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Abstract

Temporal logics have been used in autonomous planning
to represent and reason about temporal planning problems.
However, such techniques have typically been restricted to
either (1) representing actions, events, and goals with tempo-
ral properties or (2) planning for temporally-extended goals
under restrictive conditions of classical planning. We intro-
duce Mixed Propositional Metric Temporal Logic (MPMTL),
where formulae in MPMTL are built over mixed binary and
continuous real variables. MPMTL provides a natural, flexi-
ble formalism for representing and reasoning about temporal
problems. We analyze the complexity of MPMTL formu-
lae satisfiability and model checking, and identifty MPMTL
fragments with lower complexity. We also introduce an ap-
proach to world modeling using a timeline vector, relevant to
temporal planning with continuous change (as opposed to the
use of discrete states). Our model supports retroactive action
progression, concurrent and overlapping actions with discrete
and continuous changes, and concurrent effects to the same
variable. For reasoning about this temporal planning prob-
lem, we define a progression function for actions with the
new temporal properties and a solution to this temporal task.

Introduction

Temporal planning has attracted the attention of researchers
in the robotics and Al communities. Numerous systems
have advanced temporal planning (Benton, Coles, and Coles
2012; Coles et al. 2009; 2010; 2008; Della Penna et al.
2009; Do and Kambhampati 2003; Dvorak et al. 2014;
Molineaux, Klenk, and Aha 2010; Penberthy and Weld
1994). However, these systems typically consider limited
temporal properties. For example, they may assume that ac-
tion conditions and effects exist at only the beginning, the
end, or over the entire duration of an action, but not some
other point or interval. Furthermore, the temporal goals they
might support are limited to goals with a deadline.

Other approaches (Bacchus and Kabanza 2000; 1998;
Bauer and Haslum 2010; Kabanza and Thiebaux 2005;
Patrizi, Lipoveztky, and Geffner 2013; Patrizi et al. 2011)
extend classical planning with temporally extended goals,
typically expressed in some temporal logic formalism (e.g.,
Linear Temporal Logic), while assuming other properties of
the problem are restricted to conditions of classical planning
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(e.g., no durative actions, no temporal conditions or effects).

Several researchers have proposed various temporal log-
ics as possible formalisms for the problem (Allen 1994;
Allen and Ferguson 1994). In this paper, we develop Mixed
Propositional Metric Temporal Logic (MPMTL), a hybrid of
a satisfiability modulo theory (SMT) (Barrett ef al. 2009;
Cimatti ef al. 2014) and a metric temporal logic (Alur and
Henzinger 1989; Koymans 1990). Formulae in MPMTL are
built over mixed binary and continuous real variables with
metric modalities. (Although MPMTL can be extended to
multi-valued discrete variables, we restrict our attention to
binary variables here.) To our knowledge, such a hybrid for-
malism has not been previously proposed, despite being es-
sential for temporal planning with continuous change. We
show that satisfiability and model checking for a normalized
form of MPMTL is polynomial. We present a transforma-
tion of an MPMTL formula to this normalized form and re-
port on the upper bound of its complexity and the size of
a resulting formula. This allows for more expressive frag-
ments of MPMTL that have reasonable computational com-
plexity for temporal planning.

Using MPMTL, we propose a model for temporal plan-
ning, where action conditions and effects, constraints, and
goals are expressed by a formula in its fragments. We model
the world as a timeline vector, which is relevant to temporal
planning with continuous change. This also enables repre-
senting an initial changing world, essential for online plan-
ning and re-planning in a dynamic environment. Our model
allows retroactive action progression and concurrency (i.e.,
action overlap) of both discrete and continuous change, in-
cluding concurrent effects to the same variable. We define
precise semantics, including a transition function to com-
pute the result of executing an action (with new temporal
properties) in a model and a solution for reasoning about
this temporal planning problem. We argue that MPMTL is a
natural, flexible representation for reasoning about temporal
problems requiring continuous change with metric temporal
properties in conditions, effects, constraints, and goals.

Related Work

Allen developed a temporal logic (Allen 1983) that defines
a set of thirteen possible gualitative relationships among
two time intervals (e.g., before, meets, overlap) to represent
and reason about actions and events based on their duration



(Allen 1983; 1994; Allen and Ferguson 1994). This formal-
ism did not consider metric temporal properties (e.g., the
goal must be achieved by time ¢, for ¢; time units) or (non-
time) continuous real variables like ours in this paper.

Dechter et al. (1991) extended temporal networks to in-
clude continuous variables for time. They describe a frame-
work for checking the consistency of temporal constraints
with variable time points, rather than for progressing under
discrete and continuous effects as in our formalism. Such
checking is polynomial time for a simple temporal network
but it is NP-hard in general. Coles et al. (2010; 2009) used
linear programming to handle continuous linear numeric
change in their temporal systems POPF and COLIN.

The timeline abstraction we present in this paper is in-
spired by temporal constraint approaches commonly used in
integrated planning and scheduling systems (e.g., (Chien et
al. 2000; De Benedictis & Cesta 2015; Rajan, Py, & Barreiro
2013)). Our approach complements those systems by for-
malizing a precise semantics for timelines while also mod-
eling continuous, dynamic change.

Other researchers have created (McDermott 1998; 2004;
Smith, Frank, and Cushing 2008) or extended (Fox and Long
2006; 2003) languages for expressing problems with differ-
ent temporal features. Fox and Long (2003; 2006) proposed
several extensions to PDDL to represent numeric expres-
sions, actions with fixed-length duration, and discrete ef-
fects, as well as modeling continuous state changes through
the use of autonomous processes and events. Hoffmann
and Edelkamp (2005) proposed a further extension to in-
clude domain axioms and timed initial literals. Conversely,
Smith et al. (2008) developed the Action Notation Modeling
Language (ANML), which supports a limited form of HTN
methods and represents finite-duration actions with numeric
change succinctly. Our work considers similar features of
temporal planning but with metric temporal properties; we
focus on a formalism rather than a language.

Some researchers focused on translating problems defined
in PDDL+ to hybrid automata (Bogomolov et al. 2015; Fox
and Long 2006) rather than using a temporal logic formalism
to reason about the problem, which is what we do in this
paper.

Many researchers identified fragments of temporal log-
ics that reduce the complexity of such problems (Bresolin et
al. 2009; Halpern and Shoham 1996; Monica et al. 2011;
Sciavicco 2012). Similarly, we define a subset of MPMTL-
formulae in a disjunctive normal form (DNF) over n-literals.

Scenario: Metric Temporal (Interval) Action
Conditions/Effects and Goals

Consider the task of maintaining a continuous communica-
tions relay between a distant low-power device (i.e., a cell
phone) at location L and a base B, as could happen during
disaster recovery or in remote areas. There exists no nearby
tower (or it is damaged) and low-powered devices require
relatively close proximity to a network access point. A loi-
tering UAV over L provides a connection back to B as long
as its fuel supply lasts. If the relay time exceeds the fuel
supply, then a schedule for multiple vehicles is required to
maintain the relay. Figure 1 displays a plan for a continu-
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Figure 1: Anexample of a solution for three UAV's to continuously
relay a VIP P, where ¢, = 20 (refueling time), t, = 60 (required
start-by time), and ¢; = 200 (required duration of relay), assuming
each UAV can fly and/or hover for at most 140 time units.

ous relay maintenance goal using three UAVs. We parame-
terize a UAV in terms of its refueling time ¢,., cruise speed
speed, fuel level fuel, and fuel consumption rate § fuel.
We assume that ¢,., speed, and § fuel are constant for each
UAY, leaving only the position of the UAVs and their fuel
level as dynamic discrete and continuous variables. The re-
lay must begin by a specificed time 4 after the start of the
scenario and the relay is required for a minimum length of
time ¢;. This relay goal can be expressed as a formula (e.g.,
<>[07tg] Do, relayed) in a metric temporal logic.

Each relayed effect depends on the start time and du-
ration of the individual UAVs performing a relay action,
which in turn depends on the distance between B and L.
UAVs can be reused after refueling. A condition for a UAV
to fly from or to B is that its support team at B is ready for it
to take off or land (e.g., for 15 time units). During this time
no other UAV can take off from or land to B. This temporal
condition, denoted by clear(B), is changed by the tempo-
ral interval effect of a UAV’s fly action to —clear for 15
time units. Thus, our planner must permit concurrent actions
whose conditions and effects interact. In interval [120, 180]
in Figure 1, for example, UAV v, flying to B departs before
the time UAV v departs from B, but v3 needs clear(B) and
changes it to —clear(B) before v; needs clear(B).

Preliminaries
We consider only binary variables in {0,1} ({1, T}) and
real variables in R. To ensure practical computation, we as-
sume the linearity of continuous changes (for real variables)
and a finite number action effects to a variable. As we will
show, these assumptions allow for consistency checking in
time polynomial in the size of a variable’s timeline.

Time Points and Time Intervals
A time point t € R, is a non-negative real value, where
Ry ={zxeR|z>0}.

A time interval (interval) is a convex subset of R of one
of the following forms: [a,b], [a,b), [a, ), (a,b], (a,b),
or (a,00), where 0 < a < band a,b € Ry. Intervals
can be open, half-open, or closed and bounded or (right) un-
bounded. For such an interval I, a and b are its left end-point
and right end-point, denoted by I~ and I, respectively.

An interval I is singular if it is of the form [a, a] (i.e.,
I= = It ¢ I). Two intervals I and I’ are overlapped if
INI' # (0, where I N I'={t | teI Ntel'}. I’ continues
I'if I™ = I'~ and either I is right-open (I™ & I) and I’ is
left-closed (I’ € I') or I is right-closed and I’ is left-open.
I and I’ are adjacent if one continues the other.



The extension of I, denoted by ext(I), is the closed inter-
val [I~, 1] if IT<oo, or the left closed interval [I~,c0),
otherwise. I+t denotes the interval {t + ¢’ | t' € I}, for
t € Ry. Similarly, I—t denotes {t' — ¢ | '€l A¢'>t}. For
example, (2,6] +3 = (5,9] and [4,10) — 5 = [0, 5).

The addition of two intervals I and I’ is defined as I +
I'={t+t |t e IAt €I} Forexample, [2,3]+[1,4] =
[3,7], while [2,3) + [1,4] = [2,3) + [1,4) = [3,7).

Variables and Literals

A literal is a primitive assertion about a variable’s value.
We start with a binary variable first. Let = be a free vari-
able in {0, 1}. A binary literal £ of x is a tuple of the form
(x, ‘=",b), where b € {0, 1}. The negation of ¢, denoted by
-/, is the literal (z, ‘=", 1—b). We will often omit the quo-
tation marks from the relation operator (e.g., ‘=" is often
written as =) when the context is clear.

We extend the definition of a literal to variables in R with
the relational operators O, = {=,#,<,>, <, >}, which
are often used for real numbers. Let r € O,.. The inverse of
r, denoted by 7, is defined as

rl= # < > < =

R >

> < > <

Let x be a free variable in R. A continuous literal ¢ of x
is a tuple of the form ¢ = (z, 7, a), where r € O,. and a is a
constant in R or a pair (b, ¢) of constants in R, b # 0. The
negation —/ of ¢ is the literal ~¢ = (x, 7, a).

Literal £ = (x,r,a) (or ‘x r a’) is constant if a is a single
value (either boolean or real). Intuitively, a constant literal
denotes the value of a variable or its relation with a constant
value (e.g.,z = 1 (z = T), z > 10.12). In the following we
specify literals derivable from others (of the same variable).

Let ¢ = (x,r,a) and ¢’ = (x,7’,b) be two constant liter-
als of the same variable z. We say that ¢ implies ¢, denoted
by ¢ = ¢',iff £ = ¢ ora,b € R and ¢ implies ¢’ with the
usual meaning. That is:

x > aimplies © > b, x # b, and © > b, where a > b
e x > g implies z > b and x # b, where a > b

e r > g implies x > b, where a > b

e r < aimpliesx < b, x # b, and x < b, where a < b
[ ]

[ ]

[ ]

x < aimplies z < b and x # b, where a < b
x < a implies x < b, where a < b
x = a implies z ¢ b, where a ¢ b (for ¢ € O,.)
We note that the "imply" relation is transitive.
We say £ and ¢’ contradict, denoted by £ < ¢, iff £ = —/’
(orl! = —l),eg,x>3Hx=2ax>3=>x#2.

Interval Literals (i-literals)
The semantics of a non-constant literal (whose third compo-
nent is a pair (b, ¢) of real constants) are defined in associa-
tion with a time interval as follows:

Definition 1. An interval literal or i-literal of a variable x is
a tuple of the form (¢, I), where £ = (x,r,a) is a literal of
x and I is a time interval. The (instant) literal of the i-literal
(¢,I) at a time point t € ext(l), denoted by (¢,I)(t), is a
constant literal, defined as:

l if £ is constant
(&n = { (x,r,b(t—I")+c) ifaisapair (b,c)inR

The line segment of the i-literal (¢, I), denoted by A({, I), is de-
fined by the following set of points:

a,t)|tel
A6, 1) = { }Eb(t)_}—)%}:t) |tel}

Intuitively, an i-literal (¢, I') denotes a relation r of a vari-
able = with respect to its line segment A(¢, I) in a plane,
in which the vertical axis represents variable x and the
horizontal axis represents time. For example, the i-literal
(2>(2,—1),[2, 7]) means that if z(¢) is the value of z at time
te[2, 7] then z(t)> — 1+2(¢t—2) and the point (z(¢), t) must
be above its green line segment in Figure 3 as shown later.

Two i-literals are adjacent (overlapped) if their time in-
tervals are adjacent (overlapped). Let (¢, T) and (¢',I') be
two i-literals of the same variable. We say that (¢,I) im-
plies (¢',I'), denoted by (¢, I)=-(¢',I"}), iff Viel' | tel A
(0, I)(t)=(¢',I')(t). Finally, (¢,I) and (¢',I') contradict
iff NI £0ANTFeInI | €I)(t) ¢ (¢, T)).

i-literal implication or contradiction Let /={x,r, a) and
{'=(z,r’,a’) be two literals of variable x. The following
proposition shows that checking whether an i-literal implies
another can be (sufficiently) performed at the two end-points
of its interval (or, if the interval is unbounded, we just need
to pick a very large number for its right endpoint).

Proposition 1. Let (¢, I) and (¢, I') be two i-literals such
that I' C 1. (Vt € I' | t € 1.) Let £; and £, be the instant
literals of i-literal (¢, I) at the left and right endpoints of
I' (= (0, I)I'"") and L, = (¢, I)(I'")). Let {; and ¢,
be the instant literals of i-literal (¢’ I') at the left and right
end-point of I'. Then (¢, I) = (¢', I'} iff:
Ior' # AL NG = Nl =L, or
2.1 e{<,>} A
=0V ={z=dIYI )N &I)A
U= 0N U= (x=ad, I)YIT)NT'T &T)), or
3. r'=L AN D=k >d, YV, D=(x <d, 1))
Note that case 3 of Proposition 1 is deduced from case 2.
We can also check whether two i-literals contradict at one
time point. Let I and I’ be two time intervals.

Proposition 2. Then two i-literals (¢, I) and (¢', I') contra-
dictiff INT' # 0 and:
e Vi € INI, (4 I)t) and (¢',I')(t) contradict (i.e.,
0, Inry= (-, InI) or
o The two line segments A(L, I) and A(¢', I') intersect at
a unique point (v, t) (t€INI’) and (¢, I)(t) ', T')(¢).
Then it follows directly from Propositions 1 and 2 that,
Proposition 3. Checking either (€, 1) = (¢',I") or (£, T) 4
(€', I'y requires constant time.

if £ is constant
if a is a pair (b, ¢)

Timelines

Let x be a variable in the domain {0, 1} or R. A timeline p
of « is a set of i-literals of the form (z = a, I') such that (1)
w1 does not contain a pair of i-literals that contradict and (2)
U<x=a,]>€u I = R,. For example, in Figure 1 we assume
the fuel capacity of a UAV is 140, § fuel= — 1. Then the
timelines for fuel(vs) (f2) and relay(P) (rp) are as:

i {<f2 =0, [07 60]>’ <f2 = (7’ 0)7 (60, 80]>’

(f2 = (—1,140), (80,220]), (f2 = 0, (220, 00))}



o {(r,=0,[0,60)), (r,=1,[60,120]), (r,=1,[120,180]),
(rp=1,[170,230]), (rp,=L, [220, 260]), (r,=0, (260, cc]) }
Using a timeline, we model a variable’s behavior in a se-

quence of time intervals, where in each interval its value re-

mains constant or linearly varies (if it represents real values).

For each time point ¢, there exists an i-literal (¢, I'} in y such

that ¢ € I and the value of the variable at ¢ can be defined as

the third component of (¢, I)(t).

Let z be a variable in {0, 1} or R and x be a timeline of
x. Let t be a time point and (¢, I') be an i-literal in x such
that ¢t € I. The (instant) literal of timeline . at time point ¢,
denoted by p(t), is defined by the literal p(t) = (¢, I)(¢).

The (instant) value of x at time point ¢ in p, denoted by
x(p, t), is defined as the third component of the literal 1(t)
(i.e., z(p,t) = ¢, where x = c is the literal u(t)).

Two i-literals (¢, I) and (¢', I’} of the same variable can
be merged iff (1) I and I’ are overlapped or adjacent and (2)
if I=<I'" then (¢, I+1"Y=(¢', T} (e.g., (¢{,I+I') can re-
place the two i-literals) or vice versa. A timeline’s size || is
the number of i-literals in p. A timeline is minimal if it does
not contain a pair of overlapped i-literals and it does not con-
tain any timelines that could be merged. Timelines p and p/
are equivalent, denoted by p = p/, if Vt € Ry | p(t)=p'(2).
In the above examples, the first timeline is minimal, but the
second one is not and a minimal timeline equivalent to it is
{(r,=0,10,60)), (r,=1,[60, 260]), (r,=0, (260, oc])}.

Proposition 4. Let 1 be a minimal timeline and 1’ be an-
other timeline equivalent to . It holds that |p'| > || and if
|| = || then ' is also minimal.

We assume timelines are minimal unless otherwise stated.

We next show the satisfaction of an i-literal in a timeline
of the same variable. Let = be a variable and p be a timeline
of z. Let ¢ be a literal of x and I be a time interval. The
i-literal (¢, I') is said to be satisfied or true in u, denoted by
w1, ifvtel | u(t)=(¢, I)(t). We also say that (¢, I')
is false in p, denoted by p b (€, T), if it is not true in p.

One can prove the following proposition, which shows
how to check satisfaction of an i-literal in a timeline.

Proposition 5. Let © be a variable in {0,1} or R, p be a
timeline of x, £ be a literal of x, and I be an interval. Then:

Lo (6T iff B0, L) € o | (G, 1) > (€,1)
2. Checking whether j|=(C, I} requires time linear in |j)|.

Mixed Propositional Metric Temporal Logic
We are now ready to define a formula in MPMTL. Let ¢ be
a literal, I be a time interval, and ¢ be a time point. An
MPMTL-formula ¢ is defined by the following grammar:

pu=T|L[{D | ~ploANe|eVe|Orp|Ore

By definition, MPMTL formulae are constructed based on
i-literals and the constants T (¢rue) and L (false), as prim-
itive literals. As in other metric temporal logics, the (metric)
modalities always O and eventually {57, in formulas Oy
and 1, mean @ will be true after ¢ time units for all t € I
and for some t € I, respectively. For the precise semantics
of these operators, we need the following:

Definition 2. Let i be a timeline and t be a time point. The
left-shift of i by t, denoted by . —1, is a timeline defined as:

p—t={LI—-t)[((,]) e pnl—t+#0}
The semantics of the left shift operation for timelines is
shown in the following proposition:

Proposition 6. Let ¢ be a literal, 11 be a timeline. Let t and
t’ be time points such that t' >t. Then, (n—1t)(t' —t) = p(t’)

We are now ready to define the semantics and a model of
an MPMTL-formula as follows:

Definition 3. Let ¥ = (x1,...,x,) be a vector of variables
in{0,1} orin R. A vector M = {1, ..., s is a timeline
vector of T if each ; is a timeline of x;, fori = 1,...,n.
Let M —t = {uy — t,...,up — t) fort € Ry. Let {; be
a literal of variable x; and p be an MPMTL-formula built
over literals of variables in &. We say that ¢ is true in M, or
M is a model of ¢, denoted by M |= o, iff:

o p=T

o o= (l;,I)and u; = (¢;,I) (recall that {; and ; are
of the same variable x;)
=~ and M -
p=vAdand M AME ¢
p=1UVoand M=V M E ¢
@:D]¢andvt€I|M—tI:¢
p=3pand3It el | M —tE=7

A formula ¢ is satisfiable iff it has a model. We have:

Proposition 7. Let & be a vector of variables in {0, 1} or R,
© be an MPMTL-formula built over literals of variables in
Z, and M be a timeline vector of . Then:

1. Checking whether o is satisfiable is undecidable

2. Checking whether M is a model of ¢ is undecidable

These are undecidable due to the dense time and nested
modalities allowed in MPMTL formulas. Therefore, we
need to find a fragment of MPMTL formulas that is com-
putationally practical.

DNF, I, and I';, Fragments
We identify the three fragments of MPMTL and a method
for transforming a general MPMTL-formula to one in DNF
class and analyze the complexity of basic operations over
formulae in DNF, I', and I',,.

Let ¢ and ¥ be two MPMTL-formulae, and M () be the
set of models of . We say that ¢ implies 1 (p = 1) iff
every model of ¢ is a model of ¥ (i.e., M (p) C M (%)) and
o and © are equivalent (p = ), iff M(p) = M (). As in
classical propositional logic, in this formalism the connec-
tives A and V are distributive and commutative. By defini-
tion, we can also deduce the following:

Proposition 8. Let ¢ be a literal, ¢ and ) be two MPMTL-
formulae, and I and I' be two time intervals. Then:

1. Op¢,I'Y = L (unsatisfiable), iff £ is of the form
(x,=,(b,c)) and both I and I' are non-singular, and
076, Iy = (¢, I+1'), otherwise

2. “Orp = O and =$ro =01

0/0prp =0 ppand $10re = Qryre
4. Or(eAY) = OrpAOp and $1(eV) = CroV oy

w



5. OrevOry = O7(eVy) and $1(ehy) = SroAdry
6. Or(p V) = Orp V Op, if ¢ and 2 do not share a
variable

We call an n-order literal or n-literal a formula ¢ of the
form O1... On-1 @, where @ is an i-literal or its nega-
tion and (); denotes O;, =0y, <y, or =<, In this case,
we say that ¢ has order n, the number of modalities it con-
tains (including an implicit one in the i-literal). Due to
laws 1-3 in Proposition 8, such a literal can be reduced to
an equivalent lower order literal (of fewer modalities) by
flipping —0; to {; and =< to O; and combining con-
secutive modalities of the same type (law 3). For example,
e = 0=Op—(, 17y = 0,00, 17) (e, either ¢ = L
or ¢ = (¢, 1,) (law 1), where I, = I+I'+1I"). Also ob-
serve that a n-literal of the form ...0;, ,$r, (6, I7) or
.1 _,0r _ =(¢, I'), in which two consecutive modalities
are of different types and there is no negation to the left of a
modality, cannot be reduced to a strictly lower order literal.
We call these forms a normal form and a literal of one of
these forms a normalized literal.

Proposition 9. Any n-literal can be reduced to an equiv-
alent unique normalized m-literal in O(n) time such that
m < n.

An MPMTL-formula ¢ is said to be a disjunctive normal
form (DNF) formula iff ¢ is a disjunction of conjunctions
of normalized literals. We define the order of an MPMTL
formula to be the maximum number of nested modalities in
it. Thus, the order of a DNF-formula is the highest order of
a literal in it. Let I be the set of MPMTL-formulae that can
be reduced to a DNF formula ¢ of order < 2 such that if a
conjunction of ¢ contains two or more order literals of the
same variable then none of them has order greater than 1.

Lemma 1. Let o be a 2-literal and p be a timeline of the
variable in a. Let @ be a formula of n literals in I'. Then:

1. Checking whether p |= «is O(|p|?) time
2. Checking whether ¢ is satisfiable is O(n?) time

Proof. (Sketch)

1. Due to Proposition 9, it is sufficient to prove for nor-
malized 2-literals, i.e., « is of the form ;(¢,I’) or
O;—(¢, I'). We start with the case where o = $r (0, 1),
¢ =21x > (byec), and b > 0. In this case, u | « iff
3t € I such that u = (¢, I' 4+ t), i.e., the line segment
A(L,I' + 1) is bellow the part of any segment in 4 in
interval I’ + ¢t. For some t € I, this can be verified
at the endpoints of I’ + ¢ and of other intervals in yx in
I' + t (Proposition 1, case 1) in O(|p|) time. Now we
construct a set .S; of such relative times ¢. Let Sy be
the set of endpoints of I and of other intervals in y in
I. Note that the minimum (resp. maximum) vertical
value of a point in A(¢, I’ + t) is at its left (resp. right)
endpoint, which is ¢ (resp. b(I'" — I'") + ¢). Let Sy
be the set of times at the intersections of line x = ¢
and line segments in p such that V¢’ € Sy | t' € I.
Let S5 be the set of times at the intersections of line
x = b(I't — I'") + c and line segments in y such that
Vt' € So | t/—(IH_—I/_) el LetS; = So+51+.59,
clearly |S:| = O(|u|) and one can also verify that it is

sufficient to check whether 1 |= o with relative times in
Sy in O(|p|?) time. Other cases can be proved similarly.
2. Let ; be a set of all order literals of the same variable
in . Then ¢ is satisfiable iff each ; is satisfiable. If
(p; contains a literal of order greater than 1, then it is the
only order literal in ¢; so it is always satisfiable. Other-
wise, ; contains a set of at most n i-literals. For each
pair of i-literals of the forms (x > a, I} and (x < o/, I')
such that their line segments have a common segment
(x =a”,I NI, we add this segment to ; (for check-
ing contradiction of i-literal of relation #). One can ver-
ify that ¢, is satisfiable iff it does not contain a pair of
i-literals that contradict. This can be checked in O(n?).
O
Theorem 1. Let ¢ be a DNF-formula of n order literals.
Let M be a timeline vector of variables in ¢ and m be the
maximum size of a timeline in M. Then:
1. Checking the satisfiability of ¢ is O(n?), if p is in T
2. Checking whether M is a model of ¢ is O(nm), if ¢
has order 2 or less

Proof. This follows directly from Lemma 1 O

The low complexity in Theorem 1 is due to the low order
and the special structure of the DNF formula, which allows
checking each order literal in the formula individually. (The
same problems for a DNF formula in traditional proposi-
tional logic are linear.)

The following theorem identifies the set of MPMTL-
formulae that can be reduced to a DNF-formula and the up-
per bound of the complexity of the transformation and the
size of the resulting formula.

Proposition 10. Let ¢ be an MPMTL-formula such that ©
does not contain a sub-formula of the form Or¢ V Or,
where ¢ and 1 share a variable, or $r(¢ A W), Let n be
the number of i-literals in , and k be the order of ¢. Then:
1. ¢ can be reduced to a DNF-formula ¢’ of order q < k
by using distributivity of the connectives N\ and V and
laws 1-4 and 6 in Proposition 8.
2. The transformation of ¢ into the DNF-formula ©' can
be performed in O(k x 3™/3) time.
3. ' contains at most (3"/3) order-literals.

Proof. (Sketch) We prove items 2 & 3. The transformation
can be done as follows. First, we move all modalities and
negation outside a parenthesis to be in front of the i-literals
and converts them to normalized form, e.g., Oy, ~($p V
O, (Cr,gAk)) = 0145, pAN O, Q1,8 2qV8r, Q1. 0k).
This takes O(kn) time and produces a special negation nor-
mal form formula ¢” of n normalized literals. The conver-
sion of this formula to DNF form is the same to that for
a negation normal form formula in classical logic. One can
prove by induction on n the resulting DNF formula has most
(3"/3) literals. For example, if n = 9 then the worst case is
that ¢” has the form (z1 V23 Va3) A (24 Vs Vag) A(zrV
xg V x9) and ¢’ contains 27 = 39/3 literals. O

Let I',, be the set of MPMTL-formulae that can be re-

duced to a DNF formula of order n or less. Observe that
I, c T, iff n < m. We then have:



Theorem 2. Let ¢ be an MPMTL-formula and n be the
number of i-literals in p. Let M be a timeline vector of
variables in ¢ and m be the maximum size of a timeline in

M. Then:
1. Checking the satisfiability of ¢ is O(3*"/3), if p is in T
2. Checking whether M is a model of  is O(m3™/?), if ¢
ising

Proof. This follows from Theorem 1 and Prop. 10 O

One can see that the fragments I' and I's contains many
complex MPMTL-formulae of order greater than 2.

Temporal planning with MPMTL
We present a propositional model for temporal planning
based on MPMTL. Most of the new features introduced
in this formulation will be contrasted with the most com-
mon temporal planning languages, including PDDL2.1 (Fox
and Long 2003), PDDL+ (Fox and Long 2006), and ANML
(Smith, Frank, and Cushing 2008).

We consider only grounded problems, in which proposi-
tions and functions (of continuous values, defined in PDDL
languages) are represented by binary and real variables, re-
spectively. For brevity, we write the literalsx = landz = 0
of a binary variable x as x and —z, respectively.

Action, Constraint, and World Model
We begin with an example of an action (schema) for a UAV
v to fly from location /; to location [y

Action: fly(v,lq,1s)
Duration: d = distance(ly,l2)/speed(v)
Condition: O, 1( (at(v,11), [0 d]>
(= flying(v),[0,d]) A (clear(l1), [0, 15])A
(clear(l3), [d—15,d]))
Constraint:
Ot 2.1 ((flyable(v)
Effect: {(—at(v,l1), [0

,[0,d]) A (fuel(v)>0, [0,d]))
0D T, (at(v, b)), [d,d]) T,

(flying(v), [0, }%bclear(ll) [0,15]), bclear(lg)

[d—15,d])), <fu€l( ) += (0 fuel(v),0),0,d]))}

In this example, ¢ and 6 fuel(v) denote the action’s start
time and UAV o’s fuel consumption rate, respectively. The
condition and constraint are formulae in I'5, while the effect
is a set of extended i-literals. The end-points of an interval in
these components may depend on the duration d and those of
the leftmost interval depend on the action start time (¢,). An
interval in the effect is relative to the start time of the action
(e.g., the actual interval in the i-literal (flying(v),|0,d])
would be [0,d]+ts = [ts,ts+d]). Here, the duration d is
fixed because the distance between two locations [/ and /o
and v’s speed are given. However, an action may have a
variable duration, often restricted by some constraint. The
condition {clear(l1), [0, 15]) specifies that location [; must
be clear over interval [tg, ts 4+ 15] for v to take off from ;.
The effect (fuel(v) += (6 fuel(v),0), (0,d])) specifies that
the UAV’s fuel level will decrease linearly by its consump-
tion rate ¢ fuel(v) during its flight.

Unlike most approaches that adopt state models of the
world, ours represents the world by a (1) timeline vector
(world model) and (2) a set of constraints on the variables

defined in the problem. We call such a pair a constrained
world model (c-model). The execution of an action will
change the world model instead of a state. This allows the
world to be represented as a continuous process, relevant to
temporal planning with continuous change, rather than as a
(sequence of) discrete snapshot(s), as in other approaches.

For a precise model of temporal properties and the seman-
tics of actions we distinguish two types of action effects: one
changes the value of a variable as a function of its current
value (e.g., (x = —,I) or (x += a, I)), while the other as-
signs an absolute value to the variable (e.g., (z = (2,5),1)).
We call these relative and absolute effects, and the time
point at which a variable is set with an absolute value a
fixed point. There are two possible approaches to absolute
effects: (1) No other effect to the same variable that changes
the value set by an absolute effect at the fixed point is al-
lowed, and (2) such an effect is not necessarily forbidden
but the (absolute) value at the fixed point will remain the
same. We choose the latter approach since it is more flexi-
ble, though if we want to forbid such an effect, we still can
set a constraint in its action.

A variable is called inertial if its value remains unchanged
after an action effect, until another effect changes it.

Assumptions and Rules
To allow retroactive actions and effects and their overlaps,
including concurrent effects to the same variable, we adopt
the following assumptions and rules:

1. A variable can change only by actions, and the effect
of an action never starts before the instant the action starts
(ts). An effect of a variable x may change its value during
and possibly after its interval, but it does not affect its value
before the interval.

2. An action is executable in a world model only if (1) its
condition is true in the model and (2) all constraints, includ-
ing that of the action, hold in the resulting model after the
action’s execution.

3. We forbid two effects of a binary variable = that start
at the same time, unless they are both absolute and assign
the same value to x.

4. Two absolute effects of a variable x that simultaneously
assign different values to it are not allowed.

5. Let = be a binary variable. An effect to x overrides
those that start before it. If x is inertial and its value changes
by the effect at a time point then it will negate the outcome of
all relative effects that start after it and before any absolute
effect after it. The value of x set by an effect will extend
beyond the interval until it is set by another thereafter, if x
is inertial, and it is limited to the effect interval, otherwise.
We denote by the superscript ‘+° an extendable effect to a
binary inertial variable. In our example of the fly action,
(mat(v,11),[0,0])" is an extendable effect. Figure 2 shows
examples of effects to binary variables.

6. Any real variable is inertial. Effects to a real vari-
able x are limited to the following forms: (1) assign a
constant or a line segment to x for a time interval (e.g.,
(x = 5,[0,d]), (x = (2,5),[0,d])), (2) add a (possibly
negative) constant to x at a time (e.g., (x += 2.3, [t, t])),
(3) add a linear continuous change for an interval (e.g.,



Timeline 1 under Effect <x = -x, [2,2]>+

1
{ I I I —~—Before
o
{ [ I ——After
o —~—New part
o 2 a ] s 10 12
Timeline 2 under Effect <y = -y, [3,5]>
1
‘ I I —Before
o
1
ﬂ —After
o . . .
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Figure 2: Update timelines 1 & o of binary variables w.r.t. the
first two effects (Example 1, presented later) following rule 5. The
extendable effect (x = —z,[2,2])" flips (the value of) z at time
2 of w1 and extends this value until the next effect starts at time 3.
Then it flips = from time 3 and before the fixed point 8 of absolute
effect (x,[8,9))" (i-literal (—z, [3,8))). This results in the new
part in red color ({—z, [2,3)) & (z, [3,8))). The value of = before
2 and after the fixed point 8 remains unchanged. The 2¢ (relative)
effect flips y (in p2) only in its interval [3, 5] as it is non-extendable.

(x += (b,0),[0,d])), and (4) a combination of the last two
forms (e.g., (z += (b, ¢), [0, d])). Note that the first form is
absolute and the rest are relative.

7. An absolute effect to a real variable x overrides others
(i.e., no effect can change the value of x set by the absolute
effect in its interval). The linear continuous changes of rela-
tive effects are combined in their intersection(s). For exam-
ple, during the time a UAV v is flying, another UAV relays
fuel to v for the interval I with the rate r fuel. The fuel level
of v will change with the combined rate r fuel+¢ fuel(v)
over I. If an effect of x over an interval I increases the
value of by § € R at the right end point I, then its value
will be increased by & over the interval (I, 00), if there is
no absolute effect to x after I, or over the interval (I, ¢y),
if ¢ 7 is the smallest fixed point of z after I™". Figure 3 shows
how an effect to a real variable change its timeline.

MPMTL Temporal Planning Problem

We use I's or DNF formulae of order 2 to represent condi-
tions and constraints. For checking satisfiability, we use I to
describe goals. An MPMTL temporal planning problem P
is defined as a tuple of the form (Z, A, My, Cr, G), where &
is a vector of binary and real variables, A is a set of actions,
M is a timeline vector of Z, C is a (possibly empty) set of
formulae in 'y over & denoting the initial constraint, and G
is a formula in I's over & denoting the goal.

An action (schema) a € A is composed of a duration
d, a condition cond(a), a constraint C(a), and an effect
eff(a). The duration d can be either a given constant (fixed,
possibly parameterized by some constant properties (e.g.,
d = distance(ly,l3)/speed(v))) or a variable in Ry. A
variable duration can be restricted by the (temporal) condi-
tion cond(a) and/or constraint C(a). There is no explicit
distinction between instantaneous and durative actions, and
the duration d = 0 does not necessarily mean that action a
is instantaneous, as some of its (temporal) condition and/or
effect can be after the time the action starts, even with the
duration zero (d = 0). This description is reasonable for ac-
tions like pull_trigger and bomb. The condition cond(a)

1o

3
e N\ ——After
a \ -=Before
2 Relative
Effect (+)
o !
o] 2 a ) 8 10
-2

Figure 3: Update timeline u3 of real variable z w.r.t. effect
(z+=(2,-1),[2, 7)), denoted by the green (line) segment, during
and after its interval (Example 1). The red segments represent time-
line w3 and the blue ones denote the new i-literals in the resulting
timeline. The value of z over [0, 2) (before the effect) remains un-
changed. The value of z at time 2 reduces by 1 (adds —1) from 4 to
3 and then continuously changes with the combined rate 1 +2 = 3
to 6 at time 3. It then remains unchanged over the fixed points
[3, 6), despite the effect in this interval. Over the rest ([6, 7)) of the
interval of the effect, z changes with the combined rate —2+2 = 0
from value 7 (i.e., it remains unchanged over [6,7)). Since z in-
creases by 2 by the effect at its right endpoint 7, it increases by
2 for all time points after 7 (and before any fixed point after 7).
This results in two i-literals (2=(—2,7), [7,8)) and (z=5, [8, c0))
above their predecessors (z=(—2,5), [7,8)) and (2=3, [8, 00)).

and the constraint C'(a) of action a is an extension of an
MPMTL formula in I'y of one or more variables in Z as fol-
lows: (1) the end-points of intervals in cond(a) and C(a)
can be an expression of duration d and (2) the endpoints of
the leftmost intervals in cond(a) and C(a) can be an expres-
sion of the start time ¢4. The effect eff(a) is a set of extended
i-literals of the form (I, I), possibly with a superscript ‘+’,
where I~ and I can be an expression of the duration d, !
can be x = b, x = —x (only if x is binary), or z+ = b (only
if z is real), and b is either a constant in {0, 1} (if 2 is binary)
or in R or a pair of real constants (¢, d) (if z is real).

Action Instance and Model Progression

Let a be an action. If the start time and the duration of a are
assigned with constants ¢, and d, respectively, then the end-
points of intervals in the condition cond(a), constraint C(a),
and effect eff(a) become constant and, hence, cond(a) and
C'(a) become formulae in I'y. We call such an action, whose
start time and duration are assigned with a constant, an ac-
tion instance (or action, if there is no need to make such a
distinction). Let M be a world model and C be a constraint
set. Action (instance) a is executable in the c-model (M, C')
iff @ satisfies all assumptions/rules 2-4.

We need to define a progression function (i.e., the result
of executing @ in (M, C)). Intuitively, it is a new c-model
(M’,C"), where C" is the new constraint set C' = CUC(a),
if a is executable in (M, C'). We must also define an update
function that, given an action a and a model M, returns a
new model M’ = update(a, M). This can be defined using
another function that returns a new timeline update(e, 1)
given an effect e (in eff(a)) and a timeline p of the same
variable, as shown in Algorithm 1. This function can be
defined based on rule 5 (for binary variables) and rule 7 (for
real variables). We omit a formal definition of this function,



since it is straightforward, yet tedious and lengthy. Instead,
one can see how this update function works in Example 1.

Algorithm 1 Computing update(a, M)

1: Input: Action instance a, timeline vector M

2: Output: Timeline vector update(a, M)

3 LetX =M

4: for each effect e in eff(a) do

5:  Let p be the timeline in X of the same variable in e

6: Let u = update(e, u) {replace p with update(e, p1)
in X}

7: end for

8: return X

Example 1. Let M be a model composed of three timelines:

o 1 = {(z,[0,3)), (-, [3,8)), (x,[8,9))", (-, [9,00)) }

o 2= {{-y.[0.4)). <y, [4,9)), <ﬁy7 9,00))}

o 3= {{z=(1,2),[0,3)), (=7, [3,6))",

<Z:(_27 7)» [61 8)>’ <Z:37 [8 OO)>}

where the superscript ‘*’ denotes an absolute effect. Let a be
an action, where eff(a)={(z=-x,[2,2))*, (y=-y,[3,5]),
(z+=(2,-1),[2,7))} (after adding the start time of a to
its intervals). The successor model update(a, M) is ob-
tained by updating each effect in eff(a) to each timeline of
the same variable in M in that order. The resulting model
update(a, M) is composed of the following timelines:

o {(2,[0,2)), (-z,[2,3)),(x,[3,8)),(z,[8,9))", (-, [9,00))}
o {(-0,[0.3). <y, [3,4)), (=, [4,5]), (y, (5,9)). (-, [9, 00)) }

o {(z =(1 2),10,2)),(2=(3,3),[2,3)), (2=7,[3,6))",
(=7,16,7)), (==(~2,7), [7,8)){z=5. [8, 00)}}

Figures 2 & 3 illustrate and explain these update operations.

Due to the above assumptions/rules, one can prove that
the following proposition holds.
Proposition 11. Let a be an action and M be a model. Then
update(a, M) does not depend on the order in which the
effects in eff(a) are applied.

A progression function that maps pairs of actions and
models to models is defined as:
Definition 4. Let & be a vector of variables. Let a be an
action (instance), M be a timeline vector, and C be a set
of constraints over X. The result of action a’s execution in
model (M, C) , denoted by ®(a, M, C), is defined as:

o (update(a, M), CUC(a)), if a is executable in (M, C')

e |, otherwise

Solution to Temporal Planning
For reasoning about the effects of plans, we extend ® to de-

fine ®, a transition function that maps action sequences and
models to models.
Definition 5. Let «; = [aq, ..., a;] be a sequence of i ac-
tions. The result of applying a sequence of actions o, in a
model (M, C'), denoted by @(an, M, C), is defined as

o Ifn=0then ®([],M,C) = (M,C);

e [fn > 0 then

o if (o1, M,C) = L or a, is not executable in
(vy_1, M, C), then ®(a,, M,C) =

o if ®lay_1,M,C) # L and a, is executable in
®(n1, M,C), then B(ay, M, C) = B(an, M',C"),
where (M',C") = ®(a,_1, M, C)

The order in which actions are progressed in Definition 5
can differ from the order in which they are actually executed
(i.e., that of the start time of actions). For example, consider
an action a that makes a location [ clear as a condition for
a fly(v,ly,ls) action (for v to land at I3). In this case, it
should be progressed before fly(v,l,[3), but the latter can
be executed before the former. We say that an MPMTL for-
mula ¢ is true in a model (M, C) if M | ¢.

We now can define a solution to a planning problem as:
Definition 6. Ler P = (¥, A, M;,Cr,G) be a planning
problem. A solution to P is a sequence of action instances
in A such that G is true in ®(a,, My, Cy).

Discussion and Limitation

If action conditions and constraints are restricted to sets of
extended n-literals, n < 2, then the progression can be com-
puted in polynomial time. Otherwise, they can be converted
one time into DNF-formulae of order 2 or less and the com-
putation is polynomial in the size of these formulae, whose
upper bound is exponential in the size of the original formu-
lae (Proposition 10). However, these formulae (for action
condition or constraint) are usually small. In the example
of the fly action, the condition and constraint are actually a
DNF-formula of order 1. On the other hand, the goal in the
scenario is actually the 2-literal $po 4 1 (relayed, [0, 1]).

Our formalism assumes known time points, which re-
quires known action start time and duration for progression.
This may require time discretization for search instead of
using techniques for variable time points such as a temporal
network (e.g., (Dechter et al. 1991)) or linear programming
(e.g., (Coles et al. 2010)).

Summary and Future Work

We developed a new temporal logic MPMTL as a formalism
for temporal planning. We identified fragments of MPMTL,
DNF formulae, I', and I's and the complexity of satisfiabil-
ity and model checking of a formula in these fragments. We
presented a new model for temporal planning with complex
temporal properties based on the temporal logic we devel-
oped. We proposed a new approach to world modeling, rel-
evant to temporal planning with continuous change. Finally,
we defined a transition function and solution to the temporal
problem for reasoning about this planning problem.

In future work, we will propose a search algorithm and
develop a planning system for the temporal planning prob-
lem we defined, using the temporal logic we developed here.
We will also focus on temporal goals that may require infi-
nite solutions (e.g., maintenance and cyclic goals). It would
be useful to extend PDDL for the planning model we pre-
sented. Another interesting research direction is to relax our
assumptions (e.g., linearity and known time points) and in-
corporate other techniques such as temporal networks or lin-
ear programming in our work.
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