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Abstract 

In this paper we present an overview of a variety of efforts 
to attain good performance of Game AI for Domination 
games. These are a very popular kind of game sub-genre in 
which teams compete for control of locations. Due to the 
rules of the games, good performance is mostly dependant 
on overall strategy rather than the skill of individual team 
members. 

Introduction 

Domination (DOM) games are played in a turn-based 

environment in which two teams (of bots) compete to 

control specific locations called domination points. Teams 

compete to be the first to earn a predefined number of 

points. Domination games have been used in a variety of 

games genres, including first-person shooters (e.g., Half-

life), role-playing games (e.g., World of Warcraft), and 

third-person shooters (e.g., Halo). Domination games are 

popular because they reward team effort rather than an 

individual bot’s performance. Domination games are non-

deterministic; if a bot is told to go to a domination location 

the outcome is uncertain because the bot may be killed 

along the way. Domination games are also adversarial; 

two or more teams compete to control the domination 

points. Finally, domination games are imperfect 

information games; a team only knows the locations of 

those opponent bots that are within the range of view of 

one of the team’s own bots. These conditions make 

domination games a good testbed for evaluating algorithms 

that integrate planning and execution. 
 
Over the years we have devised methods that integrate 

planning and execution for playing domination games. 

Table 1 shows a summary of the three algorithms which 

we will discuss in this paper: HTNBots, GDA-HTNBots, 

and CB-gda. HTNBots uses hierarchical task network 

(HTN) representation techniques to generate new plans 

(Hoang et al., 2005). It monitors the current situation in the 

game; when the circumstances change, it generates new 

plans on the fly. GDA-HTNBots uses HTNBots’ method to 

generate plans but, instead of generating new plans when 

the situation in the game changes, it follows a goal-driven 

autonomy (GDA) process to generate new goals, which are 

then given as input to HTNBots to generate new plans 

(Muñoz-Avila et al., 2010a). The third system is CB-gda 

(Muñoz-Avila et al., 2010b). CB-gda uses a library of 

cases that record plans and their expectations, which are 

conditions expected to be fulfilled when the plans are 

executed. These plans are executed and the resulting state 

is compared against the expectations. If there is a 

mismatch, then a new case is retrieved. 

 
Table 1: Three systems for playing domination games 

Game AI 
Description 

HTNBots  
Replanning algorithm. Uses HTN planning techniques 

to generate plans on-the-fly. 

GDA-

HTNBots  

Instead of replanning techniques, this uses a GDA 

architecture to generate new goals. 

CB-gda 
Removes HTNBots altogether. A case base records 

plans and expectations from executing those plans. 

 

We conducted a study that compares these three 

approaches. We report on comparisons among the 

knowledge requirements for each system and a summary of 

their performance results. 

DOM: A Generic Domination Game Environment 

We built a game environment, called DOM, which 

captures the essence of domination games (Auslander et 

al., 2008). The basic rules in DOM are the following: Each 

time a bot on team t passes over a domination point, that 

point will belong to t. Team t receives one point for every 

five seconds that it owns a domination point. Teams 



compete to be the first to earn a predefined number of 

points. No awards are given for killing an opponent team’s 

bot, which respawns immediately in a location selected 

randomly from a set of map locations, and then continues 

to play. A location is captured by a team whenever one of 

its bots moves on top of the location and within the next 

five game ticks no bot from another team moves on top of 

that location.  

 

Because of the large number of possible game states in 

DOM, we follow the state abstraction model of Auslander 

et al., (2008) which simply tracks ownership of domination 

points, and to which domination points bots are sent. This 

abstraction reduces the number of states to d
(t+1)

, and the 

number of actions to (bt)
d
 where d is the number of 

domination points, t the number of teams, and b the 

number of bots. One is added to the exponent to account 

for neutral ownership of domination points at the 

beginning of each game. The total number of possible 

states in the game is at least O(210
34

) assuming a standard 

map of 7070 cells, 4 domination locations, and 3 bots per 

team (Gillespie et al., 2010).  

The Game AI Systems 

We briefly summarize each of the three algorithms we 

investigated that integrate planning and execution for 

playing DOM. For further details of these algorithms 

please see the references.  

HTNBots. HTNBots uses HTN planning as the main 

inferencing algorithm to generate plans (Hoang et al., 

2005; Muñoz-Avila & Hoang, 2006). HTNs decompose 

high-level tasks into simpler tasks. There are two kinds of 

tasks: compound and primitive. Compound tasks can be 

further decomposed into subtasks whereas primitive tasks 

cannot. The primitive tasks denote concrete actions. Each 

level in an HTN adds detail on how to achieve the high-

level tasks. The sequencing of the leaves in a fully 

expanded HTN yields the plan for achieving the high-level 

tasks. In the context of game AI the decompositions can be 

used to encode game strategies and the leaves to actual in-

game actions such as patrol, attack, etc. To cope with the 

dynamic nature of DOM, we use standard finite state 

machines (FSMs) encoded in Java to execute the actions, 

but we extend them so they can also perform the primitive 

tasks assigned by the HTN, such as going to a certain 

waypoint. As a result, a grand strategy is laid out by the 

HTNs and the FSMs allow the bots to react in this highly 

dynamic environment while contributing to the overall 

task. 

GDA-HTNBots. GDA-HTNBots extends HTNBots by 

adding goal-driven autonomy capabilities (Muñoz-Avila et 

al., 2010a). Unlike HTNBots, GDA-HTNBots reasons 

about its goals, and can dynamically formulate which goal 

it should plan to satisfy. GDA-HTNBots extends HTNBots 

as follows: HTNs are annotated so that when a plan p is 

generated the planner’s expectations X for executing p (i.e., 

the states expected to result from the p’s execution) are 

also computed. The first of the two crucial modules in 

GDA-HTNBots is the Discrepancy Detector, which 

continuously monitors the plan’s execution by comparing 

at time t the observations of state st with the expected state 

xt. If it detects any discrepancy dt (i.e., a mismatch) 

between them, then it is used to identify an explanation et 

(which is computed based on the history of the game by 

counting the number of times agents from the opposing 

team have visited each location). The second crucial 

module, the Goal Formulator, uses a set of rules of the 

following form (where e is an explanation and g is a goal): 

                  if e then g 

This directs GDA-HTNBots to achieve the new goal g. 

CB-gda. CB-gda uses case-based reasoning (CBR) for 

attaining goal-driven autonomy (Muñoz-Avila et al., 

2010b). CB-gda uses two case bases as inputs: the planning 

case base and the mismatch-goal case base. The planning 

case base (PCB) is a collection of tuples of the form (sc, gc, 

ec, pl), where sc is the observed state of the world 

(formally, this is defined as a list of atoms that are true in 

the state), gc is the goal being pursued (formally, a goal is a 

predicate with a task name and a list of arguments), ec is 

the state that the agent expects to reach after accomplishing 

gc starting from state sc, and pl is a plan that achieves gc. 

The mismatch-goal case base (MCB) is a collection of 

pairs of the form (mc, gc), where mc is the mismatch (the 

difference between the expected state ec and the actual 

state sc) and gc is the goal to try to accomplish next. In a 

nutshell, when playing the game, CB-gda retrieves a case c 

from PCB whose state sc is most similar to the current state 

of the game. The case c’s plan is then executed. CB-GDA 

monitors the current state after a period of time. If there is 

a mismatch m between the current state and case c’s 

expected state, then a case in MCB is retrieved with a 

similar mismatch mc and the corresponding goal gc 

becomes the system’s new goal, which is then used to 

retrieve a new case in PCB, thus closing the loop. 

Knowledge Representation Requirements 

Each of the three systems has their own knowledge 

representation requirements and some comparisons can be 

made: 

 

GDA-HTNBots requires a larger knowledge 

engineering effort than HTNBots. HTNBots uses the 

SHOP HTN planning algorithm (Nau et al., 1999). The 

knowledge artifacts needed as input in SHOP are called 

methods and operators. A method encodes how to achieve 

a compound task. Methods consists of three elements: (1) 

The task being achieved, called the head of the method, (2) 



the set of preconditions indicating the conditions that must 

be fulfilled for the method to be applicable, and (3) the 

subtasks needed to achieve the head. The second 

knowledge artifacts are the operators. An operator has 

preconditions and effects. The preconditions indicate the 

conditions that must be valid for the operator to be 

applicable. The effects indicate how the current situation 

changes as a result of applying the operator. For playing 

DOM, HTNBots methods represent strategies of how to 

win domination games (e.g., control half plus one of the 

domination locations) and operators denote concrete 

actions to be taken in the game (e.g., send a bot to a 

specific domination location).  

GDA-HTNBots also requires the methods and operators 

for generating workable plans to play DOM games. In our 

current implementation GDA-HTNBots use the same 

methods as HTNBots. In addition, GDA-HTNBots requires 

methods to be annotated with the expected states from 

executing the methods, the knowledge about how to 

generate explanations (which in our implementation 

includes knowledge about the potential opponent’s tactics), 

and the rules mapping explanations to the next goal to 

achieve. 

CB-gda knowledge acquisition requirements. CB-gda’s 

knowledge acquisition requirements are to fill the two case 

bases PCB and MCB. The number of cases depends on the 

similarity metric used and the adaptation procedure for the 

retrieved plans. In our current implementation we use a 

fine similarity metric (only very similar cases are retrieved) 

and the retrieved case’s plan is executed without any 

modification.  As a result, we have more than 1000 cases. 

A natural advantage of the case-based reasoning approach 

is the modularity of the knowledge required. Richter 

(1995) identifies containers for the four kinds of 

knowledge needed in a CBR system: vocabulary, the 

similarity measure, the case base and the adaptation rules. 

This modularity is believed to facilitate the knowledge 

engineering effort; rather than, for example, encode a set of 

HTN methods that encompass every situation, cases can be 

captured as they occur. 

In-Game Performance 

In Muñoz-Avila et al. (2010a; 2010b) we reported on 

experiments where the performance metric is the number 

of points obtained versus an opponent. Games were played 

until the first team reached a predefined number of points. 

We used 6 static opponents, two of which were considered 

easy opponents, two intermediate, and the final two hard. 

This classification is the result of our extensive testing on 

this domain with several AI opponents. 

CB-gda has the best performance versus the difficult 

static opponents. CB-gda was able to beat all six static 

opponents in the two maps we tested. This is particularly 

significant because it beats smart opportunistic. The smart 

opportunistic opponent sends agents to each domination 

location that its team doesn’t own. If possible, it will send 

multiple agents to each such location. It always selects the 

bot that is the closest to the location it wants to control. 

This makes it difficult for AI agents to beat and in fact 

smart opportunistic beat both HTNBots (by around a 19% 

score difference) and GDA-HTNBots (5%). All of these 

results were statistically significant. We conjecture that 

CB-gda’s better performance is due to the flexibility of the 

case-based reasoning process that allows it to find suitable 

cases that address every situation encountered. Obviously, 

part of this flexibility was dependent on the more than 

1000 cases that were manually input to the system. 

GDA-HTNBots outperformed HTNBots on the most 

difficult opponents. GDA-HTNBots has a better 

performance than HTNBots on the most difficult 

opponents. We mentioned that both were beaten by smart 

opportunistic but that GDA-HTNBots’ scores were more 

similar to HTNBots’ scores. Furthermore, GDA-HTNBots 

was able to beat –albeit by a margin of less than 1%- the 

other hard opponent, whereas HTNBots was soundly 

beaten. We attribute this difference to the additional 

knowledge about goal-driven autonomy that by GDA-

HTNBots leverages in contrast to the simple replanning 

process executed by HTNBots. 

HTNBots has the best performance versus the easy and 

medium static opponents. All three AI systems were able 

to beat the easy and medium-difficulty opponents but the 

score difference was generally larger for HTNBots than for 

the two GDA systems. For example, versus one of the 

medium-difficulty opponents the score difference was 58% 

in HTNBots’ favor whereas for GDA-HTNBots it was 

12% and for CB-gda it was 46%. The reason for this is that 

during goal formulation both GDA variants use simple 

rules/cases to map explained discrepancies to specific 

goals. However, not all discrepancies require goal 

formulation (e.g., some should be ignored). A more 

sophisticated Discrepancy Resolver could reason that a 

given discrepancy does not warrant goal formulation, in 

which case it would continue pursuing the same goal as 

selected by HTNBots and, hence, would achieve the same 

performance as HTNBots. 

CB-gda has the best performance among the AI 

Systems. CB-gda was able to outperform HTNBots and 

GDA-HTNBots in direct, one-on-one competition. This 

again points towards the flexibility of having a large case 

base that allows CB-gda to quickly counter any situation 

encountered. 

Final Remarks 

There are several related research efforts. For a 

comprehensive discussion, please refer to Muñoz-Avila et 

al. (2010a; 2010b). Briefly, Cox’s (2007) investigation of 

self-aware agents inspired the conception of GDA, with its 



focus on integrated planning, execution, and goal 

reasoning. An alternative to GDA is contingency planning 

(Dearden et al., 2003), in which the agent plans in advance 

for plausible contingencies, and conformant planning 

(Goldman & Boddy, 1996), where the generated plan is 

guaranteed to succeed.  

In summary, we presented three alternative techniques for 

reasoning in dynamic environments. The first one is 

HTNBots, a replanning system based on HTN planning. 

HTNBots executes a plan until an action becomes 

inapplicable. At this point, the replanning agent simply 

generates a new plan from the current state to achieve its 

goals. The difference between replanning and GDA is that 

replanning agents retain their goals while GDA agents can 

reason about which goals should be satisfied. GDA agents 

reason about goals. We discussed two variants of GDA: a 

rule-based variant (GDA-HTNBots) and a case-based 

variant (CB-gda). Among these variants, CB-gda 

demonstrated the best performance, provided that it was 

given proper sets of cases.  
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