
2015 Annual Conference on Advances in Cognitive Systems: Workshop on Goal Reasoning

Cleaning Efficiently:

A Case Study in Modeling Goal Reasoning and Learning

Mark Roberts MARK.ROBERTS.CTR@NRL.NAVY.MIL
NRC Postdoctoral Researcher, Naval Research Laboratory (Code 5514), Washington, DC USA

David W. Aha DAVID.AHA@NRL.NAVY.MIL

Adaptive Systems Section, Naval Research Laboratory (Code 5514), Washington, DC USA

Abstract

Goal Reasoning concerns actors that deliberate about their own goals, and learning is often applied

to improve performance of such actors. A recent model of Goal Reasoning proposed by Roberts et

al. lacks a simplified working example with an explanation of how the model can incorporate

learning. We describe a thought experiment modeling the decision making of floor-cleaning

robots, which are simple goal reasoning actors. We observe that such robots often have a less-

than-optimal action policy that, though sufficient for cleaning in the limit, could be improved

through learning to reduce the total cleaning time or reduce energy usage. We start with by

modeling the straightforward policy for a simple robot named Vacuous. We then ponder a

hypothetical robot, named KleeneStar, which optimally cleans in the fastest time possible. Finally,

we describe a model for an improved robot, named Vakleene, which iteratively reduces its

cleaning time through learning. While these examples are only a thought experiment, this work

provides a model of a simplistic goal reasoning process that can learn.

1. Motivation

Small, floor-cleaning robots have become a popular home appliance to supplement regular floor

cleaning performed by a human. These systems are best exemplified by the Roomba, introduced
by iRobot in 2002. The Roomba contains a front bumper to detect a collision, infrared proximity
sensors to detect nearby objects or sudden changes in height, and a radio sensor to detect beacons.
It can clean a variety of floor surfaces for several hours between charges and newer versions use
radio beacons to navigate multiple rooms, avoid hazards, or return to a self-charging base station.

Anyone who has interacted with these devices can observe that its task planning is rudimentary.

The devices exhibit three simple behaviors as shown in Figure 1 taken from the Roomba’s User
Manual (iRobot 2008). The Spiral behavior allows the device to clean a large area in a spiral
fashion. The Wall Following behavior traces a wall or another obstacle to the right side while
cleaning close to the edge. Finally, the Room Crossing behavior randomly turns and crosses the
room while cleaning. Even with random selection of the actions, the robot should eventually
traverse the entire floor in the limit. While sufficient, this action selection mechanism could be

improved with learning that accounts for the room and obstacles within the room.

M. ROBERTS AND D. AHA

We will show in this paper how a floor-cleaning robot can be modeled as an instantiation of a

Goal Reasoning process. We created a Goal Reasoning Model that captures the variety systems
that perform Goal Reasoning (Roberts et al. 2014, 2015). Our model distinguishes systems by
their design choices and, thus, facilitates their comparison. For example, instantiations of this
model can represent iterative plan repair (e.g., Chien et al. 2000), replanning (e.g., Yoon et al.
2007), and Goal-Driven Autonomy (e.g., Klenk et al. 2013).

We have two aims in this paper. First, we model the robot vacuum as a Goal Reasoning process

using the Goal Reasoning Model. Second, we describe how learning could augment this basic
model to reduce cleaning time. We present a thought experiment to elucidate instantiations of
Goal Reasoning, using the robot vacuum as a case study. We begin with a brief exposition of the
model, and then use it to model three robot vacuum agents: (1) Vacuous is a simple robot with a
straightforward, fixed action selection policy that is extremely suboptimal. (2) KleeneStar

1
 is a

hypothetical optimal robot vacuum that can guarantee cleaning in the minimal cleaning time but

whose policy could never be realistically computed on such a limited robot platform. (3) Vaklene
is a learning-enabled robot vacuum whose cleaning time asymptotically approaches KleeneStar.

2. Background: The Goal Reasoning Model

Deliberating about objectives – how to prioritize and attain (or maintain) them – is a ubiquitous
activity of all intentional entities (i.e., actors). We apply the Goal Reasoning Model presented by
Roberts et al. (2014, 2015) that models Goal Reasoning as a State Transition System consisting of
goal nodes that track a goal’s state and transitions defined by a Goal Lifecycle. Note that we
adopt the notation provided by Roberts et al. (2015).

 Let 𝑔𝑖 be the actor’s 𝑖𝑡ℎ goal of 𝑚 goals (0 ≤ 𝑖 ≤ 𝑚) that the actor wishes to attain (maintain).

To avoid confusion with the use of the word state as it is typically applied in planning systems,

we will use 𝐿 to represent the language of the actor, 𝐿 = 𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 ∪ 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙. Often, 𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙

will concern external state the actor is tracking (e.g., its location, its sensor values). 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

1 With apologies to Stephen Kleene.

Figure 1. A typical Roomba cleaning pattern from the Roomba User Manual (iRobot 2008).

 CLEANING EFFICIENTLY

represents the predicates and state required internally to the actor (e.g., the predicates 𝑎𝑡𝑡𝑎𝑖𝑛(𝑔)

or 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛(𝑔), the state of all goals).

A goal 𝑔 is tracked within the actor as part of a goal node 𝑁𝑔 that transitions according to a
Goal Lifecycle (Figure 2). Decisions consist of applying a strategy (arcs in Figure 2) to
transition a goal node among modes (rounded boxes). Goal nodes in an active mode are those that
have been formulated but not yet dropped. The formulate strategy determines when a new goal

node is created. Vattam et al. (2013) describe goal formulation strategies. The drop strategy
causes a goal node to be “forgotten” and can occur from any active mode; this strategy may store
the node’s history for future deliberation. To select 𝑁𝑔 indicates intent and requires a formulated
goal node. The expand strategy decomposes 𝑁𝑔 into a goal network (e.g., a tree of subgoal
nodes) or creates a (possibly empty) set of expansions 𝑋. Expansion is akin plan generation, but is
renamed here to generalize it from specific planning approaches. The commit strategy chooses an

expansion 𝑥 ∈ 𝑋 for execution; a static strategy or domain-specific quality metrics may rank
possible expansions for selection. The dispatch strategy slates 𝑥 for execution; it may further
refine 𝑥 prior to execution (e.g., it may allocate resources or interleave 𝑥’s execution with other
expansions).

Goal nodes in executing modes (Figure 2, dashed lines) can be subject to transitions resulting
from expected or unexpected state changes. The monitor strategy checks progress for 𝑁𝑔 during

execution. Execution updates arrive through the evaluate strategy. In a nominal execution, the
information can be either resolved through a continue strategy or the finish strategy marks the
goal node as finished.

During execution, the evaluate strategy determines how events or new information impacts
goal node and the resolve strategies define the possible responses. If the evaluation does not
impact 𝑁𝑔, the actor can simply continue the execution. However, if the event impacts the

current execution then other strategies may apply. One obvious choice is to modify the world
model using adjust, but this does not resolve the mode of 𝑁𝑔 and further refinements are
required. The repair strategy repairs expansion 𝑥 so that it meets the new context; this is
frequently called plan repair. If no repair is possible (or desired) then the re-expand strategy can
reconsider a new plan in the revised situation for the same goal; this is frequently called
replanning. The defer strategy postpones the goal, keeping the goal node selected but removing it

from execution. Finally, formulate creates a revised goal 𝑔′; the actor may then drop the original
goal 𝑔 to pursue 𝑔′ or it could consider pursuing both goals in parallel; this is similar to the
concept of goal transformation provided by Cox and Veloso (1998).

Figure 2: The goal lifecycle (Roberts et al. 2014). Strategies (arcs) denote possible decision points

of an actor, while modes (rounded boxes) denote the status of a goal (set) in the goal memory.

M. ROBERTS AND D. AHA

 Goal Reasoning can be modeled as a goal State Transition System Ζ = (𝑀, 𝑅, 𝛿𝐺𝑅), where 𝑀 is
a goal memory of goal nodes, 𝑅 is a set of refinement strategies that transition goals of the
system, and 𝛿𝐺𝑅 ∶ 𝑀 × 𝑅 → 𝑀′ is a transition function restricting the allowed transitions for 𝑀.

A goal memory 𝑀 stores a goal node for each of the 𝑚 goals. For goal 𝑔𝑖, 𝑁𝑔𝑖 =
(𝑔𝑖, 𝑝𝑎𝑟𝑒𝑛𝑡, 𝑠𝑢𝑏𝑔𝑜𝑎𝑙𝑠 , 𝐶, 𝑜, 𝑋, 𝑥, 𝑞) is a goal node where:

 𝑔𝑖 is the goal that is to be achieved (or maintained);

 𝑝𝑎𝑟𝑒𝑛𝑡 is the goal whose subgoals include 𝑔𝑖;

 𝑠𝑢𝑏𝑔𝑜𝑎𝑙𝑠 is a list containing any subgoals for 𝑔𝑖;

 𝐶 is a set of constraints on 𝑔𝑖. Constraints could be temporal (finish by a certain time),

ordering (do x before y), maintenance (remain safe), resource (use a specific resource), or

computational (only use so much CPU or memory). A partition 𝐶 = 𝐶𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 ∪ 𝐶𝑎𝑑𝑑𝑒𝑑

separates constraints into those provided to the actor independent of whatever invoked it

(e.g., a human operator, meta-reasoning process, or coach) and those added during

refinement. Top-level constraints can be pre-encoded or based on drives (e.g., (Coddington

et al. 2005; Young and Hawes 2012)). Hard constraints in 𝐶 must be satisfied at all times,

while soft constraints should be satisfied if possible.

 𝑜 is the current goal lifecycle mode (detailed below).

 𝑋 is a set of expansions that will achieve goal 𝑔𝑖. The types of expansions for a goal depend

on its type. For goals tracking external state, expansions might include a set of plans Π.

Other goals might expand into a goal network, a task network, a set of parameters for flight

control, etc. The expand strategy creates 𝑋.

 𝑥 ∈ 𝑋 is the currently selected expansion, performed with the commit strategy.

 𝑞 is a vector of one or more quality metrics. For example, these could include the priority

of a goal, the inertia of a goal indicating a bias against changing its current mode because

of prior commitments, the net value (e.g., cost, value, risk, reward) associated with

achieving 𝑔𝑖 using selected expansion 𝑥.

The refinement strategies 𝑅 are drawn from the Goal Lifecycle (Figure 2). For convenience, we
sometimes refer to the goal node 𝑁𝑔 as simply the goal 𝑔, though it should be clear that all
strategies are functions that transition some 𝑁𝑔. We partition the refinement strategies 𝑅 =
 𝑅𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 ∪ 𝑅𝑎𝑑𝑑𝑒𝑑 ∪ 𝑅𝑙𝑒𝑎𝑟𝑛𝑒𝑑 to distinguish between strategies that the actor was provided
prior to the start of its lifetime (e.g., through design decisions), representations that were added to
its model as a result of execution in an environment (e.g., a new object is sensed), and those it

learned for itself (e.g., the actor adjusts its expectations for an action after experience).
The transition function 𝛿𝐺𝑅 specifies the allowed transitions between modes because not every

strategy will apply to every goal or every situation. In a domain-independent fashion, 𝛿𝐺𝑅 is
defined by the arcs in the lifecycle. However, a system or domain may modify (through
composition, ablation, or additional constraints) the transitions for 𝑀.

Once Goal Reasoning is modeled as 𝑍, it is easy to see that it is a process through which 𝑀 is

iteratively refined through transitions of 𝑅 as restricted by 𝛿𝐺𝑅. The Goal Reasoning Problem and
one way of solving it, called Goal Refinement, is defined by Roberts et al. (2014, 2015b). For
space reasons, we focus only on the definition of 𝑍 for our cleaning robots in this paper.

 CLEANING EFFICIENTLY

3. Modeling the robots

As mentioned, the available actions of a Roomba include Spiraling, Wall Following, and Room
Crossing. Here we outline our central assumptions and more carefully define these actions so that
we can compose them into policies for the three robots Vacuous, KleeneStar, and Vakleene.

We make several assumptions to perform our analysis: static environment, perfect sensing,
perfect localization, and deterministic action outcome. These assumptions are unrealistic, given

that the robotic platform’s sensors and actuators are inexpensive and produce noisy observations.
Our assumptions are easily violated by the presence of certain furniture (e.g., short legs that cause
the robot to get stuck under an edge) or dynamic objects (e.g., a pet or person). Nevertheless,
making these assumptions is necessary to gain traction on our analysis. Because we can model
each of these assumptions in a simulator, we can accurately measure their impact on our analysis.

The actuator action space of the robot consists of Vacuum, Turn(radians), and

Drive(timeInSeconds). Vacuum simply turns on the vacuum motor. Turn is a straightforward
action that is always possible. Drive is conditioned on sensor observations. The bumper is true iff
the robot has driven into an obstacle anywhere along its front side. The right obstacle sensor
returns the distance to any object on the robot’s right side up to 50 centimeters; similarly there are
left and front obstacle sensors. These sensors are strategically angled toward the floor so that they
should always return some value within 10 centimeters. If the sensor traverses an edge (e.g., the

top step of a stairwell) it returns a very large value, indicating a drop that the robot should avoid.
With these sensors observations, it is possible to define a simple, effective drive action as follows:
 drive(timeInSeconds)

 startInSeconds ← getTimeInSeconds()

 elapsedInSeconds ← 0

 while (isSafe() && (elapsedInSeconds < timeInSeconds))

 move_forward(0.1 seconds)

 elapsedInSeconds ← getTimeInSeconds() – startInSeconds

where the function isSafe() returns true if (bumper == false) && (front < 10) && (left < 10) &&

(right < 10) && (front > 3) && (left > 3) && (right > 3).
 Turn and Drive are composed into the following complex tasks:

 Sprial(timeInSeconds) is composed of turning on the vacuum and executing a series of
alternating turn right and drive commands where the radians turned decreases and the time
driven increases over time.

 Follow(timeInSeconds) is composed of a loop that ensures the robot is between 3 and 5

centimeters of an obstacle on the right and drives forward by half-second intervals,
checking to perform corrective turns as needed.

 Cross(turnInRadians, timeInSeconds) alternates Turn(turnInRadians) followed by
Drive(timeInSeconds). If an obstacle is detected during Drive, the robot continues to the
next Turn action.

 ReturnToBase() reactively applies Turn and Drive actions to move the vehicle toward the

Base, which is sending out a beacon signal.

3.1 Vacuous: The sufficient but sub-optimal robot vacuum

Let us now define a simple task selection policy to clean a floor for the Vacuous. This policy
should eventually traverse the entire floor, though it will cover certain areas repeatedly. There

may be some cases where obstacles or room shapes cause cycling (partially avoided by using a

M. ROBERTS AND D. AHA

prime number in the turn radius), in which case it would be easy to add a random component to
this policy to break such cycling.

 VacuousPolicy(cleaningTimeInSeconds)

 startInSeconds ← getTimeInSeconds()

 elapsedInSeconds ← 0

 while (isSafe() && (elapsedInSeconds < cleaningTimeInSeconds))

 time ← randomInt(30)

 if (3< right < 5) Follow(time)

 else

 task ← randomInt(1) //randomly select either 0 or 1

 if (task == 0) then Spiral(time)

 else

 turn ← −(19 ×
Π

180
) // Turn by prime closest to 20 degrees

 Cross(turn, time)

 elapsedInSeconds ← getTimeInSeconds() – startInSeconds

 returnToStation()

To model this policy as a Goal Reasoning process, we define a system architecture and its
goals. Figure 3 shows the system architecture of our model. The Goal Reasoner manages goals,

refines them via strategies, and sends a single instantiated task to the Executive, which applies
Turn or Drive commands to the robot. The Executive receives sensor readings from the robot and
abstracts them into updates for the Goal Reasoner.

We define goals for maintaining safety and signaling that the cleaning time has expired plus a
goal for each task. All goals in this model have identical formulate and select strategies. When the
goal memory of Vacuous initializes, it formulates and selects all goals. The goals are then

triggered by specific events. The TimeExpiredGoal signals the end of the cleaning time. The
expand strategy is a NoOp and this goal is immediately dispatched. It monitors the system time
and calls evaluate(TimeExpired) to all other goals. The goal is then marked as finished and
dropped. The MaintainSafetyGoal ensures the robot remains safe. Similar to the
TimeExpiredGoal, the expand strategy is a NoOp and this goal is immediately dispatched. It
monitors the sensor status and, when the bumper is activated or when left/right/front detects a

drop, it calls evaluate(Unsafe) to all other dispatched goals. Since this goal is central the robot’s
safety, it is never marked as finished or dropped (i.e., its finish and drop strategies are undefined
thus prohibiting these transitions).

The remaining goals are named according to the task they manage: SprialGoal performs the
Sprial(timeInSeconds) task, FollowGoal performs Follow(timeInSeconds), CrossTaskGoal
performs Cross(turnInRadians, timeInSeconds), and ReturnToBaseGoal performs

ReturnToBase(). Each of these goals is selected automatically (as are all goals in this domain) and
will then cycle through the expanded, committed, dispatched, and evaluated modes during the
execution of a cleaning cycle. Thus, the strategies of the task-oriented goals form the core
functionality of this model for controlling the robot. For each goal managing a task, the expand
strategy creates a single policy that is eventually dispatched to perform its respective task with the
appropriate random time (or turn) variables. Since only one task can be sent to the Executive at

Figure 3: The system architecture of the floor-cleaning robot.

 CLEANING EFFICIENTLY

one time, the goals must coordinate via a global semaphore, ExecutiveLock. Therefore, the
commit strategies of the goals check this lock before they commit to performing the task and
release the lock when applying a resolution strategy that results in moving back to selected (via

the defer strategy). This provides an opportunity for other goals to apply commit if they are able
to do so. Otherwise, a task goal stays in dispatched until it receives information, via the integrate
strategy, that it should pause. The TimeExpiredGoal or MaintainSafetyGoal can signal
TimeExpired or Unsafe and a goal transition to committed if one of these is active. At this point,
any dispatched task goal should apply an evaluate strategy followed by a resolve strategy.

Once formulating the goals, the Goal Reasoner simply iterates through the goals in the system

and attempts to apply the next available strategy. If a goal can proceed, it does. Otherwise it
remains in its current mode.

3.2 KleeneStar: The optimal robot vacuum

It is straightforward to show that an optimal policy exists for the robot vacuum given the

simplifying assumptions we made above. We can reduce this problem to the Travelling
Salesperson Problem (TSP). First, we discretize the floor into cells small enough such that a
“visit” by the robot equates to having cleaned that cell. We then label each cell and create an
adjacency map of the entire map. We solve the problem with any algorithm suitable for the TSP.

Unfortunately, TSP is an NP-Hard problem, and we face some obstacles implementing it on the
limited computing platform of the robot’s microcontroller. This leads us to our approximation

using machine learning techniques, as outlined next.

3.3 Vakleene: The sub-optimal robot vacuum that learns

We claim that applying learning could improve the cleaning time of Vacuous. The parameters for

learning are straightforward in this model, and consist of learning how often to apply each task
and how long to perform each task. Let 𝑐𝑙𝑒𝑎𝑛𝑇𝑖𝑚𝑒 be the maximum time for the robot to clean.
For task 𝑖, let 𝑝𝑖 denote the probability of performing the task, let 𝑡𝑖 =
(minTimei, maxTimei) denote the minimum and maximum time to perform the task where
0 ≤ minTimei ≤ maxTimei < cleanTime), and let 𝑟𝑖 = (minRadiani, maxRadiani) denote
the minimum and maximum radians the robot can turn for the task where −𝜋 ≤ minRadiani ≤
 maxRadiani ≤ π . Then an instantiation of the system is determined by the parameters 𝐹 =
(𝑐𝑙𝑒𝑎𝑛𝑇𝑖𝑚𝑒, 𝑟𝑒𝑤𝑎𝑟𝑑, 𝑝, 𝑡, 𝑟), where 𝑟𝑒𝑤𝑎𝑟𝑑 is a count of the number of cells visited, 𝑝, 𝑡, 𝑟 are
the task probabilities, time and radian values and 𝑝𝑆𝑝𝑖𝑟𝑎𝑙 + 𝑝𝐹𝑜𝑙𝑙𝑜𝑤 + 𝑝𝐶𝑟𝑜𝑠𝑠 = 1.
 It should be clear that the Vacuous is one instantiation of 𝐹. The parameters chosen for
Vacuous may have given the best performance across a variety of rooms and obstacles. We
hypothesize that a specific room (and room obstacles) lead to a structure that favors particular

instantiations of 𝐹. If true, then Vacuous could be improved by learning 𝐹 for the room that it is
currently cleaning, leading to Vakleene, a cleaning robot that can learn.
 Vakleene could apply learning (at least) two ways. First, it could perform online modification
of 𝐹 based on how much cumulative reward each task earns over time. For example, Vacuous
could proportionally increase the time 𝑡𝑖 for task 𝑖 if, during the past 𝑘 tasks run, it earned more
reward; it might even adjust 𝐹 as a function of the discounted reward over the past 𝑘 tasks run (cf.

Kaebling, Littman, & Moore 1996). Similarly, Vakleene could modify 𝑟𝑖 for a task 𝑖 that is
getting insufficient reward. To help it avoid local minima in the parameter space, Vakleene could
use a stochastic component (e.g., simulated annealing) to broaden its parameter search. Online

M. ROBERTS AND D. AHA

learning like this can be modeled as part of the defer strategy, which checks the last 𝑘 tasks run
and modifies 𝐹 appropriately.
 There are a number of problems with this approach. Learning is performed during cleaning,

when computational resources are probably better spent maintaining the robot’s safety. This
process is an iterated search over a large parameter space. Given the relative infrequency of
interaction with its environment (i.e., daily cleaning), converging to a maximal (or even
reasonable) policy may likely take many months and Vakleene may traverse many poor
configurations for 𝐹. Finally, our solution is brittle from a software engineering perspective
because changes to the learning procedure require modifying every task goal.

 Another approach may be to introduce an offline learning goal, which adjusts the parameters
while the vehicle is charging. Consider a new goal, ApproximateKleeneStarGoal, which could
be dispatched during charging to consider the rewards earned during the past 𝑘 runs, consider any
global constraints for good configurations of 𝐹, consider how often obstacles or drops were
encountered, etc. If the robot were provided more accurate localization in a later version, this
goal could also consider this information. Software updates to the system then consist of

patching one or more strategies of ApproximateKleeneStarGoal. As an advantage, this goal could
be provided (or learn) a table of common room types to speed up its learning.
 There are many other ways that learning could be modeled in the Goal Reasoning Model, but
these two examples suffice to demonstrate our point.

4. Related Work on Machine Learning and Goal Reasoning

Several researchers have investigated methods for applying machine learning techniques to
improve the performance Goal Reasoning agents. For example, Goal Reasoning has been used in
the context of learning to compose web services (Burstein et al. 2008). The most common focus
is applying learning for goal formulation or goal priorities (Weber et al. 2010, 2012; Powell et al.

2011; Young and Hawes 2012; Maynord et al. 2013; Silva et al. 2013). Other researchers have
studied learning in the context of explanation generation (Molineaux and Aha 2014, 2015) or
learning a combination of state expectation and goal formulation knowledge (Jaidee et al. 2013).

The Goal Lifecycle bears close resemblance to that of Harland et al. (2014) and earlier work
(Thangarajah et al. 2010). They present a goal lifecycle for BDI agents, provide operational
semantics for their lifecycle, and demonstrate the lifecycle for an agent that controls a simulated

Mars rover. In future work we plan to characterize how this lifecycle relates to the one we
presented in (Roberts et al. 2014). Winikoff et al. (2010) have linked Linear Temporal Logic to
the expression of goals.

5. Closing Remarks

We have applied our Goal Reasoning Model to a floor-cleaning robot and described how learning
could be incorporated into the model. Although this model is presented as a thought experiment,
we plan to implement the model to analyze a comparison of the approaches we outlined for a
variety of simulated room types. Future work will also include characterizing when and why
particular instantiations of Vakleene, the learning robot, outperforms Vacuous, the simple robot.

We also plan to formally characterize how close Vakleene’s learned policies can approximate
KleeneStar’s optimal policies.

 CLEANING EFFICIENTLY

Acknowledgements

Thanks to OSD ASD (R&E) for sponsoring this research. The views and opinions in this paper
are those of the authors and should not be interpreted as representing the views or policies,
expressed or implied, of NRL or OSD.

References

Burstein, Mark H., Robert Laddaga, David D. McDonald, Michael T. Cox, Brett Benyo, Paul
Robertson, Talib S. Hussain, Marshall Brinn, and Drew V. McDermott. “POIROT-Integrated
Learning of Web Service Procedures.” In AAAI, 1274–79, 2008.

Chien S., Knight R., Stechert A., Sherwood R., and Rabideau, G. (2000) Using Iterative Repair to

Improve the Responsiveness of Planning and Scheduling. Proc. of the Conf. on Auto. Plan.
and Sched.(pp. 300-307). Menlo Park, CA: AAAI.

Cox, M. T., & Veloso, M. (1998). Goal Transformations in Continuous Planning. In M.
desJardins (Ed.), Proc. of the Fall Symposium on Distributed Continual Planning (pp.
23-30).Menlo Park, CA: AAAI Press.

Harland, J., Morley, D., Thangarajah, J., & Yorke-Smith, N. (2014). An operational semantics for

the goal life-cycle in BDI agents. Auton. Agents and Multi-Agent Systems, 28(4), 682–719.

iRobot. 2008. Roomba Manual.

Jaidee, U., Munoz-Avila, H., & Aha, D.W. (2011). Integrated learning for goal-driven autonomy.
In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence.
Barcelona, Spain.

Jaidee, U., Munoz-Avila, H., & Aha, D.W. (2013). Case-based goal-driven coordination of

multiple learning agents. Proceedings of the Twenty-First International Conference on Case-
Based Reasoning (pp. 164-178). Saratoga Springs, NY: Springer.

Kaelbling, L.P., Littman, M.L., & Moore, A.P. (1996). Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4, 237-285.

Klenk, M., Molineaux, M., & Aha, D.W. (2013). Goal-driven autonomy for responding to
unexpected events in strategy simulations. Comp. Intell., 29(2), 187-206.

Maynord, Michael, Michael T. Cox, Matt Paisner, and Don Perlis. “Data-Driven Goal Generation
for Integrated Cognitive Systems.” In 2013 AAAI Fall Symposium Series, 2013.

Molineaux, M., & Aha, D.W. (2014). Learning unknown event models. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence. Quebec City (Quebec), Canada:
AAAI Press.

Molineaux, M., & Aha, D.W. (2015). Continuous explanation generation in a multi-agent

domain. To appear in Proceedings of the Third Conference on Advances in Cognitive Systems.
Atlanta, GA: Cognitive Systems Foundation.

Powell, J., Molineaux, M., & Aha, D.W. (2011). Active and interactive learning of goal selection
knowledge. In Proceedings of the Twenty-Fourth Florida Artificial Intelligence Research
Society Conference. West Palm Beach, FL: AAAI Press.

M. ROBERTS AND D. AHA

Roberts, M., Apker, T., Johnson, B., Auslander, B., Wellman, B. & Aha, D.W. (2015a).
Coordinating Robots for Disaster Relief. Proc. of the Conf. of the Florida AI Research Society
(to appear) Hollywood, FL: AAAI.

Roberts, M., Vattam, S., Alford, R., Auslander, B., Karneeb, J., Molineaux, M., Apker, T.,
Wilson, M., McMahon, J., & Aha, D.W. (2014). Iterative goal refinement for robotics. In
Working Notes of the Planning and Robotics Workshop at ICAPS. Portsmouth, NH: AAAI.

Roberts, M., Vattam, S., Alford, R., Auslander, B., Apker, T., Johnson, & Aha, D.W. (2015b).
Goal Reasoning to Coordinate Robotic Teams for Disaster Relief. In Working Notes of the
Planning and Robotics Workshop at ICAPS. Jerusalem, Israel. AAAI.

Silva, Michael, Silas McCroskey, Jonathan Rubin, Michael Youngblood, & Ashwin Ram.
“Learning from Demonstration to Be a Good Team Member in a Role Playing Game.” In
FLAIRS Conference, 2013.

Thangarajah, J., Harland, J., Morley, D., & Yorke-Smith, N. (2011). Operational behaviour for
executing, suspending, and aborting goals in BDI agent systems. In Declarative Agent Lang.
and Technologies VIII (pp. 1–21). Toronto, Canada: Springer.

Vattam, S., Klenk, M., Molineaux, M., & Aha, D. W. (2013). Breadth of approaches to goal
reasoning: A research survey. In D.W. Aha, M.T. Cox, & H. Muñoz-Avila (Eds.) Goal
Reasoning: Papers from the ACS Workshop (Tech. Report CS-TR-5029). College Park, MD:
Univ. of Maryland, Dept. of Comp. Science.

Weber, Ben George, Michael Mateas, & Arnav Jhala. “Applying Goal-Driven Autonomy to
StarCraft.” In AIIDE, 2010.

Weber, Ben George, Michael Mateas, and Arnav Jhala. “Learning from Demonstration for Goal-
Driven Autonomy.” In Proc. AAAI, 2012.

Winikoff, M., Dastani, M., & van Riemsdijk, M. B. (2010). A unified interaction-aware goal
framework. In Proc. of ECAI (pp. 1033–1034). Lisbon, Portugal: IOS Press.

Yoon, S.W., Fern, A., & Givan, R. (2007). FF-Replan: A baseline for probabilistic planning.
Proc. of the 17th Int’l Conf. on Auto. Plan. and Sched. (pp. 352-359). Providence, RI: AAAI

Press.

Young, Jay & Nick Hawes. “Evolutionary Learning of Goal Priorities in a Real-Time Strategy
Game.” In AIIDE, 87–92, 2012.

