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Abstract

We consider the problem of continual planning
(DesJardins et al. 1999) in hazardous partially-
observable dynamic environments, where deter-
ministic exogenous events that cannot be directly
observed affect the state of the world and no plan
can be guaranteed to succeed. In these environ-
ments, limited observability makes state transi-
tions ambiguous and difficult to predict. To resolve
this ambiguity, we have developed two versions
of DISCOVERHISTORY, an algorithm that under-
stands its environment by abductively explaining
changes in state through reference to event mod-
els. We provide an analysis of their computational
complexity and an empirical comparison of their
performance in terms of execution time and suc-
cess rate at accomplishing goals. We show that
use of explanation generation increases the success
rate of a continual planning agent and provide an
initial benchmark for efficiency of continual plan-
ning with explanation in standard domains.

Introduction
Typical modern planning algorithms are designed to
create plans that achieve goals in a range of mod-
eled environments, but not to execute them. Contingent
planners for partially observable environments such as
Contingent-FF (Hoffmann and Brafman 2005), CLG
(Albore, Palacios, and Geffner 2009), and SDR (Shani
and Brafman 2011), create plans that succeed in a range
of possible initial states, but fail to produce a plan if
any of those initial states leads to failure. We call such
environments where an agent does not know success is
possible hazardous. We contend that achieving goals in
hazardous environments requires a continual planning
agent capable of interleaving planning, execution, and
monitoring, because any initial plan must be faulty, and
therefore require revision. Our approach to this prob-
lem requires the agent to make assumptions about the
environment that allow it to proceed, then revise those
assumptions as the agent obtains new information. We
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provide an algorithm that monitors the environment us-
ing an explanation generation procedure, which per-
forms abductive reasoning to increase its understanding
of the environment as execution proceeds.

Explanations are generated by the DISCOVERHIS-
TORY algorithm (DH), introduced in prior work (Mo-
lineaux, Kuter, and Klenk in press), which dynamically
constructs a history of occurrences (i.e., actions, events,
and observations) the agent understands to have hap-
pened in the environment. By ensuring that the explana-
tion is consistent with observations, DH reasons about
possible histories of the environment, which impact hid-
den state. To do so, DH requires the world to be mod-
eled in terms of deterministic exogenous events, which
cannot be predicted with certainty or observed. This
is a significant difference from most planning models,
which represent uncertainty with conditional or nonde-
terministic effects of actions. Deterministic exogenous
events naturally describe transitions that occur with or
without an agent’s intervention when a set of conditions
are met, such as an alarm going off or an apple falling
from a tree. They have previously been studied in plan-
ning by Fox et al. (2005) and Gerevini et al. (2006),
but their work covers "predictable" exogenous events,
which occur at a known time, and they do not consider
partially observable environments. Recent work in diag-
nosis treats exogenous events as actions, meaning that
they are non-deterministic (Sohrabi, Baier, and McIl-
raith 2010) or ignores them entirely, as in traditional
fault diagnosis. This is a simplifying assumption, be-
cause deterministic exogenous events are constrained to
happen immediately when caused.

Novel contributions of this paper include an in-depth
description of two versions of DH, an analysis of its
computational complexity, and an empirical evalua-
tion of DH’s efficiency. To our knowledge, this is the
first empirical comparison of a continuous planning al-
gorithm for hazardous, partially observable domains;
therefore, no existing systems are compared.

Definitions and Notation
Basics. We use the standard definitions from classi-
cal planning for variable and constant symbols, logi-
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cal predicates and atoms, literals, groundings of literals,
propositions, planning operators and actions (Ghallab,
Nau, and Traverso 2004, Chapter 2).

Let P be the finite set of all possible propositions
that describe a planning environment. A planning en-
vironment is partially observable if an agent only has
access to the environment through observations that do
not cover the complete state. We letPobs be the set of all
propositions that the agent will observe when true. An
observation associates a truth value with each of these
propositions. We refer to other propositions as hidden.

An event template is syntactically identical to a
classical planning operator: (name, preconds, effects),
where name, the name of the event, and preconds and
effects, the preconditions and effects of the event, are
sets of literals. An event is a ground instance of an event
template. Unlike actions, events are triggered immedi-
ately when all of their preconditions are met.

Explanations. We formalize the planning agent’s
knowledge about recent changes in its environment as
an explanation of the world. We define a finite set of
symbols T = {t0, t1, t2, . . . , tn}, called occurrence
points. An ordering relation between two occurrence
points is denoted as ti ≺ tj, where ti, tj ∈ T .

There are three types of occurrences. An observation
occurrence is a pair of the form (obs, t) where obs is
an observation, and t is an occurrence point. An action
occurrence is a pair of the form (a, t) where a is an ac-
tion. Finally, an event occurrence is a pair (e, t) where
e is an event. We define occ as a function such that
occ(o) 7→ t; that is, occ refers to the occurrence point
t of any occurrence o. R is a partial ordering over oc-
currence points that comprises relationships of the form
ti ≺ tj where ti, tj ∈ T . As a shorthand, we sometimes
will speak of the ordering between two occurrences:
oi ≺ oj, which means that occ(oi) ≺ occ(oj).

An execution history is a finite sequence of obser-
vations and actions obs0, a1, obs1, a2, . . . , ak, obsk+1. A
planning agent’s explanation of the world given an exe-
cution history is denoted as χ, where χ is a finite set of
zero or more event occurrences that are considered as
having occurred in some possible world.

We use the definitions knownbefore(p, o) and
knownafter(p, o) to refer to the truth of a proposition
p immediately before or after an occurrence o ∈ χ oc-
curs. Let o be an action or event occurrence. Then, the
relation knownbefore(p, o) is true iff p ∈ preconds(o).
Similarly, the relation knownafter(p, o) is true iff p ∈
effects(o). If o is an observation occurrence and p ∈
obs, then both knownbefore(p, o) and knownafter(p, o)
are true, and otherwise are false.

We say that an occurrence o is relevant to a proposi-
tion p if the following holds:

relevant(p, o) ≡
knownafter(p, o) ∨ knownafter(¬p, o)∨
knownbefore(p, o) ∨ knownbefore(¬p, o).

Plausibility. A proximate cause of an event occurrence
(e, t) is an occurrence o that satisfies the following
three conditions with respect to some proposition p: (1)
p ∈ preconds(e), (2) knownafter(p, o), and (3) there
is no other occurrence o′ such that o ≺ o′ ≺ (e, t).
Every event occurrence (e, t), must have at least one
proximate cause, so every event occurrence must occur
immediately after its preconditions are satisfied.

An inconsistency is a tuple (p, o, o′) where o and o′
are two occurrences in χ such that knownafter(¬p, o),
knownbefore(p, o′), and there is no other occurrence o′′
such that o ≺ o′′ ≺ o′ ∈ R and p is relevant to o′′.

An explanation χ is plausible iff the following hold:
1. There are no inconsistencies in χ;
2. Every event occurrence (e, t) ∈ χ has a proximate

cause in χ;
3. For every pair of simultaneous occurrences such that

o, o′ ∈ χ and occ(o) = occ(o′), there may be no con-
flicts before or after: for all p, knownafter(p, o) =⇒
¬knownafter(¬p, o′), and knownbefore(p, o) =⇒
¬knownbefore(¬p, o′).

4. If preconds(e) of an event e are all satisfied at an oc-
currence point t, e is in χ at t;

Algorithms
Molineaux, Kuter, and Klenk (in press) previously de-
scribed the DH algorithm, which performs an abductive
search to find plausible explanations, or possible his-
tories, of a partially-observable dynamic environment.
At each level of search, DH applies a refinement to an
existing, implausible explanation to resolve one of its
inconsistencies. To increase the efficiency of this time-
intensive search, we have studied two versions of DH
(DH1 and DH2). In this section, we describe them in a
higher level of detail than previously provided, and give
an analysis of their computational complexity.

DH1 and DH2 pursue different strategies for finding
inconsistencies and maintaining the partial ordering R
over all occurrence points. DH1 creates and maintains
a list of inconsistencies. As it makes each refinement to
an explanation, DH1 removes a targeted inconsistency
from the list, and examines events relevant to the refine-
ment to find any new inconsistencies; these are added
to the list. To efficiently find these inconsistencies, the
global ordering R is represented by ordered lists of oc-
currences relevant to each proposition p ∈ P , which
must be updated during each refinement.

Instead of incrementally adjusting the set of incon-
sistencies and the global ordering, DH2 fixes the par-
tial ordering R in advance, and calculates the set of
inconsistencies on demand. To fix the partial ordering,
DH2 enumerates the set of possible event occurrences
(Eposs) in advance. This relieves the burden of creating
new occurrences and occurrence points during explana-
tion. This makes the process of finding refinement sim-
pler and removes the computational demand of main-
taining R. However, the enumeration of all occurrences



and on-demand calculation of inconsistencies add addi-
tional complexity. As a consequnce of pre-enumerating
the possible occurrences, the branching factor of DH2 is
smaller; it considers only the set Eposs as possible added
events, instead of the larger set E.

In this section, we examine DH1 and DH2 by consid-
ering the types of refinements that are common to both,
the FINDEXTRAEVENTS subroutine both use, and ana-
lyze their computational complexity.

Inconsistency Refinements
Adding an occurrence. Let χ be an explanation with
an inconsistency i = (p, o, o′). One way to resolve i
is to show that the value of a literal changed between
the preceding event o and the following event o′. This
change can only occur due to some occurrence o′′ rele-
vant to p such that o ≺ o′′ ≺ o′. For example, if a robot
issues an action to move itself from room A to room B,
then observes that it is in room A, it might postulate that
an event occurred after its action and before the obser-
vation, moving the robot back from room B to A.

To perform this refinement, DH1 must enumerate all
possible event occurrences o′′ that add the proposition
p. In contrast, DH2 needs only to consider its pre-
generated list of events Eposs and filter that list based
on the requirements enumerated above. Therefore, DH1
considers more (unnecessary) refinements than DH2.

Removing an occurrence. Another possible way to
resolve an inconsistency i = (p, o, o′), where o and/or
o′ is an event occurrence, is to generate new explana-
tions with either o or o′ is removed. For example, if a
robot issues an action to move itself from room A to
room B, then observes that it is in room A, it is possible
that the actual event of moving from A to B never hap-
pened. This raises the possibility that one of that event’s
conditions, such as the door being open, was not met.

Both DH algorithms handle this identically. First, a
new explanation χnew is generated with the event o
removed. Then, to explain why the occurrence does
not happen, some p′ ∈ preconds(o) is constrained
not to hold at the occurrence point occ(o). This con-
straint takes the form of a removal occurrence or where
occ(or) = occ(o). This occurrence has no effects and
satisfies preconds(or) = {¬p′}. This removal occur-
rence prevents any future addition that would cause o
to occur. The maximum number of possible removal re-
finements is |preconds(o)|+ |preconds(o′)|.
Hypothesizing an initial value. Given an inconsis-
tency i = (p, o, o′), where o refers to the initial obser-
vation obs0, and p is hidden, a new initial value for p
may be hypothesized. To do so, DH generates a new
explanation by adding to χ an initial value occurrence
op, occ(op) = t0. This occurrence has no precondi-
tions, and satisfies effects(op) = {p}. For example, if
the robot discussed earlier was assuming the door was
open, its closed state would be inconsistent. Correcting
that assumption would resolve the inconsistency.

The FINDEXTRAEVENTS Subroutine
The refinement methods of DH remove and add events
as necessary to remove inconsistencies, but do not con-
sider how these changes cause new events to hap-
pen. The FINDEXTRAEVENTS subroutine is responsi-
ble for this. When an explanation has no inconsisten-
cies, FINDEXTRAEVENTS checks it for missing events
and missing causes. This ensures that explanations
meet requirements 2 and 4 of a plausible explanation
(see Plausibility above), which implement determinis-
tic event execution by requiring that events fire imme-
diately when their conditions are met.

According to requirement 2, an explanation that in-
cludes an event for which no proximate cause exists is
implausible (because the event should have happened
earlier). To ensure that such an explanation is not re-
turned, FINDEXTRAEVENTS iterates over each event
occurrence occi in χ, and attempts to find its proxi-
mate cause. To do so, it iterates over all occurrences in
the explanation and execution history to find the set of
prior occurrences PO = [occ0 . . . occn] where for ev-
ery occj ∈ PO, occj ≺ occi and there is no occk such
that occj ≺ occk ≺ occi. If for any occj ∈ PO the set
effects(occj)∩ preconds(occi) is non-empty, occi has a
proximate cause. If there is an occi without a proximate
cause in the explanation, then the explanation is faulty
and FINDEXTRAEVENTS returns a null explanation.

According to requirement 4, all events that are pos-
sible must occur. FINDEXTRAEVENTS guarantees this
by adding events that are caused but are not in χ. For
each occurrence point ti ∈ T , it enumerates all events
ej whose preconditions are met at ti. If an occurrence
occij = (ej, ti) is not present, it is added to χ.

Computational Complexity
Here we discuss differences between the high-level
structures of DH1 and DH2 that affect their practical
and theoretical performance.

Algorithm 1 lists pseudocode for DH1, which per-
forms a recursive search for plausible explanations.
When an explanation has no inconsistencies (line 3),
FINDEXTRAEVENTS is called to search for missing
events (line 4). It returns null in the case of a faulty
explanation, and no explanations are returned (line 5).
If no inconsistencies are left, the explanation is plausi-
ble and is returned as the result of DH1 (line 6). Oth-
erwise, the explanation is implausible and search con-
tinues. First, an inconsistency is selected (line 7) and
all possible refinements are found to resolve it (line 8).
Each refinement is then applied in turn, modifying the
global ordering relation R, and DH1 is called recur-
sively to continue the search (lines 9-13). After search
ends, the ordering changes are reverted (line 19).

Algorithm 2 describes DH2. In line 1, all events are
pre-enumerated before the search begins. Lines 4-9 de-
scribe the same "no inconsistency case" seen before for
DH1, with the addition of a function call to find the in-



Algorithm 1: DISCOVERHISTORY1

1 Procedure DISCOVERHISTORY1 (χ)
2 begin
3 if Inconsistenciesχ = ∅ then
4 χ←FINDEXTRAEVENTS (χ)
5 if χ = ∅ then return ∅
6 if Inconsistenciesχ = ∅ then return {χ}
7 i← SELECT(Inconsistenciesχ)
8 X ← ∅ Θ← FINDREFINEMENTS(χ, i)
9 foreach θ ∈ Θ do

10 χnew ←UPDATEEVENTS(χ, θ)
11 R←UPDATERELATIONS(R, θ)
12 Inconsistenciesχnew ←

UPDATEINCONSISTENCIES (χ, θ)
13 X ← X ∪ DH1 (χnew)
14 R←REVERTRELATIONS(R, θ)
15 return X

Algorithm 2: DISCOVERHISTORY2

1 R, Eposs ←FINDPOSSIBLEEVENTS()
2 Procedure DISCOVERHISTORY2 (χ)
3 begin
4 Inconsistenciesχ ←

FINDINCONSISTENCIES(χ)
5 if Inconsistenciesχ = ∅ then
6 χ←FINDEXTRAEVENTS (χ)
7 if χ = ∅ then return ∅
8 Inconsistenciesχ ←

FINDINCONSISTENCIES(χ)
9 if Inconsistenciesχ = ∅ then return {χ}

10 X ← ∅ Xbest ← Xinit
11 foreach i ∈ Inconsistenciesχ do
12 Xi ← REFINE(χ, i)
13 if Xbest = Xinit or |Xi| < |Xbest| then
14 Xbest ← Xi
15 foreach χnew ∈ Xbest do
16 X ← X ∪ DH2 (χnew)
17 return X
18

19 Procedure REFINE(χ, i)
20 begin
21 X ← ∅ Θ← FINDREFINEMENTS(χ, i)
22 foreach θ ∈ Θ do
23 χnew ←UPDATEEVENTS(χ, θ)
24 X ← X + χnew
25 return X

consistencies present; in DH2, the inconsistencies must
be computed when needed. This is because the set of
inconsistencies are not updated for each invocation, a
procedure which is significantly more expensive with-
out the specialized proposition-organized ordering re-
lation used by DH1. Lines 10-16 handle the recursive
case. Instead of selecting a single inconsistency to refine
as in DH1, DH2 attempts all refinements of each incon-

sistency, and recursively searches only the smallest set
of explanations found. This either reduces or does not
change the branching factor, without changing the set
of explanations found. DH1 does not do this because it
enumerate events during the search, which makes find-
ing refinements far more expensive.

Because testing all inconsistencies is too expensive
for DH1, SELECT (line 7, Algorithm 1) attempts to pre-
dict which inconsistency will lead to the fewest refine-
ments. Each time an inconsistency i = (p, o′, o′′) is
refined, DH1 records the inconsistent literal p and the
number of observed refinements. When selecting a new
inconsistency, DH1 predicts that the number of refine-
ments will be equal to the average of the last n observed
values for inconsistencies with the same literal p. Then
DH1 selects the inconsistency with the minimum pre-
diction. This naive form of learning for increased effi-
ciency is in the same vein as research in learned heuris-
tic functions (Arfaee, Zilles, and Holte 2011) or search
control rules (Minton 1988). While this has performed
well in testing, future work may show that more princi-
pled search control techniques improve efficiency.

The size of the space of explanations searched by
DH1 is infinite; DH2 searches a space that is merely
exponential in the number of possible events (Eposs).
Therefore, it reduces search time by searching for only
the most plausible explanation (Leake 1992), using a
plausibility metric to bound the search 1. We consider
two such metrics, the choice of which has a practical
effect on efficiency: (1) the number of changes (i.e.,
events added to or removed from) made to an initial
explanation, or (2) the number of decisions made (i.e.,
branching nodes expanded) in finding a new explana-
tion from an initial explanation. These metrics were se-
lected because they prefer explanations that are "sim-
pler", in the sense that they are closer to what was
believed initially. The major differences between the
change and decision metrics is that some changes do
not entail decisions. When only one refinement is pos-
sible, no decision is made, so applying that refinement
results in an explanation of the same cost. While FIND-
EXTRAEVENTS subroutine may make several changes
to an explanation, no choices must be made, so the re-
sulting explanation has the same cost under the decision
metric and a higher cost under the change metric. These
metrics are used to bound the search: a low value for
maximum plausibility is chosen initially, and increased
each time search fails, resulting in an iterative deepen-
ing search. Successive search depths can become more
expensive quickly, so we employ a maximum plausibil-
ity bound M to ensure a timely result.

To compute the computational complexity of DH1
and DH2, we start with the complexity of iterative deep-
ening search: O(bd), where b is the branching factor
and d the search depth. The maximum branching factor
for DH1 is equal to the number of possible refinements

1Omitted from pseudocode to save space.



of an inconsistency: |E|+ (2 ∗ Np) + 1, where E is the
finite set of all event model instantiations (maximum
number of add event refinements for an inconsistency)
and Np is the maximum number of preconditions of an
event (maximum number of remove event refinements
for an inconsistency). At most one initial value hypoth-
esis can be made for a single inconsistency. Substitut-
ing this into the iterative deepening equation, we get
the complexity of DH1: O((|E| + (2 ∗ Np) + 1)M).
The maximum branching factor for DH2 is similar:
|Eposs|+(2 ∗Np)+ 1. This is always less than or equal
to the branching factor for DH1. The advance enumer-
ation step made by DH2 expends no more than a con-
stant amount of effort for each event in E; it is therefore
bounded by c|E|, and falls out of the complexity equa-
tion for DH2: O((|Eposs|+ (2 ∗ Np) + 1)M).

DHAgent
DHAgent is an agent capable of using the explanations
generated by DH. It uses a classical planner to create
plans under the closed-world assumption (which is not
generally correct in partially observable worlds), and
constructs a default explanation as it executes a plan.
This explanation includes actions executed by the agent,
observations received from the environment, and ex-
pected exogenous events predicted by running FIND-
EXTRAEVENTS on the current explanation after exe-
cuting each action. After each observation is received,
the explanation is checked for inconsistencies. At this
point, DH is called to refine the existing explanation. It
then selects an arbitrary explanation (the first) returned
by DH, and queries it to find the current state, which
consists of all facts explained to be true at the most re-
cent occurrence point, both observable and hidden. It
then uses a planner to replan for the current state, and
resumes execution. This procedure stops when all goals
are accomplished or no plan can be generated.

Experimental Evaluation
We claim that both DH1 and DH2 increase the goal
achievement performance of DHAgent in partially-
observable hazardous domains. The efficiency of DH2
scales well with increasingly complex explanations. To
analyze these claims, we provide empirical results ana-
lyzing efficiency and goal achievement performance on
four sets of 25 scenarios. Each scenario specifies a set
of tasks to accomplish and an initial simulation state
without hidden information. To our knowledge, no re-
lated systems provide support for deterministic exoge-
nous events, so we do not compare against existing sys-
tems. Instead, we compare DHAgent using DH1, DH2
with the decision count plausibility metric, DH2 with
the change count plausibility metric, and an ablated DH
that does not refine explanations. In these experiments,
plans were provided by a version of SHOP2 (Nau et
al. 2003) extended with the ability to project the occur-
rence of events (Molineaux, Klenk, and Aha 2010a).

Two domains were used in these experiments: a Haz-
ardous Rovers domain and a Hazardous Satellites do-
main. These domains are called hazardous because no
plan will succeed in some initial states, unlike in stan-
dard planning domains. These domains were introduced
in (Molineaux, Kuter, and Klenk in press) for early DH
investigations, and require the accomplishment of mul-
tiple goals using multiple simulated robotic effectors
over the course of a single trial.

There are 3 levels of difficulty in the Hazardous
Rovers domain, each corresponding to a different fre-
quency of hidden obstacles in the initial state. All sce-
narios are pre-generated, and no probabilities are given
to the agents, but a higher probability of obstacles trans-
lates to a more difficult scenario in which explanation is
of higher importance.

To examine the behavior of the DH algorithms in
these domains, we ran the four agents on each of the
four sets of scenarios (3 Hazardous Rovers and 1 Haz-
ardous Satellites) using 5 different maximum plausibil-
ity bounds, recording both execution time and the num-
ber of goals achieved. The results of these evaluations
are shown in Table 1 shows that DH2 achieves the high-
est performance at every maximum plausibility bound,
and while DH2 scales well as the bound increases, the
time required by DH1 tends to increase dramatically.
DH2 takes less than 20 seconds on average to generate
all explanations at maximum performance, and scales
well, with explanation times increasing less than 40%
from maximum search depth 1 to 9 on each set of sce-
narios. However, this does not indicate that DH2 is al-
ways more efficient than DH1, because DH1 sometimes
attains high performance at lower plausibility bounds.

To compare equivalent results for each system, we
found the minimum value of maximum search depth
at which each agent reached maximum goal achieve-
ment performance, except the ablated agent, which
never does. Maximum performance was determined by
matching results against the highest absolute perfor-
mance on that set of scenarios using a 1-tailed paired
sample t-test with a 95% confidence threshold. When
the null hypothesis of equal means could not be re-
jected, the agent was said to have reached maximum
goal achievement performance. Then we compared the
time required for that achievement across all agents.
The ablated agent is statistically outperformed on each
set by each other agent. In the Hazardous Rovers do-
main, DH2 is clearly more efficient on each test con-
dition. DH1 is statistically more efficient than DH2 in
the Hazardous Satellites domain, but the percentage dif-
ference between DH1 and DH2 is small. We conjecture
that the higher performance level of DH1 on the Haz-
ardous Satellites domain can be attributed to higher suc-
cess of branch prediction in DH1 and fewer events in
that domain; in future research, we will examine what
environment characteristics impact efficiency.



Domain Ablated DH1 DH2 using change metric DH2 using decision metric
Max Search Depth 0 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9
Hazardous Rovers 0.65 0.65 0.71 0.71 0.80 0.80 0.65 0.71 0.71 0.83 0.84 0.68 0.80 0.84 0.84 0.84
λ = 0.1 0.77 0.76 1.93 11.91 156.75 180.05 12.69 14.81 17.89 15.07 15.39 11.46 13.52 14.45 14.50 14.52
Hazardous Rovers 0.25 0.25 0.28 0.29 0.53 0.56 0.25 0.31 0.33 0.55 0.57 0.31 0.47 0.59 0.60 0.61
λ = 0.2 1.49 1.48 4.66 24.92 213.36 126.03 89.01 90.28 94.76 19.25 20.53 89.53 14.68 19.61 32.06 49.20
Hazardous Rovers 0.20 0.20 0.25 0.29 0.36 0.36 0.20 0.25 0.29 0.35 0.39 0.25 0.33 0.39 0.39 0.39
λ = 0.3 1.43 1.41 3.11 51.39 269.01 362.91 81.10 82.94 86.38 17.94 19.33 81.17 29.45 19.06 22.40 26.17
Hazardous Satellites 0.52 0.52 0.67 0.69 0.69 0.69 0.52 0.67 0.67 0.68 0.68 0.53 0.67 0.68 0.68 0.68
λ = 0.3 0.30 0.33 4.98 13.25 25.89 26.64 12.39 13.18 13.78 14.60 15.23 12.41 13.52 14.51 15.75 16.87

Table 1 Goal achievement performance (top) and execution time in seconds (bottom) for each agent for 5 values of maximum
search depth. Boldface indicates the lowest search depth at which maximum goal achievement performance is attained; italics
indicate the fastest of those performances.

Related Work

Continual Planning. Other work in planning and ex-
ecution that involves reconsidering what happened in
the past includes that by Molineaux, Klenk, and Aha
(2010b) on explanation in the ARTUE system and Shani
and Brafman (2011) on the SDR planner. Our work ex-
tends the ARTUE explanation generator with a more
principled formalism for exogenous events and the ca-
pability to reason over a longer history. SDR maintains
beliefs by reconsidering facts from the past and the
initial state through a regression process. This process
finds and eliminates possible worlds, instead of con-
structing a series of events that explain the observa-
tions. While SDR and DHAgent handle similar tasks,
DHAgent is designed to work in hazardous environ-
ments where outcomes cannot be guaranteed, and SDR
is designed for environments in which a contingent plan
can be devised to find an infallible solution. Thus, un-
like DHAgent, SDR only replans when the next action’s
preconditions are not known to be true, and will there-
fore execute actions in a provably incorrect plan before
replanning.

Most work on replanning and plan repair during
execution in dynamic environments focuses only on
execution-time failures as discrepancies (Kambhampati
and Hendler 1992; Myers 1996; Wang and Chien 1997;
Myers 1999; Yoon, Fern, and Givan 2007; Ayan et al.
2007; Warfield et al. 2007). In these systems, a discrep-
ancy is recognized only when causal links are broken
between the effects and preconditions present in a plan.
In particular, when the observed state of the world vio-
lates causal links in a plan, a discrepancy occurs and
triggers a re-planning or plan-repair process. In con-
trast, our algorithms generate more expressive and in-
formative explanations of the world that cover any type
of changes caused by deterministic exogenous events.
A few systems, such as CPEF, (Myers 1999) create dy-
namic plans that evolve in response to the environment
through monitors that trigger when the plan needs re-
pair. While more flexible than causal link repair, this
strategy is not as comprehensive as explanation, since it
ignores unanticipated changes in the environment.

Real-Time Control and Planning. Existing research
on real-time control and execution typically employs a
reactive planning foundation, where the agent decides

on an action and executes it immediately (Musliner,
Durfee, and Shin 1993; Kabanza, Barbeau, and St-
Denis 1997; Goldman et al. 2002; Musliner et al. 2008).
Some systems select an action to be executed using
planning heuristics, while others generate an offline
plan that achieves the goal.

CIRCA is an autonomous planning and control sys-
tem that builds and executes safety-preserving plans in
an environment with unpredictable events (Musliner,
Durfee, and Shin 1993). CIRCA includes a Reaction
Planner that derives a plan to accomplish mission goals
while avoiding or preventing failures, even in real-time
environments. Like DHAgent, CIRCA reasons about
uncontrollable sources of change, and recognizes when
the environment has deviated from expectations. How-
ever, it does not reason about possible occurrence histo-
ries to understand its environment.

Diagnosis. Some research in diagnosis (e.g., (Iwan and
Lakemeyer 2003; McIlraith 1998; Sohrabi, Baier, and
McIlraith 2010)) has focused on finding action histo-
ries that resolve contradictions by assuming the pres-
ence of faulty actions and/or missing assumptions about
the initial state. This work differs from ours in that
it does not take place in the context of an execution
framework. Other work in diagnosis (e.g. (Iwan 2001;
Gspandl et al. 2011)) has added an execution compo-
nent, but does not support amending explanations by re-
moving events (or actions) previously believed to have
happened. Furthermore, existing cannot reason about
deterministic exogenous events, which require support
for simultaneous event occurrence and the elimination
of explanations in which caused events do not occur.

Conclusions and Future Work
We described the DH1 and DH2 algorithms, calculated
their computational complexity, and presented empiri-
cal results showing that both achieve high goal achieve-
ment performance statistically exceeding that of an
agent that does not perform explanation generation, and
DH2’s efficiency appears quite scalable.

In future work, we will extend our experiments to
a greater diversity of domains, requiring more com-
plex explanations, to determine what environment fac-
tors impact efficiency of explanation generation.
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