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ABSTRACT
In this paper, we present a novel shared-control telemanipulation
method that is designed to incrementally improve a user’s motor
ability. Our method initially corrects for the user’s suboptimal con-
trol trajectories, gradually giving the user more direct control over a
series of training trials as he/she naturally gets more accustomed to
the task. Our shared-control method, called Shared Dynamic Curves,
blends suboptimal user translation and rotation control inputs with
known translation and rotation paths needed to complete a task.
Shared Dynamic Curves provide a translation and rotation path
in space along which the user can easily guide the robot, and this
curve can bend and flex in real-time as a dynamical system to pull
the user’s motion gracefully toward a goal. We show through a user
study that Shared Dynamic Curves affords effective motor learning
on certain tasks compared to alternative training methods. We dis-
cuss our findings in the context of shared control and speculate on
how this method could be applied in real-world scenarios such as
job training or stroke rehabilitation.
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1 INTRODUCTION
In this paper, we explore how shared-control-based methods for
telemanipulation of robot arms can adapt to and improve user
ability to manipulate objects. Telemanipulation methods that are
based on “direct control” reflect all the commands provided by
the user, whereas methods for “shared control” enable the robot
to take the user’s commands as a guideline and blend its own
control signals into a single motion [18]. Much of prior research
on shared control has investigated how to blend between user and
robot actions [1, 3, 4, 8, 16, 25], but fewer studies have focused on
when shared control would be useful in practice [9, 17, 20].

In this work, we consider motor task training as a setting in
which shared-control-based manipulation might significantly ben-
efit users by shifting the focus of shared control from increasing
overall task proficiency to providing effective skill learning for the
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Figure 1: Our shared-control method for motor task train-
ing: (1) the user demonstrates a motion with their own hand
and arm (right-top); (2) the robot solves for a full curve from
start to goal, called a Shared Dynamic Curve, that blends an
idealized curve with the user’s motion (right-bottom).
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user. In this context, even if the robot has full understanding of the
task and could perform it autonomously or with minimal input,
users maintain partial control in order to improve at the task them-
selves in scenarios such as job training or stroke rehabilitation. For
example, a patient recovering from stroke who does not have the
muscle strength or dexterity to pick up a cup from the counter but
wants to regain the muscle coordination to complete the task over
time could start by guiding a robot through the task, which could
then incrementally relinquish control to the patient until the patient
demonstrates the necessary strength and dexterity. Compared to
direct-control approaches, which would not provide the necessary
assistance for patients to perform tasks, thus “under-helping,” and
standard shared-control approaches, which would continuously
provide assistance and would not facilitate skills learning, thus
“over-helping,” a shared-control paradigm that enables a therapist
to tailor assistance to the changing skill levels of the patient might
in the short term provide such patients with the ability to perform
tasks as early as possible and in the long term regain motor skills,
boost morale, and regain independence [12].

Our work is rooted in the learning-theory concept of scaffold-
ing, a teaching strategy intended to tailor support to a particular
learner, then gradually remove the support structure as they be-
gin to discover their own strategies [23]. This method provides
users with the opportunity to work through their “zone of prox-
imal development,” the gap between tasks that can only be done
with assistance and tasks that can be completed independently
[2]. The central challenge in this work is to establish the notion
of scaffolding in a shared-control setting to a sufficient degree to
provide users with the same learning benefits reported from other
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domains in the learning-theory literature. To address this challenge,
we present solutions to twomain questions: (1)How should the robot
provide support through a particular motor task; and (2) How should
the teacher—the robot—gradually hand over control to the pupil—the
user—to foster independent discoveries in motor task strategy?

We present a novel algorithm that gradually hands over control
from the robot to the user over a series of training trials, which is
critical for applying the concept of scaffolding to motor task learn-
ing. Our algorithm smoothly blends a user’s potentially suboptimal
input with idealized operational-space curves for translation and
rotation that are needed to complete a task. Our method, called
Shared Dynamic Curves, provides a translation and rotation curve
in space along which the user can more easily guide the robot, and
this curve can bend and flex in real-time to pull the user’s motion
gracefully toward the goal (Figure 1).

In the implementation of our method, users perform a motion
with their own hand and arm in free-space; a motion-capture sys-
tem picks up this motion; and the robot reflects the user’s arm
motion in real-time using the mimicry-control interface proposed
in prior work [21]. Because the user is controlling the robot with
representative motions, the user still gains experience in performing
the motor task, while the robot maintains the ability to subtly cor-
rect the user’s suboptimal input motions when necessary. We report
on a user study that compares Shared Dynamic Curves against three
baselines: (1) a direct-control approach that under-helps users, (2) a
shared control approach that over-helps users through continuous
assistance, and (3) a shared control approach that also gradually
relinquishes control to the user but uses virtual fixtures [15, 22]
to provide guidance. In the study, participants aim to improve at
using a direct mimicry-control interface to control a DRC Hubo Hu-
manoid Robot1 across several telemanipulation tasks that resemble
day-to-day object-manipulation tasks.

In the remainder of the paper, we provide motivation and context
for our method (§3) and technical details of its implementation (§4),
describe the design of and results from the user study (§5), and
discuss the implications of our findings as well as the prospects of
the use of Shared Dynamic Curves in important scenarios such as
job training or stroke rehabilitation (§6).

2 RELATEDWORK
In this work, we draw from prior work in the robotics literature
on shared control. We also look to robotics research in rehabilita-
tion and training to ground our motor training method in prior
approaches to motor training.

Shared Control— Shared-control-based teleoperation methods
aim to reduce the tedium or difficulty of direct control by letting the
robot handle some aspects of the control process, thus unburdening
the user from the demands of low-level teleoperation and enabling
them to reason about higher-level task objectives [18].

Prior work has explored several different shared-control strate-
gies. One popular strategy involves considering the user’s input
data as a state model to infer their likely goal and giving control over
to the robot when a goal is inferred. Javdani et al. [8] refer to this
shared control paradigm as predict-then-act. Early work in this area

1Rainbow Robotics: http://www.rainbow-robotics.com

considered shared control to be a discrete process in which the ro-
bot could switch between predefined levels of assistance [10]. More
recent approaches, such as the policy-blending approach proposed
by Dragan and Srinivasa [4], present ways for the robot to continu-
ously blend the user’s and robot’s policies on the fly. Dragan and
Srinivasa [4] make the important point that the arbitration between
robot and user policies should depend on the robot’s confidence in
its goal inference, presenting a method rooted in inverse reinforce-
ment learning that blends policies based on this key idea. Nikolaidis
et al. [19] present a method that automatically decides how the ro-
bot should intervene in control based on the user’s adaptability.
Work by Javdani et al. [8] uses hindsight optimization to arbitrate
control over a distribution of possible outcomes, even when the
robot is unsure about any single particular outcome. Our work is
informed by these shared-control methods, although our goal is
different, as we aim to facilitate motor task training by guiding
along paths to a known goal rather than pursuing inferred goals.

Our method shares more similarities with shared-control meth-
ods that involve potential fields and virtual fixtures. Potential fields
are used in teleoperation to guide the user toward a goal point
and away from obstacles in the environment [3]. Virtual fixtures
allow path following by blending an ideal instantaneous direction
and the user’s velocity vector at each update [15, 22]. Marayong
et al. [16] provide a geometric version of virtual fixtures along
multi-dimensional subspaces. This implementation will serve as
the comparison baseline in our user study as described in §5. Work
by Aarno et al. [1] considers the case of switching between mul-
tiple virtual fixtures, such as when completing various sub-tasks,
and shows that a classifier can effectively recognize when the user
is switching between different task segments. Our work was in-
spired by this approach for multi-segment tasks, although we used
a pre-defined finite state machine rather than a data-driven model.

Rehabilitation & Skills Learning— Our method is also inspired
by prior research in rehabilitation or skills training. Research in
rehabilitation robotics has assessed the benefits of using a robot
for stroke rehabilitation [11]. In rehabilitation settings, using hap-
tic guidance training is a common method that uses a robot as a
force-resistance device to build strength [5]. Nudehi et al. [20] used
a haptic shared-control device to enable an experienced surgeon
to guide a novice surgeon through a surgical procedure. Our work
similarly uses shared control as a teaching method, although the
assistance provided by the robot in our system is fully autonomous
rather than being driven by an expert user. Lastly, prior shared-
control work has explored how brain signals can be blended with
robot policies to allow paralyzed individuals to regain motor abili-
ties by controlling a robot arm through neural activity [9, 17]. Our
shared-control method could be used in a similar domain to help
train patients to improve their ability to control the robot using
similar forms of user input.

3 OVERVIEW OF APPROACH
Our goal in this work is to develop a shared-control telemanipu-
lation method that can teach users how to better perform motor
tasks. In this section, we will present the overall premise of our
method and discuss key differences between our method and prior
shared-control methods that may induce better motor task learning.

http://www.rainbow-robotics.com


Figure 2: Overviews of (a) ourmethod and (b) virtual fixtures,
a commonmethod for shared-control-based path following.
Our method solves for a full path from start to goal at each
update, rather than updating based on input velocities.
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3.1 Overview of Shared Dynamic Curves
At a high level, our method involves six key steps. At each sys-
tem update, the method (1) captures the user’s hand position and
orientation at the current time, (2) compares the user’s hand con-
figuration to a known, idealized way of performing the current
task, and (3) calculates a full position and orientation 6D-curve
from a start point to a goal point that reconciles the different motor
strategies observed in Step 2. The aggressiveness of the pull toward
the idealized strategy is dictated by how much assistance is desired
during the current training trial. The method then (4) projects the
user’s current hand configuration onto the curve calculated in Step
3, (5) splits the projection point into position and orientation goals,
and (6) calculates new joint values that are then sent to the robot
using an inverse-kinematics solver.

Our main technical contribution is at Step 3, specifically how we
reconcile the user’s potentially suboptimal motion strategy with a
known, idealized way of performing the task. We solve for a full
6D curve at each update that mixes between the two strategies. We
call this curve a Shared Dynamic Curve (SDC), as it dynamically
updates to try to match the shared policy between the teacher—
the robot—and the pupil—the user—in the context of motor task
training. The SDC bends and morphs at each update, and the extent
to which the robot assists in the task during training is dictated by
howmuch “flexibility” the SDC has to bend away from the idealized
curve, which is controlled by a single parameter. The projection
in Step 4 pulls the user’s motion down onto the curve, facilitating
easy motion along the invisible 6D curve in space. Because the SDC
always leads toward the goal, motion toward the goal is always
encouraged. An illustration of our method can be seen in Figure 2-a.
§4 describes our approach to solving for a full 6D SDC fast enough
for use in real-time control.

To accommodate many subtasks within a larger task, such as
picking up a pitcher of orange juice to pour into a cup, we chain
together multiple SDCs to form separate task segments, similar to
the approach used by Aarno et al. [1]. However, rather than a data-
driven approach, we use simple finite state machines to represent
known, sequential paths.

When solving for an SDC at each update, we must have clear
objectives for what the curve should try to achieve. We have three
main goals for the SDC curve that will foster effective training. (1)
The curve should be smooth and continuous, preferably up to the

third derivative of position (jerk). Prior work shows that people
move their hands along minimum-jerk trajectories when complet-
ing tasks [6]. Thus, guiding the robot along similarly smooth paths,
even when the robot is providing assistance, will lead to a more
natural remapping of the user’s motion, which may bolster learning
effects. This motion behavior adheres to the important telemanip-
ulation concept of transparency, that dictates that control should
feel as close as possible to how a user would perform the task them-
selves without sacrificing stability [13]. (2) The curve should split
the difference between the user’s current hand configuration, u, and
the idealized curve. This requirement means that the projection
point, p, will lie somewhere between u and the idealized curve,
which will reflect the user’s motion but still adhere to a motion
strategy that is known to be effective. (3) The curve at time t should
be similar to the previous curve at time t–1, which will ensure
smooth motions of the projected vector p over time.

3.2 Comparison to Prior Methods
As mentioned in §2, our Shared Dynamic Curves method shares par-
allels with the virtual fixtures approach [1, 16, 22]. The paragraphs
below will contrast our method to virtual fixtures, discussing why
our method may be better suited for scaffolding motor task learning.

Virtual fixtures is a well established method for guiding users
along a pre-defined subspace [22]. A common metaphor for virtual
fixtures is using a simulated ruler to improve line drawing, where
the ruler is a fixture that encourages motion only along a particular
path. An illustration of this overall approach can be seen in Figure
2-b. At a high level, virtual fixtures instantaneously provides an
idealized direction vi given a current position, linearly blends the
user’s instantaneous velocity input, vu, with a certain mixing value,
ku ∈ [0, 1], and scales the mixed velocity vector to match the user’s
current velocity. This process can mix in an additional vector, vb,
that drives the user control point back to the idealized curve with
mixing value kb ∈ [0, 1] (Figure 2-b).

While virtual fixtures have been shown to improve performance
over direct control in certain telemanipulation tasks [22], various
characteristics of this method could hinder its effectiveness inmotor
task training. First, because the approach is only loosely tied to
positions by vector vb and is primarily driven by velocities, it is
possible for the user control point to diverge away from the given
curve or skate past goal positions, leading to errors and lack of
trust in the robot during training. Second, while the mixing value
ku seems straightforward to adjust to gradually relinquish control
to the user following the notion of scaffolding, the addition of a
grounding vector vb makes parameter tuning difficult. Marayong
et al. [16] report on choosing kb through trial and error, finding too
high and too low gain values to respectively result in instability
and convergence of the tooltip to the reference path slowly. Such
unpredictability and the need to tune parameters through trial and
error are not well-suited for motor task training, as any instability
in robot motion would jeopardize trust in the robot teacher and
hinder learning effects. Finally, because the approach updates only
based on local, instantaneous information, it is not possible to
encourage global features, such as smoothness or continuity of
trajectories from a start point to a goal point, which may result in
discontinuities in motion. Users may perceive jittery motion to be



too different from how they would complete the task themselves,
which may diminish their feelings of gained experience through
the task during training.

Our method overcomes issues associated with virtual fixtures by
solving for a smooth, full trajectory from a start point to a goal point
at each system update. Our solution only considers positions, as
opposed to velocities, in 6D operational space, thus making it easier
to ensure that the user control point will not diverge or skate past
the goal. Our method was designed to be easily tunable, specifically
amenable for gradually handing over control from the robot to the
user. Additionally, because we solve for a full operational space
trajectory at each update, global smoothness parameters can be
encouraged such that the control behavior feels natural.

4 SHARED DYNAMIC CURVES
In this section, we describe our novel algorithm for generating
Shared Dynamic Curves at each system update. We address how the
particle-flow dynamical system works to encourage desired path
objectives, how to accurately accommodate rotations into the SDC,
and how to effectively provide scaffolded assistance.

4.1 Particle-flow Dynamical System
A dynamical system is a mathematical framework where the sub-
sequent state of the system is only influenced by the current state
alongwith a rule specifying how itemsmove. In our case, the system
is composed of a set of particles and a motion rule that determines
how these particles should flow through the 6D operational space.
The points are connected as splines at the particle knot points to
form a function, which parameterizes our Shared Dynamic Curve
object, denoted as ζ (s) ∈ R6, s ∈ [0, 1]. The set of n particles making
up the curve ζ (s) is denoted as {p1,p2, ...,pn }. The 6D position of
a particle pi at time t is specified as µ(pi )t .

As illustrated in Figure 3, at every system update, each particle
position µ(pi ) is calculated based on the update rule, µ(pi )t+1 =
µ(pi )t +v(pi )t . Here,v(pi )t is a calculated velocity vector for parti-
cle pi at the current time. A magnitude constraint, | |v(pi )| | < vmax ,
is enforced to add stability to the system. This constraint enables us
to achieve Goal 4 specified in §3.1, because each particle can only
deviate so far from its last position.

To calculate the particle velocity vectors v(pi )t at each update,
we use four goal points that attempt to encode the curve objectives
specified in §3.1. We refer to the goal points for particle i at time t as
д1(pi )t ,д2(pi )t , ...,д4(pi )t , as shown in Figure 3. We will describe
how to solve for each goal point in the following section, §4.2. The
four goal points form the vertices of a 6D polyhedron. We consider
these polyhedron corner points as barycentric coordinates and
create relative importances for each point using scalar weights:

д(pi )t = ω1д1(pi )t + ω2д2(pi )t + ... + ω4д4(pi )t (1)

Here, д(pi )t is a single, aggregated goal point formed by mixing
the subgoal points using various weights. Theω weights here afford
the ability to give relative importances to each subgoal where a
higher weight signifies amore important objective for the particle to
pursue. Then,v(pi )t is calculated by emanating a vector to the goal
point from the current particle’s position: v(pi )t = д(pi )t − µ(pi )t .

Figure 3: Our Shared Dynamic Curves algorithm updates the
positions of particles that make up the curve, enabling the
SDC to bend and flex in real-time as a dynamical system.
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The result in Equation 1 can lead to chaotic behavior if weights
are not selected carefully. Thus, we use absolute barycentric coor-
dinate weights, i.e., weights such that

∑4
j=1 ωj = 1, as д(pi ) will

lie within the polyhedron bounding box [24]. This approach leads
to desirable, stable behaviors, such as that µ(pi ) does not drift be-
yond the user’s hand configuration point u, which is possible using
virtual fixtures.

At each system update t , the position of each particle is updated
using this approach first from start to goal, {p1, ...,pn }, and then
from goal to start, {pn , ...,p1}, which ensures that the updated
positions are balanced and not skewed, as particle positions depend
on their neighboring particles.

4.2 Particle Goal Points
The four goal points thatmake up the bounding polyhedron vertices,
as illustrated in Figure 3, include the following:

(1) д1(pi ) = µ(pi )+
1

1+aϕ(pi )2 (u− µ(pi )). Here, ϕ(pi ) is the rank
index of how close particle pi is to the user’s hand configuration
point u such that the closest particle will be 1, the next closest will be
2, and so on. At a high level, the SDC is pulled toward the user’s hand
configuration, achieving Goal 2 discussed in §3.1. The quadratic
falloff function 1

1+aϕ(pi )2 defines how the particles organize and
swim toward the user’s hand configuration. This function offers
smooth higher derivatives, achieving Goal 1 discussed in §3.1. The
a value defines how the quadratic function should drop off and
depends on the number of particles in the SDC. In our prototype
system described in §5.1, where each SDC curve has approximately
30 particles, we use a value of a = 0.01.

(2) д2(pi ) = σ (pi ). Here, σ (pi ) signifies the starting location of
the particle and discourages the particle from drifting too far from
where it started, helping us achieve Goal 2 discussed in §3.1.

(3) д3(pi ) = projγ (s)[µ(pi )]. This point is calculated by pro-
jecting the particle onto the idealized curve γ (s), which pulls the
particle back to the idealized curve along the shortest path and
encourages the SDC to maintain the shape of the idealized curve
as a whole, helping us achieve Goal 2 discussed in §3.1.



(4) д4(pi ) = 0.5µ(pi−1) + 0.5µ(pi+1). This position is the mid-
point between the neighboring particles. It encourages continuity
in curve C1 and adds to the smoothness of the path, also helping
us achieve Goal 1 discussed in §3.1.

4.3 Handling Rotations
Throughout §3 and §4, we have been working with 6D curves con-
sisting of three position components and three rotation components.
While the position components are standard x ,y,z coordinates in Eu-
clidean space, calculating rotations is not straightforward. In order
to correctly represent rotations in a path-following shared-control
method, we properly linearize quaternions by taking the logarithm
map [14]. The logarithm function of quaternions returns a 3-vector
or a rotation vector. The particle position updates, interpolations,
and any necessary rotation filtering are all safely applied in this
space. After processing and updating the positions of particles, the
rotation vector components of the 6D curves can be exponentiated
back to quaternions using an exponential map. These quaternions
can then be passed to an inverse-kinematics (IK) solver to update
the robot’s joint states. For more detail on representing rotations,
we refer the reader to work by Lee [14].

4.4 Tuning Parameters for Scaffolding
Our work aims to enable users to improve at motor tasks by aggres-
sively helping them at first and then gradually relinquishing control
to the user over a number of training trials as they get better at
the task. To achieve this goal, we designed our method to be easily
tunable to gracefully hand control over from the robot (teacher)
to the user (pupil). At a high level, scaffolding in Shared Dynamic
Curves is based on the flexibility of the SDC. This flexibility is con-
trolled by the magnitude of the weight ω1 relative to the other
weights. As specified in §4.2, the д1(pi ) goal point is what attracts
particles toward the user’s hand configuration point u. Thus, if
ω1 is low, the SDC will resist flexing and bending away from the
idealized curve, and assistance will be aggressive upon projection.
Alternatively, if ω1 is high, more of the user’s motion will be re-
flected as the curve stretches away from the idealized curve toward
u. Therefore, we can consider ω1 as a scaffolding parameter and use
it as a dial to smoothly control how much assistance the robot is
providing through the motor task training trials. We note that all
of the weights must sum to 1 such that they form absolute barycen-
tric coordinates, as described in §4.1. Thus, as the ω1 scaffolding
parameter is adjusted, ω2,ω3 and ω4 are scaled accordingly.

5 USER STUDY
To test the premise that our shared-control motor training method
affords improved learning, we performed a user study involving
human participants performing three motor tasks.

5.1 Implementation of the Prototype System
We have realized our Shared Dynamic Curves method in a system
designed to provide sufficient performance and safety in order to
demonstrate its benefits in a user study. The paragraphs below
describe details of our prototype system.

Input Device—To capture the user’s hand configuration at each
system update, we used a Vicon motion-capture setup involving

eight cameras placed in a semi-circle around the workspace. The
users wore a velcro glove on their right hand with five passive
markers secured to it. The marker pattern was recognized as a rigid
body, serving as a proxy for the user’s hand configuration. The
Vicon system provided hand-transform data at a rate of 100 Hz.
We expect any motion capture system that can track positions and
rotations of the user’s hand to support our method.

Robot—The robot platform used in our prototype system was
a DRC-Hubo+ humanoid robot from Rainbow Robotics. We con-
trolled only the right arm of the robot. The robot’s 7-DOF arm
follows an anthropomorphic design and includes a three-finger
gripper. The user opened and closed the gripper using a remote.

IK Solver—To solve for robot’s joint states at each update, we
used the Relaxed-IK solver described in previous work [21]. This
IK solver is specifically designed to handle numerous objectives on
the fly and is especially adept at handling human-to-robot motion
retargeting in real-time. The solver was tailored to the Hubo robot
in order to avoid self collisions and kinematic singularities.

System Architecture—Our prototype system was set up as a dis-
tributed system over a network of computers that utilized ROS
for communication. The motion-capture system sent transform
information to the SDC-solver computer that solved for the 6D
goal point using our Shared Dynamic Curves algorithm, which was
then sent to a retargeting engine running the Relaxed-IK solver,
and the robot joint-state solutions were sent to the robot’s inter-
nal computer to control the joints. This process as a whole ran at
approximately 50–60 Hz. The Shared Dynamic Curves algorithm
completes an update in approximately 6 ms using 30 particles.

5.2 Hypotheses
Based on prior findings from the learning-theory and robotics liter-
atures, we developed the following hypotheses:

H1—Our principal hypothesis was that our Shared Dynamic
Curves training method would lead to individual learning bene-
fits in robot control motor tasks over comparable, state-of-the-art
methods. Based on prior work demonstrating the effects of scaffold-
ing and zone of proximal development [2], we expected our SDC
method to present a more pronounced improvement in motor skill
for users compared to other task training alternatives.

H2—We also hypothesized that a robot controlled using Shared
Dynamic Curves would be perceived as being more fluent in co-
operation, intelligent, and having a better understanding of the
user’s goals compared to other training approaches, because the
sufficient implementation of scaffolding will present a more collab-
orative and engaging robot teacher. We also expected our method
to invoke feelings of more trust in the robot compared to virtual
fixtures, because of possible drawbacks, such as skating past the
goal, difficult parameter tuning leading to instability, and lack of
global smoothness in motion, that our method does not exhibit.

5.3 Experimental Design, Tasks, & Procedure
Our user study followed a 4 × 1 between-subjects design. The
participants used one of four training methods (Shared Dynamic
Curves, Direct Control, Overhelping, and Scaffolded Virtual Fixtures)
to receive training on three tasks (toy-on-peg, pouring, and stirring).



Figure 4: The three motor training tasks used in our study. In randomized order, all participants received training on placing
a square disk on a peg, pouring beads from one cup to another, and stirring in a bundt-cake pan.

Procedure—Following informed consent, participants were pro-
vided with information on the goals of the study and were invited
to ask any questions they may have. The participants first put on
a velcro motion-capture glove, stood in a fixed location behind
the robot, and waited in a comfortable initial pose with their palm
level to the floor and fingers facing forward. The standing spot was
selected to provide a sufficient vantage point for all tasks and to
ensure that the participants would be out of the robot’s range of
motion at all times for safety. The experimenter then guided the
participants through a practice phase on how to control the Hubo
robot. The system was initialized by the experimenter, whereby a
text-to-speech engine counted down from five to signal when the
participant would have control. Once the system counted down,
the participant could move his/her arm and hand in free-space
to practice using the mimicry-control system by picking up and
moving around an empty water bottle for up to four minutes.

After the participants felt sufficiently comfortable using the
mimicry-control system, they took a short break while the experi-
menter set up the first of three tasks. The task order was randomized
for each participant. Once the task was understood, the participant
performed the task six times, with a short break and reset of the
robot and task objects between each trial. They were given a maxi-
mum time limit of two minutes for each of the seven training trials.
During the first and last trials in all conditions and tasks, the par-
ticipant controlled the robot using direct mimicry control in order
to measure the participant’s motor-control skill before and after
training. The four trials between these trials were training trials,
where the training strategy depended on to which training condi-
tion, outlined below, the participant was assigned. The participants
were not told that the first and last trials were evaluations or that
their overall goal was to get better at the tasks over time; they were
instructed to do their best at the task on each individual trial. In
all conditions, the participants were told that the robot may try to
assist during the tasks and the control method may change between
trials, but they were not told when or whether or not the robot
would assist. This procedure was repeated for the remaining two
tasks. Each task was preceded by a short break. After finishing the
three tasks, the participants completed a questionnaire and were
then debriefed on the details of the study.

Tasks—Participants performed three tasks—toy-on-peg, pouring,
and stirring—presented in a randomized order (Figure 4). For each
task, the robot had a pre-set initial configuration, and the task
objects were placed in known positions. In the toy-on-peg task, the
participants used the robot to grasp a small square disk secured on

a peg, slide the disk up off of its peg, then thread the block onto
another nearby peg. The idealized curves for the toy-on-peg task
were straight lines between task-segment goal points. The idealized
rotation curve was static at the origin, which still allowed flexing
and bending away from the origin curve in rotation space. The
pouring task required participants to control the robot to pick up a
plastic cup, pour eight beads into another cup, then place the cup
back in its original position on an upside-down cup. The idealized
curves for this task were straight lines in operational space between
the task-segment goal points. For the pouring motion, the rotation
curve was specified to allow pouring at the correct orientationwhen
the other cup was approached. In the stirring task, the participants
controlled the robot to stir five times around the central point of a
bundt-cake pan. The participants were told to stir as quickly as they
could without hitting the edges of the pan. The idealized curves for
this task consisted of a single, circular curve. The rotation curve
for this task was static at the origin as in the toy-on-peg task.

Training Approaches—In our study, participants were randomly
assigned to one of four training approaches: Shared Dynamic Curves,
Underhelping, Overhelping, and Scaffolded Virtual Fixtures.

The Shared Dynamic Curves approach used the shared-control
methods we have described in this paper. Through the four train-
ing trials, the scaffolding value defined in §4.4 was set to 0.1, 0.4,
0.7, and 1.0, respectively, to cover the full spectrum of robot assis-
tance. In the Underhelping condition, participants used the mimicry-
control method as described by Rakita et al. [21], which served as
the direct-control baseline. In the Overhelping condition, the as-
sistance was turned all the way up for each of the four training
trials by setting the SDC scaffolding value defined in §4.4 to 1.0.
This training method represented shared-control paradigms that
continuously provide user assistance and do not aim to support
motor task learning. Because both of these conditions lack scaf-
folding, these comparisons were included to assess whether or not
scaffolding provides a significant benefit in motor-task training.
In the Scaffolded Virtual Fixtures (SVF) condition, we applied the
same concept of scaffolding present in SDC but implemented using
a virtual-fixtures approach following the geometric formulation
described by Marayong et al. [16]. This condition used values of 0.1,
0.4, 0.7, and 1.0 to mix in the user’s velocity inputs (ku in Figure
2-b) for the four respective training trials and used a static value
of vb = 0.2 as the vector that draws the control point back to the
idealized curve. These values were selected through pilot testing
to elicit similar levels of assistance as the SDC condition. The SVF
implementation used the same pre-defined idealized curves utilized



Figure 5: Tukey boxplots of data from objective measures (top) for each training method across tasks and subjective measures
(bottom) across training methods. †, ∗, ∗∗ denote p < .10, p < .05 and p < .01, respectively.
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by SDC. We included this comparison to understand whether or
not the technical solutions offered by the SDC method improve the
effectiveness of scaffolding in motor-task training by overcoming
potential limitations of SVF presented in §3.2.

5.4 Measures & Analyses
To assess participants’ motor-control learning on the three study
tasks, we measured direct mimicry-control performance on the
tasks before and after training using a compound objective mea-
sure that captured how the users’ skill changed over time. This
measure, L, has the general form L = (1 + pa )/(1 + pb ), where pa
and pb are the participant’s performance after and before training,
respectively. A high value for this metric signifies an improvement
on task skill, and a low value signifies diminishing performance. To
calculate pa and pb , we use a compound measure that incorporates
task proficiency and completion time in order to represent motor
learning to have occurred on a task if the user both performed the
task more proficiently and faster, not just one or the other. For
example, in the stirring task, a faster time in the post-training mea-
surement should not signify task improvement if the user hit the
edge of the bowl with the spoon twice as often.

For the toy-on-peg and pouring tasks, the compound measure
takes the form p{a,b } = (

tmax−t{a,b}
tmax

) ∗ (
s{a,b}
smax

). Here, tmax is the
maximum allowable time per training trial; t {a,b } signifies the
participant’s task completion time after (a) or before (b) training;
smax is the total number of task segments for a given task; and
s {a,b } is how many task segments the participant completed after
(a) or before (b) training. The total time tmax was two minutes for
all tasks. The number of task segments, smax , for the toy-on-peg
task was three, with segments grasp block, lift block off of peg, and
drop block on other peg. The number of task segments, smax , for the
pouring task was four, including grasp cup, approach other cup, pour
at least five beads into other cup, and balance cup on starting cup.

In the stirring task, pa and pb have a similar form to toy-on-
peg and pouring, but the task-segment-based measurement of task
proficiency is replaced by the number of edge hits while stirring:
p{a,b } = (

tmax−t{a,b}
tmax

) ∗ (
emax−e{a,b}

emax
). Here, emax is an upper

bound on counted edge hits, and e {a,b } is the number of times the
participant hit the edge after (a) or before (b) training. For all three
tasks, all terms in p{a,b } are normalized such that p{a,b } ∈ [0, 1].
Participants were told that time and task proficiency were equally
important, thus the two terms are equally weighted in the metric.

To measure participants’ perceptions of their robot teacher under
different training approaches, we administered a questionnaire
including scales to measure fluency, robot intelligence, trust, and goal
understanding. Each scale was measured on a seven-point rating
scale (1 = “Strongly disagree;” 7 = “Strongly agree”). Fluency was
measured using items “The robot and I worked fluently together as
a team” and “The robot contributed to the effectiveness of our team”
(Cronbach’s α = 0.78), which were adapted for a control setting
from the HRC fluency scale used by Hoffman [7]. Robot intelligence
was measured using items “I felt the robot was intelligent,” “The
robot was able to independently make decisions through the tasks,”
and “The robot had an understanding of the task” (Cronbach’s α
= 0.93). Trust was measured using items “I trusted the robot to do
the right thing at the right time” and “The robot was trustworthy”
(Cronbach’s α = 0.89). Lastly, goal understanding was measured
using items “The robot perceives accurately what my goals are,”
The robot does not understand what I am trying to accomplish”
(inverted), and “The robot and I are working towards mutually
agreed upon goals” (Cronbach’s α = 0.81). Both trust and goal
understanding are scales developed by Hoffman [7].

We analyzed data from all measures using one-way analyses
of variance (ANOVA). Data from the objective learning measures
were analyzed for each task independently, and data from subjective
measures were analyzed between conditions. All pairwise compar-
isons between SDC and the three alternative training methods used
Bonferroni Correction by multiplying the p-value generated from
Student’s t-test by three. To maximize readability of the reporting
in §5.6, all comparisons are shown in Figure 5.

5.5 Participants
We recruited 32 volunteers (19 male, 13 female) from the campus
of the Naval Research Laboratory in Washington, D.C. Participant
ages ranged 20–60 (M = 31.25, SD = 8.99). Participants reported
a relatively high familiarity with robots (M = 4.53, SD = 1.70,
measured on a seven-point scale). Nine participants had participated
in a prior robotics study.

5.6 Results
Our analysis showed that the extent to which our hypotheses were
supported was task dependent. In the stirring task, our method
afforded significant learning effects over all other approaches, fully
supporting H1. Data from the pouring task provided partial sup-
port for H1, as our method offered significant improvements over



Underhelping and Scaffolded Virtual Fixtures but only a marginal
improvement over Overhelping. Lastly, in the toy-on-peg task, H1
found partial support, as we found a significant learning improve-
ment over Overhelping, a marginal improvement over Scaffolded
Virtual Fixtures, and no significant differences with Underhelping.

Data from our subjective measures provided partial support for
H2. Participants found the robot marginally more fluent when they
used our method over Scaffolded Virtual Fixtures, and no significant
differences were found between our method and the other two
conditions. Participants rated the goal understanding of the robot
significantly higher when they used our method over Underhelping,
and no significant differences was observed between our method
and the other two comparison conditions. Data from the robot-
intelligence measure provided more support for H2; as the robot
was perceived to be significantly more intelligent when participants
used our method over Underhelping and Scaffolded Virtual Fixtures,
although no difference was observed between our method and
Overhelping. Lastly, participants reported significantly higher trust
when they used our method over Scaffolded Virtual Fixtures, as
predicted by H2, but there were no differences between our method
and the other comparison conditions.

5.7 Discussion
Our results provide substantial support for the central premise
that SDC affords effective motor task training but indicate that
the extent of these benefits are task dependent. We see the most
pronounced results in the stirring task, followed by the pouring task,
and the differences were the least significant in the toy-on-peg task.
As a potential explanation of these differences, we observed that
the tasks went from most difficult to least difficult for participants
upon first try in the order above. For instance, 72% of participants
could do the full toy-on-peg task using direct mimicry control on
the first try, compared to 34% of participants who could do the full
pouring task and 0% of participants who could do the stirring task
without hitting the edge on the first try. These differences suggest
that the more complex and difficult the motor task was for the user
on first try, the stronger learning was using an effective scaffolding
method such as SDC. We speculate that SDC did not show stronger
learning effects in the toy-on-peg task, because this task was not
in most participants’ zone of proximal development. Because the
goal of scaffolding is to help traverse a user’s zone of proximal
development by changing a task that could previously only be done
with assistance into a task that can be completed independently,
the benefits of the assistance are diminished if the task can already
be done independently by many users.

Our subjective results also partially support our second hypoth-
esis and help shed further light on why different learning effects
may be observed between different training approaches. We found
that participants who used the SDC method found the robot to be
more trustworthy than those using the SVF approach did. Trust is
an important consideration for the effectiveness of shared control,
which is particularly noted by Nikolaidis et al. [19]. We believe
that this lack of trust can be attributed to the drawbacks noted in
§3.2, such as skating past the goal or discontinuous motion. For
instance, guiding the end effector beyond the rotation goal in the
pouring task resulted in spilled beads on the floor. Users likely lost

trust in the robot in this case, jeopardizing the fragile teacher-pupil
collaboration between the robot and participant. Our method also
led participants to perceive the robot as being more intelligent than
scaffolded virtual fixtures and underhelping did, because the ro-
bot clearly indicated its understanding of user goals by effectively
blending the user’s inputs with the idealized curves.

6 GENERAL DISCUSSION
In this paper, we presented a method that improves users’ motor
ability in shared-control telemanipulation. Our method, Shared
Dynamic Curves, utilizes a novel dynamical-system algorithm that
draws on the learning-theory concept of scaffolding. This approach
involves the robot initially aggressively assisting the user, then
gradually relinquishing control to the user as user skill in the task
improves. Our approach can be utilized in job-training scenarios,
such as training caretakers for tele-nursing or remote home health
care. For instance, a nurse could first train to remotely unscrew caps
off of pill bottles using shared control where object locations are
preset and known, then move on to direct control in unstructured
real-world settings once task proficiency is reached.

Our user study established the effectiveness of our method in
training participants in certain motor tasks using a direct-control
interface. Four high-level takeaways result from our work: (1) a
shared-control telemanipulation system can allow a robot to ef-
fectively teach its user how to improve at a motor task; (2) the
robot can achieve this goal by gradually handing control over to
the user across a series of training trials based on the learning-
theory concept of scaffolding; (3) our novel shared-control method,
Shared Dynamic Curves, provides better support for scaffolding in a
shared-control setting than alternative approaches such as virtual
fixtures, increasing users’ motor task learning; and (4) the benefits
of scaffolding for motor task learning are more pronounced in tasks
that are initially more difficult for the user.

Several aspects of the current work suggest future avenues of
research. While we aimed to develop a motor task training method
that can help stroke or traumatic-brain-injury patients to regain
motor abilities in rehabilitation, we note that the tasks in our study
followed a job-training scenario. Although we showed the effective-
ness of our method in improving learning, we have not yet shown
its efficacy as a tool to regain generalized motor-control ability.
In our future work, we plan to test whether or not our method
generalizes to the broader scope of motor task training.

Finally, further research is necessary to establish whether or
not the learning gains shown in our study are retained over long
periods of time and whether or not they can be obtained in real-
world job training and rehabilitation scenarios. We plan to further
develop our method to support such scenarios and test its long-term
effectiveness in our future work.
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