

A Case Study of Goal-Driven Autonomy in Domination Games

Hector Munoz-Avila
1
 and David W. Aha

2

1Department of Computer Science & Engineering;

Lehigh University; Bethlehem, PA 18015

 2Navy Center for Applied Research in Artificial Intelligence;

Naval Research Laboratory (Code 5514); Washington, DC 20375

munoz@cse.lehigh.edu | david.aha@nrl.navy.mil

Abstract

In this paper we present an overview of a variety of efforts
to attain good performance of Game AI for Domination
games. These are a very popular kind of game sub-genre in
which teams compete for control of locations. Due to the
rules of the games, good performance is mostly dependant
on overall strategy rather than the skill of individual team
members.

Introduction

Domination (DOM) games are played in a turn-based

environment in which two teams (of bots) compete to

control specific locations called domination points. Teams

compete to be the first to earn a predefined number of

points. Domination games have been used in a variety of

games genres, including first-person shooters (e.g., Half-

life), role-playing games (e.g., World of Warcraft), and

third-person shooters (e.g., Halo). Domination games are

popular because they reward team effort rather than an

individual bot’s performance. Domination games are non-

deterministic; if a bot is told to go to a domination location

the outcome is uncertain because the bot may be killed

along the way. Domination games are also adversarial;

two or more teams compete to control the domination

points. Finally, domination games are imperfect

information games; a team only knows the locations of

those opponent bots that are within the range of view of

one of the team’s own bots. These conditions make

domination games a good testbed for evaluating algorithms

that integrate planning and execution.

Over the years we have devised methods that integrate

planning and execution for playing domination games.

Table 1 shows a summary of the three algorithms which

we will discuss in this paper: HTNBots, GDA-HTNBots,

and CB-gda. HTNBots uses hierarchical task network

(HTN) representation techniques to generate new plans

(Hoang et al., 2005). It monitors the current situation in the

game; when the circumstances change, it generates new

plans on the fly. GDA-HTNBots uses HTNBots’ method to

generate plans but, instead of generating new plans when

the situation in the game changes, it follows a goal-driven

autonomy (GDA) process to generate new goals, which are

then given as input to HTNBots to generate new plans

(Muñoz-Avila et al., 2010a). The third system is CB-gda

(Muñoz-Avila et al., 2010b). CB-gda uses a library of

cases that record plans and their expectations, which are

conditions expected to be fulfilled when the plans are

executed. These plans are executed and the resulting state

is compared against the expectations. If there is a

mismatch, then a new case is retrieved.

Table 1: Three systems for playing domination games

Game AI
Description

HTNBots
Replanning algorithm. Uses HTN planning techniques

to generate plans on-the-fly.

GDA-

HTNBots

Instead of replanning techniques, this uses a GDA

architecture to generate new goals.

CB-gda
Removes HTNBots altogether. A case base records

plans and expectations from executing those plans.

We conducted a study that compares these three

approaches. We report on comparisons among the

knowledge requirements for each system and a summary of

their performance results.

DOM: A Generic Domination Game Environment

We built a game environment, called DOM, which

captures the essence of domination games (Auslander et

al., 2008). The basic rules in DOM are the following: Each

time a bot on team t passes over a domination point, that

point will belong to t. Team t receives one point for every

five seconds that it owns a domination point. Teams

compete to be the first to earn a predefined number of

points. No awards are given for killing an opponent team’s

bot, which respawns immediately in a location selected

randomly from a set of map locations, and then continues

to play. A location is captured by a team whenever one of

its bots moves on top of the location and within the next

five game ticks no bot from another team moves on top of

that location.

Because of the large number of possible game states in

DOM, we follow the state abstraction model of Auslander

et al., (2008) which simply tracks ownership of domination

points, and to which domination points bots are sent. This

abstraction reduces the number of states to d
(t+1)

, and the

number of actions to (bt)
d
 where d is the number of

domination points, t the number of teams, and b the

number of bots. One is added to the exponent to account

for neutral ownership of domination points at the

beginning of each game. The total number of possible

states in the game is at least O(210
34

) assuming a standard

map of 7070 cells, 4 domination locations, and 3 bots per

team (Gillespie et al., 2010).

The Game AI Systems

We briefly summarize each of the three algorithms we

investigated that integrate planning and execution for

playing DOM. For further details of these algorithms

please see the references.

HTNBots. HTNBots uses HTN planning as the main

inferencing algorithm to generate plans (Hoang et al.,

2005; Muñoz-Avila & Hoang, 2006). HTNs decompose

high-level tasks into simpler tasks. There are two kinds of

tasks: compound and primitive. Compound tasks can be

further decomposed into subtasks whereas primitive tasks

cannot. The primitive tasks denote concrete actions. Each

level in an HTN adds detail on how to achieve the high-

level tasks. The sequencing of the leaves in a fully

expanded HTN yields the plan for achieving the high-level

tasks. In the context of game AI the decompositions can be

used to encode game strategies and the leaves to actual in-

game actions such as patrol, attack, etc. To cope with the

dynamic nature of DOM, we use standard finite state

machines (FSMs) encoded in Java to execute the actions,

but we extend them so they can also perform the primitive

tasks assigned by the HTN, such as going to a certain

waypoint. As a result, a grand strategy is laid out by the

HTNs and the FSMs allow the bots to react in this highly

dynamic environment while contributing to the overall

task.

GDA-HTNBots. GDA-HTNBots extends HTNBots by

adding goal-driven autonomy capabilities (Muñoz-Avila et

al., 2010a). Unlike HTNBots, GDA-HTNBots reasons

about its goals, and can dynamically formulate which goal

it should plan to satisfy. GDA-HTNBots extends HTNBots

as follows: HTNs are annotated so that when a plan p is

generated the planner’s expectations X for executing p (i.e.,

the states expected to result from the p’s execution) are

also computed. The first of the two crucial modules in

GDA-HTNBots is the Discrepancy Detector, which

continuously monitors the plan’s execution by comparing

at time t the observations of state st with the expected state

xt. If it detects any discrepancy dt (i.e., a mismatch)

between them, then it is used to identify an explanation et

(which is computed based on the history of the game by

counting the number of times agents from the opposing

team have visited each location). The second crucial

module, the Goal Formulator, uses a set of rules of the

following form (where e is an explanation and g is a goal):

 if e then g

This directs GDA-HTNBots to achieve the new goal g.

CB-gda. CB-gda uses case-based reasoning (CBR) for

attaining goal-driven autonomy (Muñoz-Avila et al.,

2010b). CB-gda uses two case bases as inputs: the planning

case base and the mismatch-goal case base. The planning

case base (PCB) is a collection of tuples of the form (sc, gc,

ec, pl), where sc is the observed state of the world

(formally, this is defined as a list of atoms that are true in

the state), gc is the goal being pursued (formally, a goal is a

predicate with a task name and a list of arguments), ec is

the state that the agent expects to reach after accomplishing

gc starting from state sc, and pl is a plan that achieves gc.

The mismatch-goal case base (MCB) is a collection of

pairs of the form (mc, gc), where mc is the mismatch (the

difference between the expected state ec and the actual

state sc) and gc is the goal to try to accomplish next. In a

nutshell, when playing the game, CB-gda retrieves a case c

from PCB whose state sc is most similar to the current state

of the game. The case c’s plan is then executed. CB-GDA

monitors the current state after a period of time. If there is

a mismatch m between the current state and case c’s

expected state, then a case in MCB is retrieved with a

similar mismatch mc and the corresponding goal gc

becomes the system’s new goal, which is then used to

retrieve a new case in PCB, thus closing the loop.

Knowledge Representation Requirements

Each of the three systems has their own knowledge

representation requirements and some comparisons can be

made:

GDA-HTNBots requires a larger knowledge

engineering effort than HTNBots. HTNBots uses the

SHOP HTN planning algorithm (Nau et al., 1999). The

knowledge artifacts needed as input in SHOP are called

methods and operators. A method encodes how to achieve

a compound task. Methods consists of three elements: (1)

The task being achieved, called the head of the method, (2)

the set of preconditions indicating the conditions that must

be fulfilled for the method to be applicable, and (3) the

subtasks needed to achieve the head. The second

knowledge artifacts are the operators. An operator has

preconditions and effects. The preconditions indicate the

conditions that must be valid for the operator to be

applicable. The effects indicate how the current situation

changes as a result of applying the operator. For playing

DOM, HTNBots methods represent strategies of how to

win domination games (e.g., control half plus one of the

domination locations) and operators denote concrete

actions to be taken in the game (e.g., send a bot to a

specific domination location).

GDA-HTNBots also requires the methods and operators

for generating workable plans to play DOM games. In our

current implementation GDA-HTNBots use the same

methods as HTNBots. In addition, GDA-HTNBots requires

methods to be annotated with the expected states from

executing the methods, the knowledge about how to

generate explanations (which in our implementation

includes knowledge about the potential opponent’s tactics),

and the rules mapping explanations to the next goal to

achieve.

CB-gda knowledge acquisition requirements. CB-gda’s

knowledge acquisition requirements are to fill the two case

bases PCB and MCB. The number of cases depends on the

similarity metric used and the adaptation procedure for the

retrieved plans. In our current implementation we use a

fine similarity metric (only very similar cases are retrieved)

and the retrieved case’s plan is executed without any

modification. As a result, we have more than 1000 cases.

A natural advantage of the case-based reasoning approach

is the modularity of the knowledge required. Richter

(1995) identifies containers for the four kinds of

knowledge needed in a CBR system: vocabulary, the

similarity measure, the case base and the adaptation rules.

This modularity is believed to facilitate the knowledge

engineering effort; rather than, for example, encode a set of

HTN methods that encompass every situation, cases can be

captured as they occur.

In-Game Performance

In Muñoz-Avila et al. (2010a; 2010b) we reported on

experiments where the performance metric is the number

of points obtained versus an opponent. Games were played

until the first team reached a predefined number of points.

We used 6 static opponents, two of which were considered

easy opponents, two intermediate, and the final two hard.

This classification is the result of our extensive testing on

this domain with several AI opponents.

CB-gda has the best performance versus the difficult

static opponents. CB-gda was able to beat all six static

opponents in the two maps we tested. This is particularly

significant because it beats smart opportunistic. The smart

opportunistic opponent sends agents to each domination

location that its team doesn’t own. If possible, it will send

multiple agents to each such location. It always selects the

bot that is the closest to the location it wants to control.

This makes it difficult for AI agents to beat and in fact

smart opportunistic beat both HTNBots (by around a 19%

score difference) and GDA-HTNBots (5%). All of these

results were statistically significant. We conjecture that

CB-gda’s better performance is due to the flexibility of the

case-based reasoning process that allows it to find suitable

cases that address every situation encountered. Obviously,

part of this flexibility was dependent on the more than

1000 cases that were manually input to the system.

GDA-HTNBots outperformed HTNBots on the most

difficult opponents. GDA-HTNBots has a better

performance than HTNBots on the most difficult

opponents. We mentioned that both were beaten by smart

opportunistic but that GDA-HTNBots’ scores were more

similar to HTNBots’ scores. Furthermore, GDA-HTNBots

was able to beat –albeit by a margin of less than 1%- the

other hard opponent, whereas HTNBots was soundly

beaten. We attribute this difference to the additional

knowledge about goal-driven autonomy that by GDA-

HTNBots leverages in contrast to the simple replanning

process executed by HTNBots.

HTNBots has the best performance versus the easy and

medium static opponents. All three AI systems were able

to beat the easy and medium-difficulty opponents but the

score difference was generally larger for HTNBots than for

the two GDA systems. For example, versus one of the

medium-difficulty opponents the score difference was 58%

in HTNBots’ favor whereas for GDA-HTNBots it was

12% and for CB-gda it was 46%. The reason for this is that

during goal formulation both GDA variants use simple

rules/cases to map explained discrepancies to specific

goals. However, not all discrepancies require goal

formulation (e.g., some should be ignored). A more

sophisticated Discrepancy Resolver could reason that a

given discrepancy does not warrant goal formulation, in

which case it would continue pursuing the same goal as

selected by HTNBots and, hence, would achieve the same

performance as HTNBots.

CB-gda has the best performance among the AI

Systems. CB-gda was able to outperform HTNBots and

GDA-HTNBots in direct, one-on-one competition. This

again points towards the flexibility of having a large case

base that allows CB-gda to quickly counter any situation

encountered.

Final Remarks

There are several related research efforts. For a

comprehensive discussion, please refer to Muñoz-Avila et

al. (2010a; 2010b). Briefly, Cox’s (2007) investigation of

self-aware agents inspired the conception of GDA, with its

focus on integrated planning, execution, and goal

reasoning. An alternative to GDA is contingency planning

(Dearden et al., 2003), in which the agent plans in advance

for plausible contingencies, and conformant planning

(Goldman & Boddy, 1996), where the generated plan is

guaranteed to succeed.

In summary, we presented three alternative techniques for

reasoning in dynamic environments. The first one is

HTNBots, a replanning system based on HTN planning.

HTNBots executes a plan until an action becomes

inapplicable. At this point, the replanning agent simply

generates a new plan from the current state to achieve its

goals. The difference between replanning and GDA is that

replanning agents retain their goals while GDA agents can

reason about which goals should be satisfied. GDA agents

reason about goals. We discussed two variants of GDA: a

rule-based variant (GDA-HTNBots) and a case-based

variant (CB-gda). Among these variants, CB-gda

demonstrated the best performance, provided that it was

given proper sets of cases.

Acknowledgements

This work was sponsored by DARPA/IPTO and NSF

(#0642882). Thanks to PM Michael Cox for providing

motivation and technical direction. The views, opinions,

and findings contained in this paper are those of the

authors and should not be interpreted as representing the

official views or policies, either expressed or implied, of

DARPA or the DoD.

References

Auslander, B., Lee-Urban, S., Hogg, C., & Muñoz-Avila,

H. (2008). Recognizing the enemy: Combining

reinforcement learning with strategy selection using

case-based reasoning. Proceedings of the Ninth

European Conference on Case-Based Reasoning (pp.

59-73). Trier, Germany: Springer.

Cox, M.T. (2007). Perpetual self-aware cognitive agents.

AI Magazine, 28(1), 32-45.

Dearden R., Meuleau N., Ramakrishnan S., Smith, D., &

Washington R. (2003). Incremental contingency

planning. In M. Pistore, H. Geffner, & D. Smith (Eds.)

Planning under Uncertainty and Incomplete

Information: Papers from the ICAPS Workshop. Trento,

Italy.

Gillespie, K., Karneeb, J., Lee-Urban, S., & Muñoz-Avila,

H. (2010). Imitating inscrutable enemies: Learning from

stochastic policy observation, retrieval and reuse. To

appear in Proceedings of the Eighteenth International

Conference on Case-Based Reasoning. Alessandria,

Italy: Springer.

Goldman, R., & Boddy, M. (1996). Expressive planning

and explicit knowledge. Proceedings of the Third

International Conference on Artificial Intelligence

Planning Systems (pp. 110-117). Edinburgh, UK: AAAI

Press.

Hoang, H., Lee-Urban, S., & Muñoz-Avila, H. (2005).

Hierarchical plan representations for encoding strategic

game AI. Proceedings of the First Conference on

Artificial Intelligence and Interactive Digital

Entertainment. Marina del Ray, CA: AAAI Press.

Muñoz-Avila, H., & Hoang, H. (2006). Coordinating

teams of bots with hierarchical task network planning.

In S. Rabin (Ed.) AI Game Programming Wisdom 3.

Boston, MA: Charles River Media.

Muñoz-Avila, H., Aha, D.W., Jaidee, U., Klenk, M., &

Molineaux, M. (2010a). Applying goal directed

autonomy to a team shooter game. Proceedings of the

Twenty-Third Florida Artificial Intelligence Research

Society Conference (pp. 465-470). Daytona Beach, FL:

AAAI Press.

Muñoz-Avila, H., Jaidee, U., Aha, D.W., & Carter, E.

(2010b). Goal directed autonomy with case-based

reasoning. To appear in Proceedings of the Eighteenth

International Conference on Case-Based Reasoning.

Alessandria, Italy: Springer.

Nau, D.S., Cao, Y., Lotem, A., & Muñoz-Avila, H. (1999).

SHOP: Simple hierarchical ordered planner.

Proceedings of the Sixteenth International Joint

Conference on Artificial Intelligence (pp. 968-973).

Stockholm: AAAI Press.

Richter, M.M. (1995). The knowledge contained in

similarity measures. Invited talk at the First

International Conference on Case-Based Reasoning.

