions.

Using ISA1’s GUI, watchstanders can select one or more
of four pre-defined contexts, or define new contexts. The
four contexts we predefined and encoded into ISA1 are:

1. bar OR pub indoor
2. bathroom
3. computer room
4. parking lot OR street

We selected these contexts because we were able to obtain
images that correspond to them from the SUN Image Cor-
pus [21]. Also, these contexts can be distinguished using the
80 object categories defined in the Microsoft COCO dataset
[13]. Finally, the choice of four contexts suffices for our
initial study (Section 6).

ISA1’s Context Recognizer leverages a set of logistic re-
gression (LR) models that are included in the Context Spec-

Figure 2. ISA1, an Initial Implementation of the ISA architecture

ifications. We trained these LR models over object detection
vectors produced by SVMs. ISA1’s Context Specifications
also include a set of exemplar captions per context. (See
Section 6.2 for details.)

The LR models for the four contexts are made available
to the Context Recognizer while the exemplar captions are
made available to the Pattern Interpreter.

ISA1 takes as input individual images, rather than video.
These images are fed through two modules: a PCA com-
pression module that performs feature extraction, and a
LRCN to generate captions. We chose to use PCA here
because it is fast and required little time to integrate for this
first implementation of ISA.

ISA1’s Pattern Interpreter takes as input the output of the
PCA and LRCN modules. It applies the set of 80 trained
SVMs on the features extracted by PCA, and sends their
predictions to the Context Recognizer.

This Pattern Interpreter also computes the Word Mover’s
Distance (WMD) [12] of the LRCN-generated caption to
each exemplar caption of each context, and passes these
distances to the Context Recognizer. WMD is analogous
to Earth Mover’s Distance [16], which determines the sim-
ilarity between two probability distributions by calculating
the effort involved in moving the “earth” of one distribu-
tion such that it matches the other distribution. In WMD
sentences are represented as a set of points in a Euclidean
space semantic embedding. WMD defines the similarity of



Figure 3. A Screenshot of ISA1’s GUI

two sentences as the effort involved in transporting the set
of points associated with one sentence onto the set of points
associated with the other sentence. WMD is desirable in
this case as it captures semantic distance.

The Context Recognizer takes as input the output of
the Pattern Interpreter’s object class detections (using the
trained SVMs) and the computed caption distances. It ap-
plies the LR models provided by the Context Elicitor to
the object class detections, and a nearest neighbor classifier
(1-NN) to the caption distances, to predict which (if any)
contexts are active in the input image. Finally, the Context
Recognizer combines these predictions using Equation 1,
where ali(~o, C) is ISA1’s predicted activity level for con-
text i given object detection vector ~o and caption distances
C. b(~o) denotes the distance of ~o from the LR model’s de-
cision boundary, e(C) denotes whether 1-NN’s predicted
context is i, and α ∈ [0, 1] is a tunable parameter. We de-
fine a context to be active when ali(~o, C) > 0.5.

ali(~o, C) = α× b(~o) + (1− α)× e(C) (1)

This is a simple and constrained first implementation of
ISA. We discuss future extensions of it (e.g., alternatives to
using PCA for feature extraction) in Section 7.

5. Example

In this section we describe an example use of ISA1, whose
GUI (Figure 3) includes three columns. The first contains
the image on which it is operating, the middle takes user
input and presents output, and the third allows defining of
contexts.

A watchstander/user can define a new context specifica-
tion as follows. The name for the new context is provided
in the text field labeled Context Name. Within Context Ob-
jects is a list of the 80 objects over which a linear decision
boundary is defined. For each object, the user can specify
whether the object’s presence or absence is associated with
the context, for which they can check the Present or Absent
boxes, respectively (or check neither). The user can also
insert sentences into Context Captions that exemplify the

context being defined. Note that in defining a new context
the user does not provide any example images of that con-
text - the user provides only a description of the context, one
of a form that is easy for humans to understand and interact
with. In Figure 3, a user is defining a new context called
Port. The user specified that the presence of a boat object
indicates that the context is active in an image, whereas the
presence of bicycle and book indicate that the context is not
active, and the presence of bird is neutral. The remaining
76 objects become visible when scrolling. The user has pro-
vided two example sentences for the Port context: “A crane
unloads brightly colored shipping containers from a large
cargo ship”, and “Several tug boats assist an oil tanker in
docking”.

The middle column contains two buttons. The Load Im-
age button loads a new image, while the Evaluate Image
button runs ISA1’s evaluation process over the curent im-
age and displays the results. Within Object Detection is
a list of the 80 COCO objects, and a column for Results;
its boxes are checked for those objects that ISA1 detected
in the image. Context Selection and Detection contains a
list of all pre- and user-defined context specifications, and
the Search and Result columns. (The Feedback columns
in this column are notional, as ISA1 does not adjust its
configuration based on correcting feedback.) The user can
check a Search column’s box to indicate a context of inter-
est, in which case ISA1 should evaluate input with respect
to this context specification (to determine whether it is ac-
tive). When the user presses Evaluate Image the cells of
the Result column will be in one of three states: grayed
out, ungrayed and unchecked, or ungrayed and checked. A
cell is grayed out if it is associated with a context speci-
fication for which the user indicated no interest, by leaving
that context specification’s Search checkbox unchecked. An
ungrayed unchecked box indicates that ISA1 evaluated the
image with respect to the associated context specification,
and predicted the context is not active. Similarly, for an
ungrayed and checked box, ISA1 predicted the context to
be active.

Figure 3 shows that the user selected an image of a street,
and indicated interest in all but the bathroom context. ISA1

predicted that, among the contexts the user selected, only
the parking lot OR street context is active in the image. All
context detections are correct. Among the first four objects
listed in Object Detection, both bus and car were detected.

6. Evaluation

6.1. Hypothesis

In this section we evaluate the hypothesis that, for at least
our study, ISA1’s use of automatically generated captions
can increase its performance, where the task is to predict
the active context of a given image, the image belongs to



exactly one context, and our metric is the F-score.

6.2. Datasets and Training

ISA1’s LR models were produced as follows. First, we col-
lected 2910 images from the bar, pub indoor, bathroom,
computer room, parking lot, and street scene categories of
the SUN Corpus. After grouping into our four context cate-
gories, we randomly selected 40% of the images from these
context categories to serve as a test set (totaling 1165 im-
ages), while the remaining images serve as a training set
(totaling 1745 images). We then trained a separate SVM
for each of COCO’s 80 object categories using COCO im-
ages (i.e., because COCO’s images are labeled according to
these object categories whereas the SUN corpus does not
have object labels), where we used PCA to extract features
that we then standardized such that each feature had µ = 0
and σ = 1. We similarly standardized the vector of SVM
predictions. Next, for each context we trained a LR model
on object vectors obtained by applying the SVMs to posi-
tive and negative examples selected from the training set we
derived from the SUN corpus.

We generated a set of ten exemplar captions per con-
text as follows. (1) We trained the LRCN model of [5] on
COCO images. (2) We then applied it to the 1745 images
of our SUN Corpus training set to generate 500 captions
per context. An LRCN combines a trained CNN [11] with a
Long-Short Term Memory (LSTM) [8], which is a recurrent
neural network that can represent temporal patterns and pro-
duce captions for images or image sequences. (3) For each
context’s image captions, we then applied WMD to each
pair of captions to produce a distance matrix among cap-
tions. For each caption in that matrix, we computed its sum
of squared distances to the other 499 captions. (4) Finally,
we selected, per context, the ten captions with the smallest
sum of squared distances among them. These were included
in ISA1’s Context Specifications. Table 1 presents a subset
of the ten exemplar captions employed for each context.

6.3. Evaluation Method

To evaluate the extent to which the context exemplar caption
method impacts context prediction, we recorded whether
ISA1’s context predictions (on the 1165 images of the test
set) were correct. Our independent variable was α in Equa-
tion 1, which we varied from 0 to 1 by increments of 0.05.
When α = 1, ISA1 uses only the SVM’s learned decision
boundaries to predict/detect an image’s context. In contrast,
all lower values for α in our experiment correspond to in-
creasing reliance on comparing a context’s captions with the
image’s predicted caption.

For each of the four contexts, and each value of alpha, we
applied the LR models, SVMs, and LRCN of ISA1 to the
test images of that context, determined context detections
using Equation 1, computed precision and recall, and then

Figure 4. Mean F-scores as a function of α. When (α = 0),
only the generated captions are used for prediction, whereas when
(α = 1), only object detection predictions are used. These re-
sults indicate that using the generated captions can increase per-
formance.

Table 2. Context Confusion Matrix for Caption Matching

Predicted Context

True Context

1 2 3 4 ALL
1 198 57 178 67 500
2 41 398 57 4 500
3 117 78 287 18 500
4 47 24 19 410 500

ALL 403 557 541 499 2000

combined these into an F-score. We averaged the F-scores
across all four contexts, and report this below.

6.4. Results

ISA1’s context prediction performance is summarized in
Figure 4. For our study, we found that its optimal perfor-
mance is attained when α ≈ 0.2, where the predictions
of the SVMs’ and 1-NN (on caption matching) were em-
ployed. ISA1 also recorded a comparatively high mean F-
score whenα = 0, indicating that using only caption match-
ing compares well to a joint method. Furthermore, its per-
formance was much higher than when using only object de-
tections for context prediction (i.e., when α = 1). Thus,
these results support our hypothesis (Section 6.1).

Table 2 displays a confusion matrix for our caption com-
parison method. As shown, the performance of caption
matching varies with the context, and some contexts (e.g.,
a computer room and a bar or pub) are more easily con-
fused than others. We conjecture that the computer room
and bar OR pub indoor contexts are easily confused as they
both involve indoor scenes that do not consistently contain
the unique identifying objects that a bathroom scene con-
tains.



Table 1. Example captions used for each of the four contexts used in our empirical study.

Context Subset of 10 Exemplar Captions (Per Context)
bar OR pub indoor “A stove with stove and pans around it.”

“Large sun lights on display as a restaurant decorated.”
bathroom “A toilet that is in a bathroom with a curtain.”

“A tiny bathroom scene with a sink and toilet.”
computer room “This is a woman sitting at a computer desk with two laptops.”

“A man plays a game with nintendo wii at television.”
parking lot OR street “Cars and cars driving along a city street.”

“There is a view of a busy intersection of the city street.”

7. Future Work

As mentioned, ISA1 is a simple first implementation of ISA.
We highlight a few future research directions here.

User Interaction: Future ISA versions will extend ISA1’s
ability to dynamically define a new context, or alter an ex-
isting one, at any point during system operation. This is
particularly important because a watchstander may want to
modify the system’s behavior as the monitored situation un-
folds. We plan to extend this to scene elements as well,
where the watchstander could provide imagery and addi-
tional information (e.g., annotations, features) to teach ISA
new scene elements through a process of iterative refine-
ment, where the system could use active learning techniques
to prompt the watchstander for their feedback on predic-
tions of the presence of these newly defined elements in new
scenes. More generally, ISA should leverage watchstander
feedback (e.g., highlighting false positives and negatives)
on system performance. This could be used to automati-
cally modify the system’s configuration (e.g., models used
in the Pattern Interpreter or Context Recognizer).

Feature Extraction: We will replace the object detec-
tors of ISA1, consisting of a set of SVMs applied to PCA
compressed images, with a Regional CNN object detection
method [9]. This should produce state-of-the-art image fea-
tures. This approach is also better suited to detect objects in
images that contain many objects per scene, and it will ex-
tract additional information from the input (e.g., object po-
sitions, spatial relations). Alternatives to LRCN for caption
generation will be explored, such as [20], and [17] which
functions over video.

Imagery: While ISA1 is limited to single images, we will
extend its scope to work with video. To do this, we will
incorporate recent advances in processing video to extract
features (e.g., [10]) and generate captions (e.g., [22]).

Pattern Interpretation: ISA1’s Pattern Interpreter uses
SVMs. Future versions will instead leverage more sophis-
ticated techniques, such as HMMs, GMMs, and scripts to
represent temporal relations. The Pattern Interpreter will
also take input from a Translator module to assist with map-

ping context specifications to these representations. This
could assist watchstanders with monitoring processes of in-
terest.

Caption Evaluation: ISA1’s method for evaluating cap-
tions to determine context detections assumes that each im-
age belongs to exactly one context. We will relax this
assumption, and are considering an extension that applies
a GMM model to the space of captions, or applies max-
ium likelihood estimates to context-specific caption dis-
tance distributions. This will require ensuring the training
set includes images that belong to multiple contexts.

Tuning: We will include methods to automatically tune
system parameters, such as the number of exemplars to be
included in a context specification’s exemplar set and the
threshold value used in Equation 1.

User Study: Finally, we will evaluate the effectiveness with
which users are able to define and detect novel contexts us-
ing ISA1.

8. Conclusion

In this paper we introduced a novel video surveillance ar-
chitecture, the Image Surveillance Assistant (ISA), which
is intended to assist watchstanders with identifying imagery
that is of interest to them. This may be particularly impor-
tant in the conditions of information overload or fatigue.
This architecture embodies three key characteristics: in-
corporation of both connectionist and symbolic representa-
tions, a compositional hierarchy, and top-down information
flow. In addition to the architecture we introduced a limited
proof-of-concept implementation, ISA1, and described its
evaluation to assess whether automatically generated image
captions can improve context detection performance. Our
results provide some support for this hypothesis. However,
this is an initial study, several topics remain to be addressed
in future work, and we discussed some of these in Section 7.
Finally, we are collaborating with Navy reservists to obtain
their feedback on this system, and to demonstrate it to po-
tential users.
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