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Abstract

We describe initial work on extensions to word highlighting
for multiparticipant chat to aid users in finding messages of
interest, especially during times of high traffic in chat rooms.
We have annotated a corpus of chat messages from a technical
chat domain (Ubuntu’s technical support), indicating whether
they are related to Ubuntu’s new desktop environment Unity.
We also created an unsupervised learning algorithm, in which
relations are represented with a graph, and applied this to find
words related to Unity so they can be highlighted in new, un-
seen chat messages. On the task of finding relevant messages,
our approach outperformed two baseline approaches that are
similar to current state-of-the-art word highlighting methods
in chat clients.

Introduction
This work addresses a problem in the US Navy where
chat rooms, which are being used for command-and-
control communications, are contributing to information
overload (Catanzaro et al. 2006). More generally, chat
rooms can be difficult to follow when the tempo is fast
and multiple conversations are taking place simultaneously.
Word highlighting can help a user to focus on messages
of interest. Many chat clients allow a user to enter user-
specified words (USWs) and will then subsequently high-
light these words in all the messages. Unfortunately, word
highlighting has its limits: it can fail when words are mis-
spelled, abbreviated, or replaced with an acronym. It can
also fail when similar words are used instead of those re-
quested by the user. We are addressing the problem of how
to find additional messages of interest to bring to a user’s
attention given their set of USWs.

We propose an approach to extend word highlighting by
giving chat clients the ability to highlight additional words
that are similar to the USWs. We focus on highlighting ad-
ditional, related words since highlighting individual words
makes it possible to know why a message may be relevant
when compared to highlighting a whole message. We cre-
ated an unsupervised learning approach called Graph-based
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Word Relation Highlighter (GWRH) that finds relations be-
tween words using a graph representation, and then uses
these relations to find words related to those in a USW list.
When applied, it returns a ranked list of words, ordered by
the strength of their relations to those the user requested.

We begin this paper by first describing the problem, the
related work, and the corpus we have created for this inves-
tigation. This is followed by a description of GWRH and
then our empirical studies that show GWRH outperforms
two baseline approaches that are similar to current state-
of-the-art highlighting techniques in chat clients. We finish
with conclusions and possible future extensions of our work.

Problem Description
Given a set of unlabeled messages U , a test set of labeled
messages L, and a set of USWs W , the goal is to learn a
model such that, when given a word w ∈ W , the model
will return a set of related words R. With this set of related
words, for each message l ∈ L, mark as positive (in terms of
message to be highlighted) any message containing a word
r ∈ R∪ {w}. Messages not to be highlighted are left with a
negative label. The overall goal is to find a set of words that
maximizes the cover of positive labels in L while minimiz-
ing the coverage of negative labels in L.

There is the issue of whether it is better to have more false
positives or false negatives. For this research, false posi-
tives are more desirable since the user can decide themself
whether a highlighted message is relevant – with false nega-
tives, the user may miss the message altogether.

Related Work
The state-of-the-art in highlighting for chat clients (e.g.,
popular clients such as mIRC1, XChat2, Pidgin3, and Kon-
versation4) is rather simplistic. These clients allow a user to
enter their USWs (some allowing regular expressions), and
will then highlight those words for them.

1http://www.mirc.com
2http://xchat.org
3http://www.pidgin.im
4http://konversation.kde.org



[05:40] <daddy> is there a way to change
11.04 interface back to 10.10
[05:40] <DrFrankenstein> daddy: launching
programs from a drop down menu instead of
the screen with the icons?
[05:40] <Soupermanito> yes, log out and
choose clasic interface at the log in menu

Figure 1: Example chat conversation where the users are
discussing about Unity through inference (Unity is the 11.04
default interface).

One related research area concerns the topic detection and
tracking of chat messages, specifically applications of un-
supervised learners (Bingham, Kabán, and Girolami 2003;
Kolenda, Hansen, and Larsen 2001). The difference be-
tween these approaches and what we are investigating here is
that these approaches are topic-focused – they group words
only within a set of topics whereas we instead find rela-
tions independent of topics. For example, Bingham, Kabán,
and Girolami required the number of topics to be estimated,
which limits the granularity of the topic groups. Kolenda,
Hansen, and Larsen also had a set number of topics and a
reject group, where messages not fitting in the set topics
would be put in this latter group. For the problem we are
investigating, these approaches would be useful when a user
is interested in a word that can be found in one of these top-
ics, but would fail should a user be interested in a word not
grouped under one of these topics. Additionally, for these
approaches, the strength of a word is in relation to a topic,
while we are interested in strengths of relationships between
words.

Another area of related work are approaches for finding
messages of relevance, particularly from a military perspec-
tive (Berube et al. 2007; Budlong, Walter, and Yilmazel
2009; Dela Rosa and Ellen 2009). All three of these ap-
proaches required prior knowledge to determine what is im-
portant: Berube et al. used regular expressions and entity
classes; Budlong, Walter, and Yilmazel used a rule-based al-
gorithm and a statistical analysis approach using maximum
entropy; and Dela Rosa and Ellen used supervised learning
algorithms. New types of important messages would not be
detectable without new regular expressions, rules, or labeled
data. This differs from our goal of an approach that can
adapt as new types of messages are created.

Corpus

We have created a corpus for testing using a subset of chat
logs from the Ubuntu Chat Corpus (Uthus and Aha 2013).
This corpus is composed of two parts: a training set of seven
days of unlabeled chat messages, beginning from Ubuntu
11.04’s release date (28 April to 4 May 2012) and a test
set of hand-annotated messages taken from one day (5 May
2012), which took us three weeks to annotate. The annotated
messages have a binary label – whether they are related to a
specific set of USWs. As a starting point, we have a single

[01:24] <bible-boy> anything else like unity
that i can use on 11.04
[01:24] <bible-boy> cause i like unity
[01:24] <TomRone> bible-boy, install fluxbox
desktop environment with synaptic and give
that a shot or lxde perhaps. you use the
login manager to choose which environment to
use
[01:25] <lapion> bible-boy, why can’t you
use unity ?
[01:25] <bible-boy> where can i download
that because i have it installed on a pc
without internet. Right now im running
Ubutnu off a live cd
[01:25] <bible-boy> oh i cant use it because
i only have 512mb memory

Figure 2: Example chat conversation showing how a conver-
sation can shift in topic. It began with Unity, but branched
to also discuss a different desktop environment. Red high-
lighted messages are messages about Unity.

USW, “Unity5,” since this was a hot topic following the re-
lease of Ubuntu 11.04. The training set consists of 81,848
messages and the test set consists of 8675 messages, with
468 of these labeled as positive.

Labeling this data requires determining whether a mes-
sage is related to a particular topic. This is difficult due to the
conversational (threaded) nature of the chat messages and
the inference that is usually drawn from knowledgeable chat
users about a specific topic. An example of this is shown
in Figure 1, where user daddy asks a question about Unity,
referring to it as the “11.04 interface.” For the corpus, we
labeled only those messages that concern topics related to
Unity – this then results in some conversation threads to only
be partially labeled as positive due to the changing of topics
within a conversation. An example of this can be seen in
Figure 2, where a part of the conversation shifts from Unity
to an alternate desktop environment.

Graph-based Word Relation Highlighter
Figure 3 shows GWRH’s general framework. It begins by
applying an unsupervised learning algorithm on U , which
results in graphG. This graph is then used to findR based on
the words in W . Given a message to be checked m, GWRH
will then highlight all words in m from W ∪ R, returning
m′.

GWRH creates an undirected graph where each node rep-
resents a word from the corpus and the edges are the weights
(strength of relations) between words. More specifically, the
edges connect all pairs of words that appear together in a
message and the weights represent the number of times they
appear together.

UpdateGraph
Procedure UpdateGraph describes how new messages are
applied to the graph to update edge weights. For each mes-

5Unity was a new desktop environment introduced by Ubuntu:
http://unity.ubuntu.com



User’s
Chat Client

Extractor Highlighter

Chat Stream

Unsupervised
Learner

(UpdateGraph)

Unlabeled Data U
(from chat logs)

GWRH

USWsW

(Highlighted)

Message m ′

Related Words R,

W

Message m

Graph G

Figure 3: GWRH’s general framework and how it interacts with a user’s chat client.

sage u ∈ U , it will change the weights of G based on the
words found in u. For normalization, all text is changed to
lower case. For preprocessing, all name mentions are re-
moved when the first word of a message matches the name
of an author seen in the past 100 messages. This limit was
chosen arbitrarily. Should a message u contain words not
seen before, the algorithm will add new vertices to the graph.

Procedure UpdateGraph(message u, graph G)
u′ ← normalize and preprocess(u)
uT ← tokenize and remove duplicates(u′)
for each t ∈ uT do

if vertex vt 6∈ G then G← G ∪ {vt}
P ← all pairs(uT )
for each pair p in P do

if edge ep ∈ G then
ep ← ep + 1 // update edge weight

else
G← G ∪ {ep}
ep ← 1

return G

Extractor
Procedure Extractor describes how the set of related words
R (ranked by the strength of the relations) is extracted from
G given the set of USWs W . For each w ∈ W and each
neighbor n of w, Extractor first calculates two ratios: one is
the ratio of the edge between n,w and the summed weights
(εw) of edges connecting to w, and the other is the ratio of
the same edge and summed weights (εn) of edges connect-
ing to n. These ratios (along with the associated neighbor’s
identity) are stored in two lists, Lw and Ln.

When calculating these weights, we only consider edges
that have at least a minimal weight limit of λ. This helps
reduce possible noise in the graph, especially of accidental
mentions between unrelated words.

Procedure Extractor(words W , graph G, filter λ)
// W is the set of USWs
R,Lw, Ln ← ∅ // reset ranked lists
for each word w ∈W do

N ← neighbors(G,w)
εw ←

∑
n∈N ew,n : ew,n > λ

for each neighbor n ∈ N do
εn ←

∑
v∈neighbors(G,n) en,v : en,v > λ

Lw ← Lw ∪ {(ew,n/εw, n)}
Ln ← Ln ∪ {(ew,n/εn, n)}

sort(Lw) // sort w’s ratios
sort(Ln) // sort neighbor’s ratios
for each neighbor n ∈ N do

n avg rank ← 1
2 · (rank(Lw, n)+rank(Ln, n))

R← R ∪ {n avg rank}

return sort by average rank(R)

After creating Lw and Ln, Extractor sorts them to com-
pute the rankings for each neighbor. Ties are broken by order
of insertion into the graph. It will then compute the average
rank, and at the end, return the set of related words sorted by
their average rank.

We create two rankings to filter out common words that
appear frequently (e.g., stop words and words that are com-
mon technical terms but not generally considered stop words
in traditional texts). Ranking by Lw will give us a list of
words that appear most frequently with w, while ranking by
Ln will give us a list of words that consider w to be of rele-
vance to them. The latter list then helps filter out the list of
the former, since common words will have w ranked low on
their lists.

To illustrate how these rankings are calculated, we re-
fer to Figure 4. Suppose the value of ε for the neighbor-
ing nodes are already calculated and εw = 50. For each
neighboring node, Extractor will calculate two weight ra-
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Figure 4: An example graph to use for Procedure Extractor.

tios, one with εw and one with εi∈{A,B,C,D}. This will result
in Lw = { 5

50 ,
20
50 ,

10
50 ,

15
50} and Ln = { 5

40 ,
20
200 ,

10
20 ,

15
80} with

respect to the four neighbors. When sorted and ranked, A
would have ranks 4 & 3, B would have ranks 1 & 4, C would
have ranks 3 & 1, and D would have ranks 2 & 2, all with
respect to Lw and Ln. When these ranks are averaged and
sorted, the neighboring nodes would then be in order of {C,
D, B, A}.

Extractor is executed only when the user submits a new
set of W – it does not update R every time G is updated
with a new message m. We chose this design since it is not
desirable to change the related set of words without the user
knowing, nor do we want to bother the user every time G is
updated.

Highlighter

In regular use, the highlighter method would take in R and
W . It will make use of any words in R that the user would
want highlighted (e.g., allowing a user to pick which addi-
tional words to highlight). For each new message m that it
receives from the chat stream, it will check to see if there
are any words in m that match a word in R ∪W , and if so,
highlight these words. It will then pass the message to the
user’s chat client.

For the empirical studies described next, after extracting
R, GWRH will iterate through L and mark as positive all
messages that contain at least one word r ∈ R∪W . With re-
spect to R, it will be restricted so only the top ranked words
will be used, with more detail described in the subsequent
section. It will then evaluate the messages to check which
are correctly marked as positive and negative.

Highlighting Precision Recall F2 scoreAlgorithm

baselines 0.71 0.52 0.55
baselinet 1.0 0.5 0.56
GWRHλ=9 0.49 0.65 0.61

Table 1: Results of our baseline approaches and GWRH
when λ = 9.

Empirical Study
We conducted a set of experiments to evaluate GWRH by
comparing it to two baseline approaches that are similar to
the current state-of-the-art capabilities of most IRC clients
for word highlighting. One baseline approach checks to see
if w is a substring of a message l ∈ L (called baselines);
the other baseline approach checks if w matches a tokenized
word in l (called baselinet). We hypothesize that GWRH
can achieve better recall and F2 scores than our baseline ap-
proaches.

For our experiments, we used the corpus described earlier
in this paper. All messages were normalized by changing all
characters to lower case. They were then tokenized using
the NLTK tokenizer (Loper and Bird 2002) (with exception
for baselines). GWRH was applied such that it used the top
ten ranked words in R and “unity” (the use of top ten was
chosen arbitrarily, though in future work this can be tested
as a parameter). For metrics, we use standard precision and
recall, along with F2, which puts greater emphasis on recall
than precision.

Table 1 shows the results of running these baseline ap-
proaches and GWRH with λ = 9. Comparing the two
baselines, searching for substrings decreases precision when
compared to matching string tokens due to the word “unity”
being a substring of common words like “community”,
while only gaining a small increase in recall. These ap-
proaches only achieved recalls of 50% and 52% respectively,
showing that there are many messages about Unity that do
not explicitly mention it. GWRH, compared to the two base-
lines, achieves higher recall and F2 scores, which provides
informal support for our hypothesis.

Examining how λ effects GWRH, we ran a series of tests
with increasing values of λ. Figure 5 shows the results of
these tests. As can be seen, increasing λ initially increases
recall and precision, then has a smaller impact as it grows
further in value. This can be attributed to λ reducing the
noise from rare mentions of unrelated words.

The top ten ranked terms when λ = 9 are gnome, classic,
2d, 3d, compiz, interface, launcher, plugin, bar, and desk-
top. Unsurprisingly, many of these words share strong rela-
tions to Unity, either changing to alternative or past desktops
(gnome, classic), synonyms for a desktop environment (in-
terface), components of Unity (launcher, bar, desktop, plu-
gin), software Unity is built on (compiz) or concern issues
people had running Unity on older hardware (2d, 3d). More
importantly, we can see that in these top ten words, com-
mon English words are removed despite their frequent ap-
pearance. This is desirable since it allows GWRH to return
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words that have stronger relevance to the USWs and less rel-
evance to words not in the USW list.

Conclusion
We have presented a new approach to extend word highlight-
ing in multiparticipant chat. GWRH can find word relations
using a graph-based unsupervised learning algorithm. Our
results show that, for one corpus (concerning technical sup-
port), it outperforms two baseline approaches that are similar
to current state-of-the-art chat client capabilities.

While GWRH increases recall for our task, there are
some types of messages that it would not easily be able to
find. One example is messages that use pronouns to refer
to Unity. Another is messages that use a misspelling that
forms another correctly-spelled word (e.g., “unify” instead
of “unity”).

In our future research, we will first try to extend the cor-
pus, allowing for formal validation of our hypothesis. As it
took three weeks to validate the 8675 messages in our test
set, we would then expect it to take many months to annotate
enough messages to allow for cross-validation. To alleviate
this, we are investigating how to leverage crowd sourcing for
annotating chat messages. In addition to annotating a longer
series of messages in time, we will also obtain annotations
for additional topics (i.e., other than Unity).

One possible extension for GWRH is to consider conver-
sation threads. We could use these to train the model. When
looking at Figure 3, the unlabeled data could be disentangled
using a thread disentanglement method (Elsner and Char-
niak 2010; Wang and Oard 2009) prior to being passed to the
unsupervised learner. Instead of changing weights by exam-
ining only a single message in a vacuum, we could change
the weights by examining the message in context to its given
conversation. As a part of thread disentanglement, we will
also consider disambiguating pronouns. As discussed be-
fore, finding related words will not always help when Unity
is referred to by a pronoun.

Another interest is extending GWRH to be a lifelong
learner, as we want it to learn new terminology as they are
introduced. Most of our approach is suitable to lifelong
learning, though adjustments need to be made to prevent the
graph from growing too large. The graph created for these

experiments included 35,281 vertices and 1,699,164 edges.
Of these edges, 65.8% have a weight of 1, meaning the two
vertices of the edge have only been seen once together. It
could be possible then to prune such edges over time, and
even remove vertices once they no longer have any edges.
Additionally, the approach needs to be modified so it can
“forget” relations since terminology changes with time.

Finally, these ideas of extending word highlighting will
be evaluated through human subject studies in a simulated
Navy environment. As mentioned earlier, our work ad-
dresses a problem in the US Navy of chat and information
overload. We hope that our results will show that extend-
ing word highlighting can assist Navy watchstanders with
finding messages of interest in a fast-paced environment.
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