Cost-Optimal Algorithms for Hierarchical Goal Network Planning:
A Preliminary Report

Vikas Shivashankar! Ron Alford?

vikas.shivashankar @knexusresearch.com ralford @mitre.org

mark.roberts.ctr @nrl.navy.mil

David W. Aha*

david.aha@nrl.navy.mil

Mark Roberts®

IKnexus Research Corporation, National Harbor, MD
2MITRE, McLean, VA
3NRC Postdoctoral Fellow, Naval Research Laboratory, Code 5514, Washington DC
4Naval Research Laboratory, Code 5514, Washington DC

Abstract

There is an impressive body of work in developing search
heuristics and other reasoning algorithms to guide domain-
independent planning algorithms towards (near-) optimal so-
lutions. However, very little effort has been expended in
developing analogous techniques to guide search towards
high-quality solutions in domain-configurable planning for-
malisms, such as HTN planning. In lieu of such techniques,
the domain-specific knowledge often needs to provide the
necessary search guidance to the planning algorithm; this not
only imposes a significant burden on the domain author, but
can also result in brittle or error-prone domain models.

This work attempts to address this gap by extending re-
cent work on a new hierarchical planning formalism called
Hierarchical Goal Network (HGN) Planning to develop
the Hierarchically-Optimal Goal Decomposition Planner
(HOpGDP), a HGN planning algorithm that computes
hierarchically-optimal plans. HOpGDP is guided by hgr, a
new HGN planning heuristic that extends existing admissible
landmark-based heuristics from Classical Planning in order to
compute admissible cost estimates for HGN planning prob-
lems. Preliminary experimental results show that our planner
compares favorably to the current state-of-the-art.

1 Motivation and Background

A primary research focus in Al planning is developing ef-
ficient search heuristics and auxiliary reasoning techniques
that can help the planner find high-quality plans efficiently.
Formalisms for automated planning developed in the lit-
erature to represent and solve planning problems broadly
fall into either domain-independent planning or domain-
configurable planning. Domain-independent planning for-
malisms, such as classical planning requires that the users
only provide models of the base actions executable in the do-
main. In contrast, domain-configurable planning formalisms
such as Hierarchical Task Network (HTN) Planning al-
low users to supplement the action models with additional
domain-specific knowledge structures that increases the ex-
pressivity and scalability of the planning systems.

An impressive body of work exploring search heuris-
tics that has helped scale up search for high-quality so-
lutions in classical planning. Concretely, search heuristics
such as the relaxed planning graph heuristic (Hoffmann and
Nebel 2001), landmark generation algorithms (Hoffmann,
Porteous, and Sebastia 2004; Richter and Westphal 2010),

and landmark-based heuristics (Richter and Westphal 2010;
Karpas and Domshlak 2009) dramatically improved optimal
and anytime planning algorithms by guiding search towards
(near-) optimal solutions to planning problems.

Yet, relatively little effort has been devoted to develop
analogous techniques to guide search towards high-quality
solutions in domain-configurable planning systems. In lieu
of such search heuristics, domain-configurable planners of-
ten require additional domain-specific knowledge to pro-
vide the necessary search guidance. This requirement not
only imposes a significant burden on the user, but also
sometimes leads to brittle or error-prone domain models.
To address this gap, this paper leverages recent work on
a new hierarchical planning formalism called Hierarchical
Goal Network (HGN) Planning (Shivashankar et al. 2012;
2013), which combines the hierarchical structure of HTN
planning with the goal-based nature of classical planning.

In this paper, we develop the Hierarchically-Optimal
Goal Decomposition Planner (HOpGDP), a HGN planning
algorithm that uses admissible heuristic estimates to gener-
ate hierarchically-optimal plans, i.e plans that are both valid
and optimal with respect to the given hierarchical knowl-
edge. In particular, our contributions are as follows:

e Admissible Heuristic: We present Az, (HGN Landmark
heuristic), a HGN planning heuristic that extends
landmark-based admissible heuristics from classical plan-
ning to derive admissible cost estimates for HGN plan-
ning problems. To the best of our knowledge, L1, is the
first admissible heuristic for hierarchical planning!.

e Optimal Planning Algorithm: We describe HOpGDP,
an A* search algorithm that uses hpyjy to generate
hierarchically-optimal plans.

e Preliminary Experimental Results: We provide prelim-
inary experimental evidence showing that HOpGDP out-
performs optimal classical planners due to its ability to
exploit hierarchical knowledge. We also see that h g, pro-
vides useful search guidance by showing that it compares
favorably both in terms of runtime and nodes explored
to HOpGDP,;;.4, the variant of HOpGDP that uses the
trivial heuristic h = 0, despite a significant computation
overhead.

"We are of course not counting the trivial heuristic of h = 0.

2 Preliminaries

In this section we detail the classical planning model, review
how landmarks are constructed for classical planning and an
admissible landmark-based heuristic hr,, and describe goal
network planning using examples from assembly planning.

2.1 Classical Planning

We define a classical planning domain D jgssicai aS
a finite-state transition system in which each state s
is a finite set of ground atoms of a first-order lan-
guage L, and each action a is a ground instance of
a planning operator o. A planning operator is a 4-
tuple o = (head(o), precond(o), effects(o), cost(0)), where
precond(o) and effects(o) are conjuncts of literals called o’s
preconditions and effects, and head(o) includes o’s name
and argument list (a list of the variables in precond(o) and
effects(0)). cost(o) represents the non-negative cost of ap-
plying operator o.

Actions. An action a is executable in a state s if s |=
precond(a), in which case the resulting state is y(a) =
(s — effects™ (a)) U effects™ (a), where effects’(a) and
effects™ (a) are the atoms and negated atoms, respectively,
in effects(a). A plan 7 = (ay,...,a,) is executable in s if
each a; is executable in the state produced by a;_1; and in
this case (s, 7) is the state produced by executing the entire
plan. If 7w and 7’ are plans or actions, then their concatena-
tion is w o 7',

We define the cost of 7 = {aq,...,a,) as the sum of the
costs of the actions in the plan, i.e. cost(m) =3,y) @i

2.2 Generating Landmarks for Classical
Planning

There are several landmark generation algorithms suggested
in the literature, such as (Hoffmann, Porteous, and Sebastia
2004) and LAMA (Richter and Westphal 2010). The gen-
eral approach used in generating sound landmarks is to re-
lax the planning problem, generate sound landmarks for the
relaxed version, and then use those for the original planning
problem. In this paper, we use LAMA’s landmark generation
algorithm, which uses relaxed planning graphs and domain-
transition graphs in tandem to generate landmarks.

2.3 hy: an Admissible Landmark-based Heuristic

We provide some background on Ay, the landmark-based
admissible heuristic for classical planning problems pro-
posed by Karpas and Domshlak (Karpas and Domshlak
2009) that we will be using in our heuristic.

Consider a classical planning problem P = (D, sq,g)
and a landmark graph LG = (L,Ord) computed us-
ing any off-the-shelf landmark generation algorithms (e.g.,
LAMA (Richter and Westphal 2010)). Then, we can define
Unreached(L, s,7) C L to be the set of landmarks that
need to be achieved from s onwards, assuming we got to
s using the plan 7. Note that Unreached(L, s, 7) is path-
dependent: it can vary for the same state when reached by

different paths. It can be computed as follows:
Unreached(L, s, 7) = L\
(Accepted(L, s, 7) \ ReqAgain(L, s,))

where Accepted(L, s, m) C L is the set of landmarks that
were true at some point along 7. ReqAgain(L, s, 7) C L
is the set of landmarks that were accepted but are required
again; an accepted landmark [is required again if (1) it does
not hold true in s, and (2) it is greedy-necessarily ordered
before another landmark !’ in L that is not accepted.

Karpas and Domshlak show that it is possible to parti-
tion the costs of the actions A in D over the landmarks in
Unreached(L, s, 7) to derive an admissible cost estimate for
the state s as follows: let cost(¢) be the cost assigned to
the landmark ¢, and cost(a, ¢) be the portion of a’s cost as-
signed to ¢. Furthermore, let us suppose these costs satisfy
the following set of inequations:

Ya € A: Z

¢EUnreached(a|L,s,)

V¢ € Unreached(L, s,) : cost(¢) < min
acach(¢|s,m)

cost(a, ¢) <cost(a)

cost(a, @)
(1

where ach(¢|s,m) C A is the set of possible achievers
of ¢ along any suffix of 7, and ach(a|L,s,7) = {¢ €
Unreached(L, s, 7)|a € ach(d|s, m)}.

Informally, what these equations are encoding is a scheme
to partition the cost of each action across all the landmarks
it could possibly achieve, and assigns to each landmark ¢ a
cost no more than the minimum cost assigned to ¢ by all its
achievers. Given this, they prove the following useful claim:

Lemma 1. Given a set of action-to-landmark and
landmark-to-action costs satisfying Eqn. 1, hi,(L,s,m) =
cost(Unreached(L, s, 7)) = Zdjeunreached@,&ﬂ) cost(o) is
an admissible estimate of the optimal plan cost from s.

Note that the choice of exactly how to do the cost-
partitioning is left open. One of the schemes Karpas and
Domshlak propose is an optimal cost-partitioning scheme
that uses an LP solver to solve the constraints in Eqn. 1 with
the objective function max 1 (s » cost(e). This has the
useful property that given two sets of landmarks L and L/,
if L C L, then hy(L,s,m) < hp(L',s,). In other words,
the more landmarks you provide to hy, the more informed
the heuristic estimate.

2.4 Goal Networks and HGN Methods

We extend the definitions of (Shivashankar et al. 2012) of
HGN planning to work with partially-ordered sets of goals,
which we call a goal network.

A goal network is a way to represent the objective of sat-
isfying a partially ordered multiset of goals. Formally, it is a
pair gn = (7, <) such that:

e T'is a finite nonempty set of nodes;

e cach node ¢t € T contains a goal g, that is a DNF (dis-
junctive normal form) formula over ground literals;

e < is a partial order over T'.

(a) (b) ()

Figure 1: Three generic goal networks we use for examples
of the various relationships within a goal network.

We will provide examples of both generic and con-
crete goal networks. Figure 1 shows three generic goal
networks. Each subfigure is itself a goal network denoted
gna, gnp, gn.. Directed arcs indicate a subgoal pair (e.g.,
(9%, gj) from gny) such that the first goal must be satisfied
before the second goal. Consider the network gn, where g
is a subgoal of g;, then gny = ({95, 9%}, (9x < g;)). Net-
work gn. shows a partial ordering, where ({gm, gn} < 1)
Similarly, ({go, gp} < gn) and this implies both must occur
before g;. Consider a network gn,, that is composed of gn,
and gny. Then gn, = ({94, 95, 9k}, gr < g;). Note that gn,,
is a partially ordered forest of goal networks.

Figure 2 shows a concrete goal network for an automated
manufacturing domain. joined(x, y) denotes the goal of as-
sembling the parts = and y together, while at(x, loc) rep-
resents the goal of getting x to location loc. In this goal
network, the two goals joined(ps, p1) and joined(ps,p1)
are unordered with respect to one another. Furthermore,
joined(pz, p1) has three subgoals that need to be achieved
before achieving it, i.e the goals of getting the parts p;, p2
and the tool to the assembly table. These subgoals are also
unordered with respect to one another, indicating that the
goals can be accomplished in any order.

HGN Methods An HGN method m is a 4-tuple
(head(m), goal(m), precond(m), network(m)) where the
head head(m) and preconditions precond(m) are similar to
those of a planning operator. goal(m) is a conjunct of lit-
erals representing the goal m decomposes. network(m) is
the goal network that m decomposes into. By convention,
network(m) has a last node ¢, containing the goal goal(m)
to ensure that m accomplishes its own goal.

Figure 3 describes the goal network that the deliver-
obj method decomposes a goal into. This method
is relevant to at(x,loc) goals (since that’s the last
node), and its preconditions are precond(deliver-obj) =
{-reserved(agent), can-carry(agent,p) ...}.

Whether a node has predecessors impacts the kinds of op-
erations we allow. We refer to any node in a goal network
gn having no predecessors as an unconstrained node of gn,
otherwise the node is constrained. The constrained nodes
of Figure 1 include g;, g, g,, and the remaining are uncon-

joined(p3, pl)
at(pl, table) at(tool, table)

Figure 2: Sample Goal Network for an Automated Manufac-

turing domain
reserved(agent) with(p, agent)
at(agent, loc)

at(agent, p)

Figure 3: Subgoal network of deliver-obj(p, loc, agent), a
HGN method to deliver the part p to loc using agent.

strained. The unconstrained nodes in Figure 2 include all the
at nodes as well as the joined(p3, p1) node.

We define the following operations over any goal network
gn = (T,=):

1. Goal Release: Let t € T be an unconstrained node. Then
the removal of ¢ from gn, denoted by gn — ¢, results in the
goal network gn’ = (T”,<’) where T/ = T'\ {¢} and <’
is the restriction of < to 7".

2. Method Application: Let ¢ € T be an uncon-
strained node. Also, let m be a method applied to
t with network(m) = (T, <y,). Finally, recall that
network(m) always contains a ’last’ node that contains
goal(m); let t, be this node. Then the application of m to
gn via t, denoted by gn o, m, results in the goal network
gn’ = (T",<') where T/ = T UT,, and <'=< U <,
U{(t4,t)}. Informally, this operation adds the elements
of network(m) to gn, preserving the order specified by
subgoals(m) and setting goal(m) as a predecessor of ¢.

2.5 HGN Domains, Problems and Solutions

A HGN domain is a pair D = (Dgassical; M) where
D¢ iassical 18 a classical planning domain and M is a set of
HGN methods.

A HGN planning problem is a triple P = (D, sg, gno),
where D is a HGN domain, sg is the initial state, and gng =
(T, <) is the initial goal network.

Definition 2 (Solutions to HGN Planning Problems). The
set of solutions for P is defined as follows:

Base Case. If T is empty, the empty plan is a solution for
P.

In the following cases, let t € T be an unconstrained node.

Unconstrained Goal Satisfaction. If sg = g;, then any so-
lution for P' = (D, sg,gng — t) is also a solution for

Action Application. If action a is applicable in sy and
a is relevant to gy, and w is a solution for P’ =
(D,~(s0,a),gno), then a o 7 is a solution for P.

Method Decomposition. If m is a method applicable in
s and relevant to g;, then any solution to P’ =
(D, so, gno o m) is also a solution to P.

Note that HGN planning allows an action to be applied
only if it is relevant to an unconstrained node in gn; this
prevents action chaining as done in classical planning and
allows for tigher control of solutions as in HTN planning. In
fact, prior work (Shivashankar et al. 2012) showed that HGN
planning is as expressive as HTN planning when both are re-
stricted to totally-ordered methods, i.e. the subtask/subgoal
networks are totally ordered.

Let us denote S(P) as the set of solutions to a HGN plan-
ning problem P as allowed by Definition 2. Then we can
define what it means for a solution 7 to be hierarchically
optimal with respect to P as follows:

Definition 3 (Hierarchically Optimal Solutions). A solution
7h* is hierarchically optimal with respect to P if m'* =
argmin ¢ s pycost(m).

3 hpyr: An Admissible Heuristic for HGN
Planning
At a high level, we will proceed to construct h gy, as follows:

1. We define a relaxation of HGN planning that ignores the
provided methods and allows unrestricted action chaining
as in classical planning, which expands the set of allowed
solutions,

2. We will extend landmark generation algorithms for classi-
cal planning problems to compute sound landmark graphs
for the relaxed HGN planning problems, which in turn are
sound with respect to the original HGN planning prob-
lems as well, and finally

3. We will use admissible classical planning heuristics like
hr, on these landmark graphs to compute admissible cost
estimates for HGN planning problems.

3.1 Relaxed HGN Planning

Definition 4 (Relaxed HGN Planning). A relaxed HGN
planning problem is a triple P = (D.assicals S0, g70)
where D is a classical planning domain, s is the initial
state, and gny is the initial goal network. Any sequence of
actions 7 that is executable in state sg and achieves the
goals in gng in an order consistent with the constraints in
gng is a valid solution to P.

Relaxed HGN planning can thus be viewed as an exten-
sion of classical planning to solve for goal networks, where
there are no HGN methods and the objective is to generate
sequences of actions that satisfy the goals in gng in an order
consistent with gng. In fact, it is easy to show that relaxed
HGN planning, in contrast to HGN planning, is no more ex-
pressive than classical planning, and relaxed HGN planning
problems can be compiled into classical planning problems
quite easily.

Next, we will show how to leverage landmark genera-
tion algorithms for classical planning to generate landmark
graphs for relaxed HGN planning.

3.2 Generating Landmarks for Relaxed HGN
Planning

This section describes a landmark discovery technique that
can use any landmark discovery technique for classical plan-
ning (referred to as LMGEN¢ here) such as (Richter and
Westphal 2010) to compute landmarks for relaxed HGN
planning problems. The main difference here is that while
classical planning problems are (state, goal) pairs, relaxed
HGN planning problems are (state, goal-network) pairs;
every goal in the goal network can be thought of as a land-
mark. Therefore, there is now a partially ordered set of goals
to compute landmarks from, as opposed to a single goal in
classical planning.

Algorithm 1 Procedure for computing landmarks for re-
laxed HGN planning problems.

1: function computeHGNLandmarks(s, gn)

2 queueSeeds < gn

3: queue <+

4 while queueSeeds is not empty do

5 choose a g w/o successors from queueSeeds,
and remove it along with all associated orderings

6: addLM(g), add g to queue
7. add any orderings g shares with other goals from
gn already added to LG
8: while queue is not empty do
9: pop landmark ¢ from queue and use
LMGEN to generate the new set of landmarks ¢
10: for ¢ € & do ADDLM(&, ¢ —gn V)
11: return LG
12:

13: function addLM(¢)

14: ifpisafactand 3¢’ € LG : ¢ # ¢ N\ ¢ |= ¢’ then
15: remove ¢’ from LG and all orderings it is part of
16: if 3¢’ € LG : ¢’ | ¢ then return ¢’

17: if ¢ LG then add ¢ to queue and return ¢

18:

19: function addLMandOrdering(¢, ¢ —, 1)

20: 1 < addLM(¢)

21: add ordering n —, ¢ to LG

We therefore need to generalize classical planning land-
mark generation techniques to work for relaxed HGN
planning problems. The computeHGNLandmarks algorithm
(Algorithm 1) describes one such generalization. At a
high level, computeHGNLandmarks proceeds by comput-
ing landmark graphs for each goal g in gn (which in fact is
a classical planning problem) and merging them all together
to create the final landmark graph LG.

computeHGNLandmarks takes as input a relaxed HGN
planning problem (s, gn) and generates LG, a graph of land-
marks. First, queueSeeds is initialized with a copy of gn
(Line 2). This is because unlike in classical planning where

we have a single goal to generate landmarks from, in HGN
planning we have a partially ordered set of goals to seed the
landmark generation; queueSeeds stores these seeds. We
also initialize queue, the openlist of landmarks, to (.

While there is a goal g from gn that we have not yet com-
puted landmarks for (Line 4), we do the following: we re-
move it from queueSeeds along with all induced order-
ings and add it to queue (Lines 5-6). We also add g to
LG using addLM; we also add any ordering constraints it
might have with other elements of gn that have already been
added to LG. This queue is then used as a starting point
by LMGEN¢ to begin landmark generation. We iteratively
use LMGEN¢ to pop landmarks off the queue and gener-
ate new landmarks by backchaining until we can no longer
generate any more landmarks (Lines 8—10). Each new land-
mark is added to LG by the addLMandOrdering procedure.
Once all goals in gn have been handled, the landmark gen-
eration process is completed and the algorithm returns LG.

The addLM procedure takes as input a computed land-
mark ¢, adds it to LG and returns a landmark 7. There are
three cases to consider:

e ¢ subsumes another landmark ¢’ in LG, implying we can
remove ¢’ and replace it with ¢ (since ¢ is a stronger ver-
sion of ¢'), and return ¢ (Lines 14—15)

¢ is subsumed by another landmark ¢’ in LG, implying
we can ignore ¢ (Lines 16). In this case, we don’t add any
new landmark to LG and simply return ¢’

¢ is a new landmark, in which case we can simply add it
to LG and return ¢ (Lines 17)

The addLMandOrdering procedure takes as input a land-
mark ¢ and an ordering constraint ¢ —, 1 and adds them
to LG. More precisely, it adds ¢ to LG using addLM, which
returns the added landmark 7. It then adds the ordering con-
straint between 7 and ¢ in LG.

\
\
\
\

/
/
/ \

at(ALtable)\/
at(A2,table) 3

at(Al,table)

at(p1table)

With(pLAL) Y
with(p1,A2)

g at(Al,src) \/

at(A2,src) @

(a) (b)

Figure 4: (a) LM graph on goal network containing a sin-
gle goal at(pi,table). (b) LM graph after decomposing
at(py, table) with deliver-obj(p,table, A1). The double-
circled landmarks represent new landmarks inferred after the
method decomposition, while the landmarks colored gray
are new landmarks that subsumed an existing one in (a).

LM graph computation example. Figure 4 illustrates
the working of computeHGNLandmarks. Let us assume the
goal network gn contains only one goal g = at(p, table).

Figure 4a illustrates the output of computeHGNLandmarks
on g. This is identical to what LMGEN¢ would generate,
since gn contains only one goal, making the relaxed HGN
problem equivalent to a classical planning problem.

Now, let us assume that we decompose gn using the
m = deliver-obj(p;, table, A1), and get the new goal
network gn/, which essentially looks like an instanti-
ated version of the network in Figure 3. Now if we run
computeHGNLandmarks on gn’, we end up generating the
landmark graph in Figure 4b, which is a more focused ver-
sion of the first landmark graph. This is because the goals
in gn’ are landmarks that must be accomplished, which con-
strains the set of valid solutions that can be generated. For
instance, since we’ve committed to agent A1, every solution
we can generate from gn’ will involve the use of A1. We can,
as a result, generate more focused landmarks than we other-
wise could have from just the top-level goal g. This includes
fact landmarks that replace disjunctive landmarks (the ones
in gray in Fig. 4b) as well as completely new landmarks that
arise as a result of the method; e.g. reserved(A1) is not a
valid landmark for gn, but is one for gn'.

An important point to note at this point is that the subgoals
in gn’ are not true landmarks for g; they are landmarks once
we commit to applying method m. However, this actually
ends up being useful to us, since it allows us to generate dif-
ferent landmark graphs for different methods; for instance, if
we had committed to A2, we would have obtained a differ-
ent set of landmarks specific to A2. Now, landmark-based
heuristics when applied to these two graphs would get us
different heuristic estimates, thus allowing to differentiate
between these two methods by using the specific subgoals
each method introduces.

It is easy to show that computeHGNLandmarks generates
sound landmark graphs for relaxed HGN planning problems:

Claim 5. Given a relaxed HGN planning
PVOblem P = (Dclassicala S0, gnO)’ LG =
computeHGNLandmarks(sg, gng) is a sound landmark
graph for P.

Let P = ((Derassicat, M), so, gno) be a HGN planning
problem, and let P’ = (D assicais S0, gno) be the corre-
sponding relaxed version. Then by definition, any solution
to P is a solution to P’. Therefore, it is easy to see that a
landmark of P’ is also a sound landmark of P. More gener-
ally, a landmark graph generated for P’ is going to be sound
with respect to P as well:

Claim 6. Given a HGN planning problem P, then LG =
computeHGNLandmarks(sg, gno) is a sound landmark
graph for P.

3.3 Computing hyr

The main insight behind hpy, is the following: since the
computeHGNLandmarks algorithm generates sound land-
marks and orderings for relaxed (and therefore regu-
lar) HGN planning problems, we can use any admissible
landmark-based heuristic from classical planning to derive
an admissible cost estimate for HGN planning problems.

In particular, hyy uses hy as follows: given an HGN
search node (s,gn), the landmark graph is given by

LGran = computeHGNLandmarks(s, gn). Then
heo(s,gn,m) = hp(LGgan, s, ™) 2)

where 7 is the plan generated to get to (s, gn).

3.4 Admissibility of i,

Claim 6 shows that given a HGN problem P = (D, s, gng),
LG = computeHGNLandmarks(sg, gng) is a sound land-
mark graph with respect to P. Furthermore, Lemma 1 shows
that hy, (LG, s, ()) provides an admissible cost estimate of
the optimal plan starting from sq that achieves all the land-
marks in LG. Since every solution to P has to achieve all the
landmarks in LG in a consistent order, hy, (LG, sg, ()) pro-
vides an admissible estimate of the optimal cost to P as well.
However, from Eq. 2, hy (LG, so,{)) = hur(so, gno, ().
Therefore, we have the following theorem:

Theorem 7 (Admissibility of hgrr). Given a HGN planning
domain D, a search node (s, gn,) and its cost-optimal so-
lution W;:gLGN, hir(s,gn,m) < W;*:gLGN

4 The HOpGDP Algorithm

Algorithm 2 describes HOpGDP. It takes as input a HGN
domain D = (D', M), the initial state s and the initial goal
network gng. It returns a plan if it finds one, or failure if the
problem is unsolvable.

Initialization. It starts off by initializing open (Line 2),
which is a priority queue that sorts the HGN search nodes
yet to be expanded by their f-value, where f((s, gn, 7)) =
cost(m) + hpr(s,gn). open initially contains the initial
search node (sg, gno, ()). It also initializes searchSpace
(Line 3), the set of all nodes seen during the search pro-
cess. This data structure keeps track of the best known path
currently known for each state,goal-network pair, and is thus
helpful to detect when we find a cheaper path to a previously
seen HGN search node.

Search. HOpGDP now proceeds to do an A* search in the
space of HGN search nodes starting from the initial node.
While open is not empty, it does the following (Lines 4—14):
it removes the HGN search node N = (s, gn,) with the
best f-value from open (Line 5) and first checks if gn is
empty (Line 6). If this is true, this means that all the goals
in gng have been solved, and 7 is the optimal solution to the
HGN planning problem.

If gn is not empty, then the algorithm proceeds by us-
ing the getSuccessors subroutine to compute N’s successor
nodes (Line 7). For each successor node (s’, gn’, 7’), it pro-
ceeds to do the following: it checks to see if another path 7
to (s’, gn') exists in searchSpace (Line 9). If this is the case
and if 7 is costlier than 7’ (Line 10), it updates searchSpace
with the new path; and reopens the search node (Line 14); if
7 is cheaper than the new plan 7', it simply skips this suc-
cessor (Line 12).

If (s’,gn’) has not been seen before, it adds N/ =
(s',gn’/,7’) to searchSpace to track the currently best-
known plan 7’ to (s’, gn’) (Line 13). It also evaluates the
f-value of N’ and adds it to open (Line 14).

If there are no more nodes left in open, this implies that
it has exhausted the search space without finding a solution,
and therefore returns failure (Line 15).

Computing Successors. The procedure getSuccessors
computes the successors of a given HGN search node
(s, gn,) in accordance with Definition 2. First, we check
to see if there are any unconstrained goals g in gn that are
satisfied in the current state s. We then proceed to create
new HGN search nodes by removing all such goals from gn
(Line 19-20). Next, we compute all actions applicable in s
and relevant to an unconstrained goal in gn (Line 21) and
create new search nodes by progressing s using these ac-
tions (Line 22-23). We compute all pairs (m, g) such that m
is a HGN method applicable in s and relevant to an uncon-
strained goal g in gn (Line 24) and create new search nodes
by decomposing g in gn using m (Line 25-26). Finally, we
return the set of generated successor nodes (Line 27).

Algorithm 2 Pseudocode of HOpGDP. It takes as argu-
ments the domain description D = (Dgssical, M), the ini-
tial state s¢, and the initial goal network gny. It either returns
a plan if it finds one, or failure if it doesn’t.

1: function HOpGDP(D, sg, gng)
2 open < (sg, gno, ()

3 searchSpace < (sg, gno, ())

4 while open is not empty do

5: rem. (s, gn, m) with lowest f-value from open
6: if gn is empty then return 7
7
8
9
0
1

successors < getSuccessors(D, s, gn,)
for (s', gn’,n’) € successors do
if 3(s’, gn’, n) € searchSpace then

10: if cost(n’) < cost(n) then

11: replace (s, gn’,n) with (s, gn’, ')
in searchSpace

12: else continue

13: else add (s', gn’, ') to searchSpace

14: eval. f-value of (s’,gn’, 7’) and add to open

15: return failure

16:

17: function getSuccessors(D, s, gn, m)

18: successors <)

19: for unconstrained g € gn satisfied in s do

20: add the node (s, gn — {g}, m) to successors

21: A < actions in D applicable in s and relevant to an

unconstrained goal in gn
22: for a € Ado
23: add the node (v(s,a), gn, ™ o a) to successors
24: M <« {(m,g) st. m € M is applicable in s and
relevant to an unconstrained goal g in gn}
25: for (m,g) € M do
26: add the node (s, gn o, m,) to successors

27: return successors

o

o

o T o) °

-~ E 0506 ©

o o o
—~ o
) 8 4 g ° 3)
i g 0o0?° °° o
S : 2l
Qo ° ® °o 0 °
A <] o o 8 %0 8
O} ° $ oog °
o 80 og o
O 0§ o © o %
C&? o & o ?
T 4 4 8 o ° o o o
o o
o © %
g @0 o o o o o
o T T T T T T T T T T
0.1 1 10 100 10000.1 1 10 100 1000

A*—h, CPU (s)

HOpGDFE)”nd CPU (S)

Figure 5: Log-scale scatter plot comparing HOpGDP planning time vs. A*-h, (left) and HOpGDP,;,4 (right) planning time on

Blocksworld and Logistics problems.

Count A*-h;, HOpGDP,;,4 HOpGDP
bw 114 60 102 110
log 28 11 22 22
Total 142 71 124 132
A*-hp, HOpGDPb“nd HOpGDP
S o S o S o
bw 427 1572 80 309 1.8 26
log 3.1 2.8 1.2 02 14 0.5
T o T o x o
bw 1097840 3805838 22047 96523 1194 3806
log 106281 133890 769 775 569 608

Table 1: The coverage (top) and the mean CPU seconds
(middle) and mean number of node expansions (bottom) for
A*-hpusing hr, HOpGDP,;,4, and HOpGDPusing hp..
For runtime and nodes, we include the sample mean (z) and
standard deviation (o). Other than coverage, all statistics are
over the subset of problems solved by all three variants.

S Preliminary Experiments

Our evaluation of HOpGDP focuses on two questions: Is
the heuristic informative in guiding search, and is its guid-
ance sufficient to overcome its computation time. We chose
the well-known Blocksworld and Logistics domains for our
preliminary study, using the HGN methods described in the
GoDeL evaluation. For logistics, we limited truck capacity
to one package to ensure that the optimal solutions were the
same between the HGN and non-HGN planners.

We implemented HOpGDP in the GoDeL framework
(Shivashankar et al. 2013), which is derived from the Fast-
Downward (Helmert 2009) code base. We chose three vari-
ants of HOpGDP to compare: A*-hy, which ignores all
methods and corresponds to A* with the classical /, heuris-
tic; HOpGDP,;,4, which corresponds to Algorithm 2 with
h = 0, so that the f-value is always g, the distance from the
start; and the full HOpGDP algorithm with the h g, heuris-
tic. Both A*-h and HOpGDP break ties on lower h values.
We ran all problems on a Xeon E5-2639 with a per problem
limit of 4 GB of RAM and 20 minutes of planning time.

Table 1 (top) shows the coverage for the three algorithms.
HOpGDP and HOpGDP,;;,4 have nearly twice the coverage
of A*-hy,, which confirms the power of pruning in search,
even when comparing blind and heuristic search. The dif-
ference between HOpGDP and HOpGDPy ;4 is more sub-
tle, with HOpGDP covering all of HOpGDP;,4’s problems
plus eight more.

Figure 5 gives a scatter plot of run times of HOpGDP vs.
A*-hy, and HOpGDP,;,4. Table 1 (middle) summarizes the
runtimes for the set of problems solved by all three variants.
The results roughly match the coverage trends, but we make

no statistical claims.

Note that the runtime for HOpGDP on logistics is higher
than HOpGDPy;,4- The bottom section of Table 1 gives
some context to the results. A*-hy, has an order of magni-
tude faster node-expansion rate than HOpGDP,;.4, which in
turn has a four times higher expansion rate than HOpGDP.
Part of the reason for this is architecture. HGN methods, as
with HTN methods, tend to have high numbers of free vari-
ables. Grounding these methods bloated the domain beyond
use in sample runs, and so methods are unified against a
state by calling out to SHOP2’s unifier over local sockets.
Part of the difference between A*-hy and HOpGDP is in-
herent, though, since h, calculates one landmark graph per
problem and h 7, must calculate a new landmark graph for
every goal network it encounters.

While these trends are generally positive, the results are
hardly conclusive. We plan on expanding the set of problems
and more closely analyze the results in future work.

6 Related Work

HTN planners solve planning problems in one of two ways,
either (1) by forward state-space search, such as in the
SHOP (Nau et al. 1999) and SHOP2 (Nau et al. 2003)
HTN planners, or (2) by partial-order causal-link planning
(POCL) techniques, such as in UMCP (Erol, Hendler, and
Nau 1994) and in the hybrid planning literature (Elkawkagy
et al. 2012; Bercher, Keen, and Biundo 2014).

Due to very little work in the way of search heuristics
for forward-search HTN planning, planners often end up
providing other domain-specific mechanisms for users to
encode search strategies. For example, SHOP2 allows the
domain-specific knowledge, known as HTN methods, to be
specified in a ’good’ order according to the user, and tries
them out in the same order. SHOP2 also provides sup-
port for external function calls (Nau et al. 2003) that can
call arbitrary code to do the heavy lifting in the problem,
thus minimizing the choices that need to be made dur-
ing search. For example, in the 2002 Planning Competition
for hand-tailored planners, the authors of SHOP2 imple-
mented a shortest-path algorithm in the DriverLog domain
that SHOP2 could call externally to generate optimal paths.?

Waisbrot et al (Waisbrot, Kuter, and Konik 2008) devel-
oped H20, a HTN planner that augments SHOP2 with clas-
sical planning heuristics to make local decisions on which
method to apply next by estimating how close the method’s
goal is to the current state. H 20, however, retains the depth-
first search structure of SHOP2, making it to difficult to gen-
erate high-quality plans.

Marthi et al (Marthi, Russell, and Wolfe 2007; 2008)
propose an HTN-like formalism called angelic hierarchical
planning which allows users to annotate abstract tasks with
additional domain-specific information in the form of lower
and upper bounds on the costs of the possible plans they
decompose to. They then use this information to compute
hierarchically-optimal plans. In contrast, we require only
costs of the primitive actions and use domain-independent
search heuristics to compute hierarchically-optimal plans.

2personal communication with Ugur Kuter.

There has been recent work on developing search heuris-
tics for POCL HTN planners (Elkawkagy et al. 2012;
Bercher, Keen, and Biundo 2014). However, these heuristics
typically provide estimates on how many more plan refine-
ment steps need to be taken from a search node in order to
get to a solution, as opposed to plan quality estimates, which
is what we are focused on in this paper.

Hierarchical Goal Network (HGN) Planning combines
the hierarchical structure of HTN planning with the goal-
based nature of classical planning. It therefore allows for
easier infusion of techniques from classical planning into
hierarchical planning, such as adapting the FF heuristic
to do method ordering in the GDP planner (Shivashankar
et al. 2012), and using landmark-based techniques to plan
with partial amounts of domain knowledge in GoDeL (Shiv-
ashankar et al. 2013). Both planners, however, use depth-
first search and inadmissible heuristics, so they cannot pro-
vide any guarantees of plan quality.

Another domain-configurable planning formalism is
Planning with Control Rules (Bacchus and Kabanza 2000),
where domain-specific knowledge is encoded in the form of
linear-temporal logic (LTL) formulas. TLPlan, one of the
earliest planners developed under this formalism, used con-
trol rules written in LTL to prune away trajectories deemed
suboptimal by the user. There have also been attempts to de-
velop heuristic search planners that can plan with LTL¢, a
simplified version of LTL that works with finite traces. This
has been used to incorporate search heuristics to solve for
temporally extended goals written in LTL ; (Baier and Mcll-
raith 2006) as well as to express landmark-based heuristics
that guide classical planners (Simon and Roger 2015).

7 Conclusion

Despite the popularity of hierarchical planning techniques
both in theory and practice, very little effort has been de-
voted to developing domain-independent search heuristics
that can provide useful search guidance towards high-quality
solutions. As a result, end-users need to encode domain-
specific heuristics into the domain models, which can make
the domain-modeling process tedious and error-prone.

To address this issue, this paper leverages recent work
on HGN planning, which allows tighter integration of
hierarchical planning and classical planning, to develop
(1) hgr, an admissible HGN planning heuristic, and (2)
HOpGDP, an A* search algorithm guided by hy, to com-
pute hierarchically-optimal plans.

There are several avenues for future work, such as:

e Theoretical Analysis: We show that A7, returns admis-
sible cost estimates for HGN planning problems. How-
ever, we believe that it has other interesting theoretical
properties as well. In particular, we conjecture that it dom-
inates hp, since it can, in general, compute more focused
landmarks, which can translate to more informed heuris-
tic estimates, a property of optimal cost partitioning with
hr. On a related note, we believe that hy;, has the nice
property that despite some of the steps being zero-cost
(i.e. method applications, which don’t change the state),
it can help us avoid f-value plateaus since the method ap-

plication can result in a more informative heuristic value.
We plan on doing a more detailed theoretical analysis to
verify these conjectures.

e Extension to Anytime Planning: While we believe it is
theoretically interesting that kg can help us find opti-
mal solutions, it would be of practical interest to design
anytime HGN planning algorithms.

Acknowledgment This work is sponsored in part by OSD
ASD (R&E). The information in this paper does not nec-
essarily reflect the position or policy of the sponsors, and
no official endorsement should be inferred. Ron Alford per-
formed part of this work under an ASEE postdoctoral fel-
lowship at NRL.

References

Bacchus, F.,, and Kabanza, F. 2000. Using temporal logics to
express search control knowledge for planning. Artif. Intell.
116:123-191.

Baier, J. A., and Mcllraith, S. A. 2006. Planning with first-
order temporally extended goals using heuristic search. In
AAAI Conference on Artificial Intelligence.

Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid plan-
ning heuristics based on task decomposition graphs. In Proc.
of the Seventh Annual Symposium on Combinatorial Search
(SoCS), 35-43. AAAI Press.

Elkawkagy, M.; Bercher, P.; Schattenberg, B.; and Biundo,
S. 2012. Improving hierarchical planning performance by
the use of landmarks. In AAAI Conference on Artificial In-
telligence, 1763-1769.

Erol, K.; Hendler, J.; and Nau, D. S. 1994. UMCP: A sound
and complete procedure for hierarchical task-network plan-
ning. 249-254. ICAPS 2009 influential paper honorable
mention.

Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173(5):503—
535.

Hoffmann, J., and Nebel, B. 2001. The FF planning system.
Journal of Artificial Intelligence Research 14:253-302.

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence Re-
search 22:215-278.

Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In Boutilier, C., ed., IJCAI 2009, Proceed-
ings of the 21st International Joint Conference on Artificial
Intelligence, Pasadena, California, USA, July 11-17, 2009,
1728-1733.

Marthi, B.; Russell, S.; and Wolfe, J. 2007. Angelic seman-
tics for high-level actions. In International Conference on
Automated Planning and Scheduling.

Marthi, B.; Russell, S.; and Wolfe, J. 2008. Angelic hierar-
chical planning: Optimal and online algorithms. In Interna-
tional Conference on Automated Planning and Scheduling,
222-231.

Nau, D. S.; Cao, Y.; Lotem, A.; and Muiioz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In Dean, T.,
ed., International Joint Conference on Artificial Intelligence,
968-973.

Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN

planning system. Journal of Artificial Intelligence Research
20:379-404.

Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. J. Ar-
tif. Intell. Res. (JAIR) 39:127-177.

Shivashankar, V.; Kuter, U.; Nau, D.; and Alford, R. 2012. A
hierarchical goal-based formalism and algorithm for single-
agent planning. In Proc. of the 11th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS), vol-
ume 2, 981-988. Int. Foundation for Autonomous Agents
and Multiagent Systems.

Shivashankar, V.; Alford, R.; Kuter, U.; and Nau, D. 2013.
The GoDeL planning system: a more perfect union of
domain-independent and hierarchical planning. In Proc. of
the 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI),
2380-2386. AAAI Press.

Simon, S., and Roger, G. 2015. Finding and exploiting It
trajectory constraints in heuristic search. In Symposium on
Combinatorial Search.

Waisbrot, N.; Kuter, U.; and Konik, T. 2008. Combin-
ing heuristic search with hierarchical task-network planning:
A preliminary report. In International Conference of the
Florida Artificial Intelligence Research Society.

