
Advances in Cognitive Systems (2016) Submitted 4/2016; published 6/2016

Goal Reasoning, Planning, and Acting
with A C T O R S I M, The Actor Simulator1

Mark Roberts1 M A R K . R O B E R T S . C T R @ N R L . N AV Y. M I L

Vikas Shivashankar2 V I K A S . S H I VA S H A K A R @ K N E X U S R E S E A R C H . C O M

Ron Alford3 R A L F O R D @ M I T R E . O R G

Michael Leece4 M L E E C E @ S O E . U C S C . E D U

Shubham Gupta5
David W. Aha6 D AV I D . A H A @ N R L . N AV Y. M I L
1NRC Postdoctoral Fellow; Naval Research Laboratory (Code 5514); Washington, DC
2Knexus Research Corp.; Springfield, VA
3MITRE; McLean, VA
4Dept. of Computer Science; Univ. of California Santa Cruz; Santa Cruz, CA
5Thomas Jefferson High School for Science and Technology; Alexandria, VA
6Naval Research Laboratory (Code 5514); Washington, DC

Abstract
Goal reasoning is maturing as a field, but it lacks a model with clear semantics in a readily available
implementation that researchers can build upon. This paper presents contributions that address this
gap. First, we formalize goal reasoning with crisp semantics by extending a recent formalism called
goal-task network planning. Second, we describe an open source package, called A C T O R S I M ,
that partially implements the semantics of the formal model. Finally, we use ActorSim in a study to
examine whether a machine learning technique can improve subgoal selection using goal reasoning
in the game of Minecraft. The study reveals that simple mechanisms for gathering experience
improve over less knowledge intensive or random approaches for the domain we study.

1. Introduction

Goals are a unifying structure for designing and studying intelligent systems which may perform
goal reasoning to manage long-term behavior, anticipate the future, select among priorities, commit
to action, generate expectations, assess tradeoffs, resolve the impact of notable events, or learn
from experience. If a goal is an objective an actor wishes to achieve or maintain, then planning is
deliberating on what action(s) best accomplish the objective, acting is deliberating on how to perform
each action of a plan, and goal reasoning is deciding which goal(s) to progress given trade-offs
in dynamic, possibly adversarial, environments. Thus, goal reasoning is a critical component for
enabling more responsive and capable autonomy.

1. This paper supersedes work by Roberts et al. (2016) presented at the Planning and Robotics Workshop at ICAPS-2016.
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Researchers have examined a variety of goal reasoning topics (Vattam et al., 2013), including
studies on Goal-Driven Autonomy (Klenk et al., 2013; Munoz-Avila et al., 2010; Dannenhauer et al.,
2015), goal formulation (Wilson, Molineaux, & Aha, 2013), goal motivators (Munoz-Avila, Wilson,
& Aha, 2015), goal recognition (Vattam & Aha, 2015), goal prioritization (Young & Hawes, 2012),
explanation generation (Molineaux & Aha, 2014), and agent-oriented programming (Thangarajah
et al., 2010; Harland et al., 2014; De Giacomo et al., 2016). Some studies have proposed models for
specific aspects of goal reasoning, namely planning and acting (Thangarajah et al., 2010, Harland
et al., 2014, Cox et al. 2016), while one study by Roberts et al. (2015b) adds goal formulation
and goal selection to complete the entire lifecycle but lacks semantics . Four workshops2 provide
a more complete survey of the area. As this area of research matures, it can be enriched by more
comprehensive studies using publicly available systems that implement a clear semantics.

To this end, we describe the Actor Simulator, A C T O R S I M, as a general platform for conducting
studies of goal reasoning in simulated environments. We draw inspiration from the literature in
planning, where 15 years of International Planning Competitions has blossomed into a research
ecosystem of nearly 100 open source planning systems and hundreds of planning benchmarks3 in
a standardized language called the Planning Domain Definition Language (Gerevini et al., 2008).
Similarly, we aim to foster studies of goal reasoning. After discussing some background (§2) we
present contributions that include:

A formal model of goal reasoning and its semantics (§3), extending previous work by Roberts
et al. (2015b) and building on a hybrid model of planning called Goal-Task Network (G T N)
planning (Alford et al., 2016), which blends Hierarchical Task Network (H T N) planning with
Hierarchical Goal Network (H G N) planning. This hybrid model allows us to seamlessly intermix
task and goal networks with state-based planning, which is critical in a system that performs goal
reasoning and deliberation as discussed by Ghallab, Nau, & Traverso (2014).

An open source platform called A C T O R S I M4, that partially implements this formal model (§4)
A C T O R S I M’s initial design began with work on robotic applications to Foreign Disaster Relief
operations (Roberts et al., 2015b) and has since been extended to several other domains. We briefly
summarize how A C T O R S I M has supported these studies and our future plans for integration
with more sophisticated simulators such as ROS or Gazebo.

The application of A C T O R S I M to tasks defined in Minecraft (§5) with preliminary results
showing that learning from structured experience to select subgoals improves behavior for a simple
navigation task, expert knowledge is useful but not essential for effective decision making in this
task, and costly random knowledge gathering is ineffectual. Our results complement existing
studies on gathering and learning from experience demonstrating that goal reasoning can overcome
some limitations of action selection approaches.

2. The latest workshop is described at http://makro.ink/ijcai2016grw/
3. See the latest summary by Valatti et al. (2015) or previous competitions at http://ipc.icaps-conference.org/
4. Available at http://makro.ink/actorsim
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2. Preliminaries

Ghallab et al. (2014) and Nau et al. (2015) point out that planning and acting systems must often
deliberate about both descriptive and operational models. Descriptive models detail what actions
would accomplish a goal (e.g., "plans"), while operational models detail how to accomplish it; (e.g.,
"tasks" or "procedures"). Thus, a hybrid model that combines state-based planning and hierarchical
planning is needed.

Let L be a propositional language. We partition L into external state s ⊂ Lexternal relating to an
agent’s belief about the world, where the set of all external states is S = 2Lexternal , and internal state
z ⊂ Linternal relating to internal decisions and processes of the agent, where the set of all internal
states is Z = 2Linternal . L = Lexternal ∪ Linternal, where Lexternal ∩ Linternal = ∅.

Let T be a set of task names represented as propositional symbols not appearing in L (i.e.,
L ∩ T = ∅), and let O and C be a partition of T (O ∪ C = T , O ∩ C = ∅). O denotes the set of
primitive tasks that can be executed directly, while C represents compound or non-primitive tasks
that need to be recursively decomposed into primitive tasks before they can be executed.

We augment the model of online planning and execution by Nau (2007) with a goal reasoning
loop (cf. Figure 1 (left)). The world is modeled as a state transition system Σ = (S,A,E, δ) where
S is a set of states that represent facts in the world as above, A = (a1, a2, ...) are the allowed actions
of the Controller, E = (e1, e2, ..) is a set of exogenous events, and δ : S × (A ∪ E)→ S is a state
transition function. Let sinit denote the initial state and Sg denote the set of allowed goal states. The
classical planning problem is stated: Given Σ = (S,A, δ), sinit and Sg, find a sequence of actions
〈a1, a2, .., ak〉 such that s1 ∈ δ(sinit, a1), s2 ∈ δ(s1, a2), .., sk ∈ δ(sk−1, ak) and sk ∈ Sg. Thus,
the actor seeks a set of transitions from sinit to one of a set of goal states Sg ⊂ S.

We call the goal reasoner in Figure 1 the G R P R O C E S S and assume the Controller only executes
one action xj at a time, returning PROGRESSj to update progress, SUCCESSj for completion, and
FAILj for failure. A goal memory stores goals that transition through the goal lifecycle, which we
will define more fully in §3.2. We simplify the discussion by considering only achievement goals
even though the model and A C T O R S I M can represent maintenance goals.

2.1 Goal-Task Network (G T N) Planning

Alford et al (2016) model both hierarchical task and goal planning in a single framework called
Goal-Task Network (G T N) planning, which was partly inspired by conversations with Ghallab,
Nau, & Traverso following their position paper on Planning and Acting Ghallab et al. (2014). G T N

planning augments the notation of Geier & Bercher (2011) with goal decomposition from H G N

planning (Shivashankar et al., 2012) and SHOP2-style method preconditions (Nau et al., 2003).
While H T N planning is over partially-ordered multisets of task names from T and H G N planning is
over totally-ordered subgoals in L, G T N elegantly models both. The rest of this section summarizes
Alford et al. (2016) as it relates to the goal reasoning model we introduce.

A goal-task network is a tuple (I,≺, α) where I is a set of instance symbols that are placeholders
for task names and goals, ≺⊂ I × I is a partial order on I , and α : I → L∪ T maps each instance
symbol to a goal or task name. An instance symbol i is unconstrained if no symbols are constrained
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Figure 1. Relating goal reasoning with online planning (left), where the G R P R O C E S S works with a goal
memory to monitor and modify the goals or planning model of the system. The goal memory stores goal nodes
that transition according to the goal lifecycle (right), where refinement strategies (arcs) denote decision points
of the G R P R O C E S Sand modes (rounded boxes) denote the status of a goal in the goal memory.

to be before it (∀i′∈I i′ ⊀ i) and last if no symbols are constrained to be after it (∀i′∈I i′ ≺ i). A
symbol i is a task if α(i) ∈ T and is a goal if α(i) ∈ L; recall that L and T are disjoint.

Methods We distinguish the methods of a G T N by the kind of symbol they decompose. A task
methodmt is a tuple (n, χ, gtn) where n ∈ C is a non-primitive task name, χ ∈ L is the precondition
ofmt, and gtn is a goal-task network over L and T . mt is relevant to a task i in (I,≺, α) if n = α (i).
mt is a specific decomposition of a task n into a partially-ordered set of subtasks and subgoals, and
there may be many such methods. A goal method mg, similarly, is a tuple (g, χ, gtn) where g, χ ∈ L
are the goal and precondition of mg and gtn is a goal-task network. mg is relevant to a subgoal i in
(I,≺, α) if at least one literal in the negation-normal form (NNF) of g matches a literal in the NNF
of α (i) (i.e., accomplishing g ensures that part of α (i) is true). By convention, gtn = (I,≺, α) has
a last instance symbol i ∈ I with α(i) = g to ensure that mg accomplishes its own goal.

Operators An operator o is a tuple (n, χ, e) where n ∈ O is a primitive task name (assumed unique
to o), χ is a propositional formula in L called o’s precondition (or prec(o)), and e is a set of literals
from L called o’s effects. We refer to the set of positive literals in e as add(o) and the negated literals
as del(o). An operator is relevant to primitive task it if n = α(it) and to a subgoal ig if the effects of
o contain a matching literal from the NNF of α(ig). A set of operators O forms a transition (partial)
function γ : 2L × O → 2L as follows: γ (s, o) is defined iff s |= prec(o) (the precondition of o
holds in s), and γ (s, o) = (s \ del(o)) ∪ add(o).

GTN Nodes and Progression Operations Let N = (s, gtn) be a gtn-node where s is a state and
gtn is a goal-task network. A progression transitions a node N by applying one of four progression
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operations: operator application (A), task decomposition (Dt) goal decomposition (Dg), or release
(G). Let P = {A,Dt, Dg, G} represent any of these four operations (when the context is clear we
write D for either Dt or Dg). Then N −→P N ′ denotes a single progression operation from N to N ‘,
while N −→∗P N ′′ denotes a progression sequence from N to N ′′. Here we only summarize these
operations, although their semantics are defined by Alford et al. (2016).

Operator application, (s, gtn)
i,o−→A (s′, gtn′), applies an operator o to a node (s, gtn), with

gtn = (I,≺, α) and is defined if s |= prec(o) and o is relevant to an unconstrained instance
symbol i in gtn. If i is a primitive task with task name n, then this corresponds to primitive
task application in H T Ns. If i is instead a relevant goal task, this corresponds to primitive task
application in H G Ns; in this case, gtn′ = gtn, and the subgoal remains while the state changes.

Goal decomposition, (s, gtn)
i,m−−→D (s, gtn′), for an unconstrained subgoal i by a relevant goal

method m = (gm, χ, gtnm) is defined whenever s |= χ. It prepends i with gtnm.

Task decomposition, (s, gtn)
i,m−−→D (s, gtn′), for an unconstrained task i by a relevant task

method m = (c, χ, gtnm) is defined whenever s |= χ. It expands i in gtn, replacing i with the
network gtnm.

Goal release, (s, gtn)
i−→G (s, gtn′), for an unconstrained subgoal i is defined whenever s |= α(ig).

It can remove a subgoal whenever it is satisfied by s.

GTN Planning Problems and Solutions A gtn-problem is a tuple P = (L,O,M, N0), where L is
propositional language defining the operators (O) and methods (M), N0 is the initial node consisting
of the initial state s0, and gtn0 is the initial goal-task network. O and C are implicitly defined by O
andM. A problem P is solvable under G T N semantics iff there is a progression N0 −→∗P Nk, where
Nk = (sk, gtn∅), sk is any state, and gtn∅ is the empty network.

Solutions are distinguished by two kinds of plans that depend on whether the world state is
changed via operator application. The subsequence of operator applications of a progression
sequence is a plan for P , since such operations modify world state. A gtn-plan for P is consists of
all progression operators, since this sequence captures the entire set of progressions that must occur
for a valid solution. The G R P R O C E S S produces gtn-plans as explained in the following section.

3. A Goal Reasoning Model

To arrive at a goal reasoning model, we blend G T N semantics with the goal lifecycle in Figure 1
(right) to define a semantics for the G R P R O C E S S we have partially implemented in A C T O R S I M.
We begin by extending the online planning model of §2 to model the GR actor as a state transition
system Σgr = (M,R, δGR), where M is the goal memory, R is a set of refinement strategies, and
δgr : M ×R→M ′ is the goal-reasoning transition function. We next define these components.

3.1 Nodes, Progression, and the Goal Memory

The goal memory stores goal nodes. A goal node is a tupleN = (gi, N,C, o,X, x, q) where: gi ⊂ L
is the goal to be achieved; N = (s, gtn) is a gtn-node for gi; Con is the set of constraints on gi

5



R O B E R T S , S H I VA S H A N K A R , A L F O R D , L E E C E , G U P TA , & A H A

and gtn; o is the current mode of gi, defined below; X is the set of expansions that could achieve
gi, defined below; x ∈ X is the committed expansion along with any applicable execution status;
and q is a vector of quality metrics. Metrics could be domain-dependent (e.g., priority, cost, value,
risk, reward) and are associated with achieving gi. An important domain-independent metric, inertia,
stores the number of refinements applied to N . Dotted notation indicates access to N ’s components,
e.g., N .N := (s, gtn′) indicates that the gtn-node gtn of N has been updated to gtn′.

Similar to G T N planning, progressions modify components of N ; we call these the refinement
strategies R. Let χ be a set of preconditions and r ∈ R denote a progression operator for N .
Then a refinement r = (N , χ) transitions one or more components of N to N ′ and is written

N N,C,o,X,q−−−−−−→R N ′. Refinement sequences from N to N ′′ are written N −→∗R N ′′. Preconditions χ
come from either the goal lifecycle discussed below or domain-specific requirements for a specific
world state or specific events before a refinement can transition.

The goal memory M = {N1,N2, ..,Nm} for m ≥ 0 holds the active goal nodes for the
G R P R O C E S S. Most refinements modify the goal memory by modifying a node within memory, in
which case we write M −→R M ′ for a single strategy application resulting in M ′ and M −→∗R M ′′

for a sequence of applied strategies resulting in M ′′.

3.2 Operations and Semantics: Refinement Strategies

Figure 1 (right) displays the possible refinement strategies, where an actor’s decisions consist of
applying one or more refinements from R (the arcs) to transition N between modes (rounded boxes).
Strategies are denoted using small caps (e.g., FORMULATE) with the modes in monospace (e.g.,
FORMULATED). For the remainder of this section, we detail semantics for many of these strategies.
We shorten the discussion by omitting quality metrics N .q but leave the q above the progression
to indicate that at least inertia is modified. For example, every refinement N q−→R N ′ results in
N ′.q.inertia += 1 indicating increased refinement effort on N . G R P R O C E S S may favor nodes
with higher inertia by pushing them toward completion or limiting further processing on them.

Goal formulation and Goal Selection Two important decisions for G R P R O C E S S concern deter-
mining which goals to create (i.e., FORMULATE) and which to pursue (i.e., SELECT).

FORMULATE adds a new goal to the goal memory, written M
g,N−−→FORM M ′ for a new goal

g, its corresponding node N , the goal memory M before the application, and M ′ the revised
memory. The result of applying FORMULATE is: N .g = g; N .N = (scurrent, gtng); N .Con = ∅;
N .o = FORMULATED; N .X = ∅; N .x = nil; N .q.inertia = 1; and M ′ = M ∪N .

SELECT transitions N .o from FORMULATED to SELECTED, written N o,q−−→SEL N ′. It allows
G R P R O C E S S to determine which goal nodes move forward and which remain FORMULATED. In
a G R P R O C E S S where |M | ≤ k is bound to no more than k goals, SELECT can limit extensive
processing on nodes. Many nodes trivially transition: N ′o := SELECTED.

Planning Classical planning systems often make strong assumptions about the kind of plan required
(i.e., the optimal plan), the number (i.e., usually one), and the nature of execution (i.e., actions are
deterministic and atomic). In contrast, a G R P R O C E S S may explore alternative plans and commit to
one after further deliberation. We define an expansion to mean any kind of plan to achieve a goal.
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While we focus on state transitions in Σ or Σgr, expansions more generally include motion planning,
trajectory planning, reactive planning, etc., as often used in robotics applications.

EXPAND, written N o,X,q−−−→EXP N ′, generates expansions (i.e., gtn-plans) via operator application,
task decomposition, and goal decomposition from §2.1. Consider a progression π = N0 −→∗P Nk,
where Nk = (sk, gtn∅), sk is any state, and gtn∅ is the empty network. Recall from §2.1 that
such a progression is a solution to a G T N problem and was called a gtn-plan. EXPAND generates
k expansions such that x1, x2, .., xk ∈ X , |X| > 0, and x1 = π1, .., xk = πk are the available
expansions. The result is: N ′.o := EXPANDED and N ′.X := {x1, .., xk}.

COMMIT chooses one expansion from N .X for Controller execution and is written N o,q,x−−−→COM

N ′. The result is: N ′.o := COMMITTED and N ′.x := xc for some 1 ≤ c ≤ k.

Plan Execution The Controller executes the steps in N .x until no more steps remain or a step fails;
N is DISPATCHED during this progression. Some expansions (e.g., goal or task decomposition)
are internal to the goal memory and do not result in external actions of the actor. In the case of
decomposition, a node remains DISPATCHED until its subgoals or subtasks are completed. Other
expansions (e.g., operator application) result in external actions by the Controller during execution.
Plan execution consists of DISPATCH, MONITOR, and EVALUATE.

DISPATCH, written N o,N,q−−−→DISP N ′, applies the steps of the progression within N .x. First, the
goal node transitions: N ′.o := DISPATCHED. Then, the G R P R O C E S S steps through the expansion
N .x. Suppose that N .x points to the expansion x = N0 −→∗P Nk and that an index 0 < j ≤ k

indicates the step of the progression such that Nj−1 −→j
P Nj . For k steps in x and each step xj for

0 < j ≤ k, the result is: N .Nj−1 −→j
P N ′.Nj . How the G R P R O C E S S applies xj depends on

specified operation (cf. §2.1): Operator Application applies operator o to the instance symbol i. This
application results the Controller executing i. Task Decomposition applies method m to a compound

task i, written
i,m−−→D, such that N .N.gtn is progressed. Goal Decomposition applies method m to a

goal i, written
i,m−−→D, such thatN .N.gtn is progressed, resulting in new subgoals being added to the

goal memory M . Let there be t new subgoals resulting from applying m to i, labeled (gi1, gi2, .., git).

For goal gij where 0 < j ≤ t, then FORMULATE(gij) is called, resulting in M
gij ,N−−−→FORM M

′.
MONITOR, if enabled, proactively checks on the status of N .xj . If the status is FAIL or is not

meeting expectations, then EVALUATE is called. Nominal status only modifies the inertia.
EVALUATE, written N o,q−−→EVAL N ′, processes events that impact N during execution, which

might include execution updates or unanticipated anomalies. This strategy allows a goal node to
signal track that its execution is impacted: N ′.o := EVALUATED.

Resolving Notable Events A notable event is one that impacts N . A number of possible strategies
relate to such events and some are relevant from particular modes. Often the goal determines for itself
whether an event is noteworthy, which simplifies the encoding of strategies for a domain. However, in
more complex cases another deciding process may arbitrate this determination. Resolution strategies
can roughly be divided into those that occur during execution (shown as dashed lines in Figure 1),
those that are related to error conditions, and those that occur outside of executions or errors.

PROCESS may be called in any node. It is the means by which external processes or the G R P R O -
C E S S notify a goal about an event and allow the goal to determine whether the event is significant.
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In many cases, an event can be disregarded and the only the inertia is incremented. If the node is
DISPATCHED then the event may impact the execution of a step xj . The impact of the event may be
positive (e.g., completion of xj), neutral (e.g., xj is progressing as expected) or negative (e.g., the
imminent or detected failure of xj). In this case,N transitions to EVALUATED and there are several
possible resolutions from this mode, as shown by the dashed RESOLVE-BY strategies of Figure 1.

RESOLVE-BY can only be called from EVALUATED and consists of a suite of strategies, which
we only briefly describe. These strategies are distinct because the Controller may need to be notified.
CONTINUE allows N to proceed without significant change to its members. ADJUST corrects the
state models Σ or ΣGR that would modify future planning. REPAIR modifies the current expansion
x to x′. REEXPAND creates new expansions {x′1, .., x′k} for the G R P R O C E S S to consider. DEFER

returns N in a SELECTED mode and REFORMULATE returns N in a FORMULATED mode. FAIL-TO

is a failure mode that allows the G R P R O C E S S to return a goal to any previous mode for further
processing. This strategy applies when a transition is attempted but fails. For example, if a plan
cannot be generated then EXPAND may trigger FAIL-TO(SELECTED).

RESOLVE-TO is used when a notable event impacts a node but the impact is not deemed a failure.
For example, if a plan has already been generated but the goal for a node is preempted, then the
G R P R O C E S S may call RESOLVE-TO(FORMULATED) to unselect the goal. In contrast to RESOLVE-
BY, these methods simply “park” N in the appropriate mode and will not otherwise modify the goal
node. Such progressions may be useful for quickly pausing a goal.

DROP removes N from M such that M ′ = M \ {N}. It is analogous to goal release (cf. §2.1).
FINISH, written N o,q−−→FIN N ′, indicates that execution is complete for this expansion. FINISH

cannot complete if subgoals in gtn exist in the memory M . If x involved decomposition, then all
subgoals or subtasks have been DROPed. If x involved operator application, then the Controller
returned SUCCESS. This strategy does not remove N from M , which is performed by DROP.

3.3 Goal Reasoning Problems and Solutions

Let Pgr = (L,O,M, Rd, Rp,M0) be a goal-reasoning problem where L is a propositional language,
O and M are defined as in §2.1, Rd is the default set of strategies defined next, Rp is a set of
strategies provided by a domain designer, and M0 is the initial goal memory. Pgr is solvable iff there
is a progression M0 −→∗R Mk, where Mk = ∅. Recall that we consider only achievement goals in
this paper, so this definition of a solution is sufficient. However, a more complete goal taxonomy will
require an extended definition for valid solutions.

4. The Actor Simulator

The Actor Simulator, A C T O R S I M (Figure 2), implements the goal lifecycle of §3.2. Its initial
design grew from work on robotic applications to Foreign Disaster Relief operations (Roberts et al.,
2015b) and has since been extended to several other domains. It complements existing open source
planning systems with a standardized implementation of goal reasoning and also provides links to
simulators that can simulate multiple agents interacting within a dynamic environment. The Goal
Refinement Library is a standalone library that provides goal management via the goal memories
and the data structures for transitioning goals throughout the system via the goal lifecycle. It contains
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Figure 2. The Component Architecture of A C T O R S I M .

the default implementations for goals, goal types, goal refinement strategies, the goal memory,
domain loading, and domain design. This library includes a simple display to show the state of goal-
task networks within the memory. The Core provides the interfaces and minimal implementations of
the platform. It contains the essential abstractions that apply across many simulators and domains.
This component contains information about Areas, Locations, Actors, Vehicles, Symbols, Maps,
Sensors, and configuration details. The Planner contains the interfaces and minimal implementations
for linking to existing open source planning systems. This component unifies Mission Planning,
Task Planning, Path Planning, and Motion Planning. It currently includes simple, hand-coded
implementations of these planners, although we envision linking this component to many open
source planning systems. The Connector manages the link between the goal memory, domain
knowledge and the executives running on existing simulators. This component contains abstractions
for Tasks, Events, Human interface Interaction, Executives (i.e., Controllers), and event notification.
A variety of Executives and Simulators can be connected to A C T O R S I M via a direct library link
in Java or through Google’s protocol buffers5. Currently supported simulators include George Mason
University’s MASON6 and two computer game simulators: StarCraft and Minecraft. We envision
links to common robotics simulators (e.g., Gazebo, ROS, OpenAMASE), additional game engines
(e.g., Mario Bros., Atari arcade, Angry Birds), and existing competition simulators (e.g., RDDLSim).
We plan to eventually link A C T O R S I M to physical hardware.

5. Overcoming Obstacles in Minecraft

Researchers have recently used the Minecraft game for the study of intelligent agents (Aluru et al.,
2015) . In this game, a human player moves a character, Steve, to explore a 3D voxel world while
gathering resources and surviving dangers. Steve’s limited inventory can hold resources (e.g., sand,
wood, stone) used to craft into new items that can in turn be used to construct tools (e.g., a pickaxe

5. https://developers.google.com/protocol-buffers/
6. http://cs.gmu.edu/~eclab/projects/mason/

9



R O B E R T S , S H I VA S H A N K A R , A L F O R D , L E E C E , G U P TA , & A H A

for mining) or structures (e.g., a shelter or lookout tower). Certain blocks (e.g., lava, deep water),
hostile characters (e.g., creepers), or falling more that two blocks can damage Steve’s health.

We focus on the problem of having the G R P R O C E S S move Steve to a goal by navigating
through a course in a much simpler subset of the world. In previous work, researchers developed a
learning architecture to interact with Minecraft (Abel et al., 2015) . Their method allows the virtual
player to disregard unneeded actions for navigating the maze. The set of possible choices available
to achieve even this simple goal is staggering; for navigating a 15x15 maze in Minecraft, Abel et al.
(2015) estimate the state space to be nearly one million states.

Our technical approach differs from prior research in that we aim to develop a G R P R O C E S S

that uses increasingly sophisticated goal-task networks and learned experience about when to apply
them. The A C T O R S I M-Minecraft connector leverages a reverse-engineered game plugin called the
Minecraft Forge API (Forge), which provides methods for manipulating Minecraft. We implemented
axis-aligned motion primitives such as looking, moving, jumping, and placing or destroying blocks.
For this paper, Steve always faces North with the course constructed to the North and Steve interacts
with a limited set of world objects: cobblestone, dirt, clay, air, lava, water, emerald, and gold.

The G R P R O C E S S can observe blocks directly around Steve’s avatar and we use an alpha-
numeric code to indicate the local position relative to Steve’s feet. A relative position is labeled with
a unique string relative to Steve “[lN | rN][fN | bN][uN | dN]” when N is a non-negative integer and
each letter designates left,right, front, back, up, and down. Thus, “f1d1” indicates the block directly
in front and down one (i.e., the block that Steve would stand on after stepping forward one block),
while “l1” indicates the block directly to the left at the same level as Steve’s feet. We abstract the
world object at that local position by a single letter: air (A), safe or solid (S), water (W), or lava (L).

The G R P R O C E S S can move using one of five subgoals: stepTo, stepAround, build a bridge,
build a stair one block high, and mine. The Controller ensures that Steve will not violate safety
constraints by falling too far or walking into a pool of lava or water (the character does not currently
swim), but the G R P R O C E S S must learn these constraints independently. For example, if the subgoal
to step forward is selected when lava is directly in front of Steve the Controller ignores the move,
resulting in failure that requires additional reasoning. Thus, subgoals do not contain operational
knowledge and the G R P R O C E S S must learn to select them based on the current state.

Our task-goal representation complements prior research in action selection (e.g., reinforcement
learning or automated planning). First, we model the subgoal choice at descriptive level, assuming
that committing to a subgoal results in an effective operational sequence (i.e., a plan) to achieve the
goal. We rely on feedback of the Controller running the plan to resolve the subgoal. Second, the
entire state space from start to finish is hidden so the G R P R O C E S S cannot perform offline planning;
there must be an interleaving of perception, goal reasoning, and acting. Third, the operational
semantics of committing to a subgoal are left to the Controller. Although random exploration is
possible, we will present evidence that that such an approach is untenable, corroborating the findings
of Abel et al. (2015) that the state/action space is too large to explore without a bias.

Learning from Experience Our research hypothesis is that making effective choices at the G T N

level can be done by learning from execution traces that lead to getting to the goal in fewer steps
or failing less frequently. We examine what kind of experience is most valuable. To this end, we
describe a pilot study that leverages prior experience to learn a subgoal selection policy. Figure 3
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Figure 3. Left: four example section types (top left to bottom right) include arch, comb, pillar, and steps. Right:
portion of a course where the G R P R O C E S S must traverse from the emerald block behind it (not shown) to a
gold block in front of it (not shown). Glass blocks on the top prevent Steve from walking along the wall.

(left) shows the four of the ten section types the G R P R O C E S S may encounter: arch, comb, pillar,
and hill; not shown are lava, short wall (2 blocks high), tall wall (3 blocks high), deep pond (water 3
deep), pond (water 2 deep), and swamp (water 1 deep). Figure 3 (right) shows a portion of a course
with upcoming sections of a comb, swamp, lava and short wall. Each obstacle has an appropriate
subgoal choice. For lava or ponds, the best choice is to create a bridge if approaching the center or to
go around if approaching the edge. For the short walls, the best subgoal is to create a single stair and
step up. For the tall walls, combs, and pillars, the best subgoal is to mine through if approaching the
center or go around if approaching the edge.

We collect three kinds of traces for choosing the five subgoals that vary in how much state
they consider. Random ignores state and selects a subgoal with uniform probability. Ordered also
ignores state and selects the subgoals in the same order: stepAround, stepTo, bridge, mine, and stairs.
If the Controller allows the move it is taken and ordered selection restarts from the beginning of the
order, otherwise the next subgoal is attempted. If all subgoals fail then the run terminates. Expert
examines the full state and is hand-coded (by an author of this paper) to select the best subgoal. The
Ordered and Expert procedures may be randomized, in which case we will call the trace ExpertNN
or OrderedNN for the ratio of how often a random choice is made instead of the expert choice. For
example Expert10 indicates that 10% of the time a random choice is selected. For each trace, we
capture the state, distance to the goal, subgoal chosen, whether the chosen subgoal succeeded, and
how many blocks were placed or mined. The Random procedure and randomized variants can fail to
reach the gold. The Expert and Ordered procedures rarely fail to reach the gold but both represent
biased knowledge or sampling of the state or choices.

To learn from these traces we create a decision tree (d-tree) using the J48 algorithm implemented
in WEKA7. Figure 4 shows two tree learned from Expert traces. The leaves of a tree represent the
command to be taken and inner nodes represent (location, block) values. For example, the first two
lines indicate that if the blocks directly in front of the player above and below the foot level are air,
then the character is to perform the stepTo command.

7. http://www.cs.waikato.ac.nz/~ml/weka/
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f1u1 = A
| f1d1 = A: DoStepTo (275.0)
| f1d1 = S
| | f2d1 = A: DoStepTo (174.0)
| | f2d1 = S: DoStepTo (3591.0/22.0)
| | f2d1 = W
| | | f2r2d1 = S: DoStepAroundTo (18.0)
| | | f2r2d1 = W
| | | | f2l2d1 = S: DoStepAroundTo (12.0/2.0)
| | | | f2l2d1 = W: DoStepTo (343.0)
| | f2d1 = L
| | | f2r2d1 = S: DoStepAroundTo (4.0)
| | | f2r2d1 = L
| | | | f2l2d1 = S: DoStepAroundTo (3.0)
| | | | f2l2d1 = L: DoStepTo (142.0)
| f1d1 = W
| | f1r1d1 = S: DoStepAroundTo (11.0)
| | f1r1d1 = W
| | | f1l1d1 = S: DoStepAroundTo (6.0)
| | | f1l1d1 = W: DoBuildBridgeTo (345.0)
| f1d1 = L
| | f1r1d1 = S: DoStepAroundTo (4.0)
| | f1r1d1 = L
| | | f1l1d1 = S: DoStepAroundTo (3.0)
| | | f1l1d1 = L: DoBuildBridgeTo (142.0)
f1u1 = S
| f1u2 = A
| | f2u1 = A: DoMineTo (25.0)
| | f2u1 = S: DoBuildStairsTo (143.0)
| f1u2 = S
| | f1l1 = A: DoStepAroundTo (6.0)
| | f1l1 = S
| | | f1r1 = A: DoStepAroundTo (2.0)
| | | f1r1 = S: DoMineTo (444.0)

f1u1 = A
| f1d1 = A: DoStepTo (135.0/13.0)
| f1d1 = S
| | f2d1 = A: DoStepTo (49.0/5.0)
| | f2d1 = S: DoStepTo (1078.0/125.0)
| | f2d1 = W
| | | f2l2d1 = S: DoStepAroundTo (4.0)
| | | f2l2d1 = W
| | | | f2r2d1 = S: DoStepAroundTo (3.0)
| | | | f2r2d1 = W: DoStepTo (67.0/6.0)
| | f2d1 = L
| | | f1r2d1 = S
| | | | f2l2d1 = S: DoStepAroundTo (7.0/1.0)
| | | | f2l2d1 = L: DoStepTo (7.0/2.0)
| | | f1r2d1 = L: DoStepTo (14.0/1.0)
| | f2d1 = U: DoStepTo (0.0)
| f1d1 = W: DoBuildBridgeTo (67.0/5.0)
| f1d1 = L
| | f1l1d1 = S
| | | f1l1 = A: DoStepAroundTo (4.0)
| | | f1l1 = S: DoBuildBridgeTo (5.0)
| | f1l1d1 = L: DoBuildBridgeTo (15.0/4.0)
| f1d1 = U: DoStepTo (0.0)
f1u1 = S
| f1u2 = A
| | f2u1 = S: DoBuildStairsTo (70.0/15.0)
| f1u2 = S: DoMineTo (129.0/13.0)

Figure 4. The decision tree learned from 30 traces of Expert (left) and Expert25 (right). The number in
parentheses indicates how frequently that combination was observed.

Results We randomly generated 30 courses with 20 sections each; all procedures use these same 30
courses. A run terminates when Steve reaches the goal, when 20 subgoals in a row fail for Random
and Expert, or when no subgoal succeeds for Ordered. Table 1 (top) shows the results for the training
traces. The Expert procedure is successful at completing all courses with only five failed subgoal
attempts. The Random procedure never finishes a course and has nearly twice as many failures. One
reason for this is that the stepTo subgoal is much more frequently chosen than the other subgoals
so random choice is too unbiased. The biased sampling of the Ordered procedure performs almost
identically to Expert. These results suggest not only that completely random exploration is unjustified
but also that the effort to hand-code a custom controller may not have been warranted. Although
the Ordered procedure has 5! possible orderings, learning a biased sampling may provide sufficient
knowledge for effective decision making. We will examine such an approach in future work.

Randomizing the Expert procedure dramatically reduces its effectiveness as Table 1 (middle)
shows. Even 10% random choice a significant drop in course completion is observed. At 25%, the
failure rate is equal to purely random choice.

Table 1 (bottom) shows the benefit of learning from the Ordered or Expert traces. The decision
tree learned from the expert traces performs very similar to the original Expert procedure, but the
higher number of placed and mined blocks indicate a bias toward mining and bridges over walking
around obstacles. The tree learned from Random traces fails to produce an effective policy. For

12



G O A L R E A S O N I N G , P L A N N I N G , A N D A C T I N G W I T H A C T O R S I M

Course Subgoals Blocks
Method N Completed Attempts Success Fail Placed Mined
Expert 30 30 5698 5693 5 630 938

Ordered 30 30 5697 5693 4 630 938
Random 30 0 14847 5429 9418 1428 1970

Randomized Variants
Expert-05 30 13 3880 3679 201 449 576
Expert-10 30 8 3730 3374 356 430 556
Expert-25 30 0 2144 1664 480 228 298

Decision Tree
Random 30 0 - - - - -
Ordered 30 30 5721 5712 9 637 996

Expert 30 30 5716 5709 7 637 996
Expert-05 30 30 5730 5720 10 637 1030
Expert-10 30 30 5762 5747 15 666 1030
Expert-25 30 30 5800 5795 5 670 1104

Table 1. Results for various procedures used in this study.

the random variants of Expert, which perform poorly on their own, the decision tree overcomes
deficiencies and performs similarly to the decision trees trained with Expert traces.

6. Other A C T O R S I M Connectors

As shown in Figure 2, A C T O R S I M is integrated with additional simulators. We present a snapshot
of each project to highlight how A C T O R S I M assists in studying goal reasoning.

Foreign Disaster Relief The longest-running project for A C T O R S I M is Foreign Disaster Relief,
where we have studied how to perform goal reasoning to coordinate teams of robotic vehicles
(Roberts, Apker, Johnston, Auslander, Wellman, & Aha, 2015a), estimating high-fidelity simulations
using a faster, but lower-fidelity estimates, and its application to play-calling (Apker et al., 2015).
The most recent extension of this work has extended Goal Reasoning with Information Metrics
(GRIM) by Johnson et al. (2016). The A C T O R S I M codebase, in particular the Goal Reasoning
Library, had its genesis in abstractions developed during this project. Similar to the studies presented,
A C T O R S I M uses the MASON simulator for the scenarios of this project. However, the set of
motion and path planning primitives is simplified in that it does not leverage the LTL templates or
vehicle controllers mentioned in Roberts et al. (2015a).

StarCraft StarCraft:Brood War is a Real Time Strategy (RTS) game developed by Blizzard Enter-
tainment. At an abstract level, it is an economic and military simulation. Players build an economy
to gather resources, use these resources to train an army, then use this army to attempt to defeat
their opponent, either in direct engagements or through disrupting their economy. It has a number of
desirable properties as an artificial intelligence testbed (Ontanon et al., 2013).
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A C T O R S I M uses a protobuf interface to integrate with an existing game agent developed by
David Churchill called UAlbertaBot (UAB)8. UAB interfaces directly with the game of Brood War
using the Brood War API (BWAPI)9, through which it can issue commands to units and monitor the
observable state of the game. It is a modular agent on which researchers can build their systems.

The A C T O R S I M Connector controls a subset of the behavior of the agent, letting UAB control
the remainder. For example, if A C T O R S I M creates a goal to attack a specific region of the map,
UAB will decide the formation and specific unit commands necessary to achieve that goal. The
behavior controlled by A C T O R S I M is currently region-level positioning, soon to include economic
growth decisions.

We have used A C T O R S I M to emulate the original hand-coded behaviors of UAB, and are in the
process of implementing more complex goals to demonstrate the additional expressivity of the agent
using our system. In addition, we are working on automatically learning the EVALUATE function
based on replays of professional human players, which are available online in large quantities.

7. Related Work

Researchers have applied goal reasoning to other domains, such as the Tactical Action Officer
(TAO) Sandbox (Molineaux et. al., 2010). Using the Autonomous Response to Unexpected Events
(ARTUE) agent, they implemented goal-driven autonomy; ARTUE can reason about what goals to
achieve based on the changing environment, in this case a strategy simulation for TAO’s to train
in anti-submarine warfare. Goal reasoning has been used in other gaming domains such as Battle
of Survival, a real-time strategy game (Klenk et al., 2013). While our approach also applies goal
reasoning, we present the first use of a GTN to this purpose in a game environment.

Goal refinement builds on the work in plan refinement (Kambhampati et al., 1995), which
equates different kinds of planning algorithms in plan-space and state-space planning. More recent
formalisms such as Angelic Hierarchical Plans (Marthi et al., 2008) and Hierarchical Goal Networks
(Shivashankar et al., 2012) can also be viewed as leveraging plan refinement. The focus on constraints
in plan refinement allows a natural extension to the many integrated planning and scheduling systems
that use constraints for temporal and resource reasoning.

The goal lifecycle bears close resemblance to that of Harland et al. (2014) and earlier work
by Thangarajah et al. (2010). They present a goal lifecycle for BDI agents, provide operational
semantics for their lifecycle, and demonstrate the lifecycle on a Mars rover scenario. Recently,
Cox et al. (2016) proposed a model for goal reasoning based on planning. We hope to characterize
the distinction between these models in future work.

8. Summary

We presented a formal semantics for goal reasoning and applied our partial implementation of those
semantics, called A C T O R S I M , to a pilot study in Minecraft. In this study we trained a decision
using traces from Random, Ordered, and Expert procedures. We showed that, for this limited domain,

8. http://www.github.com/davechurchill/ualbertabot
9. http://www.github.com/bwapi/bwapi
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learning from structured exploration (i.e., the Ordered traces) is as effective as Expert exploration and
costly random knowledge gathering is ineffectual. In the future, we will incorporate more complex
goal-task networks that solve even more complicated tasks.

Broader dissemination of A C T O R S I M will foster deeper study and enriched collaboration
between researchers interested in goal reasoning, planning, and acting. A C T O R S I M complements
existing open source planning systems with a standardized implementation of goal reasoning so
researchers can focus on (1) designing goals and goal transitions for their system (2) linking
A C T O R S I M to their particular simulator, and (3) studying goals and behavior in the dynamic
environment provided by the simulator. By releasing it as an open source package, we provide a
foundation for advanced studies in goal reasoning that include integration with additional simulators
and planning systems, formal models, and empirical studies that examine decision making in
challenging, dynamic environments.
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