

Goal-Driven Autonomy with Case-Based Reasoning

Héctor Muñoz-Avila
1
, Ulit Jaidee

1
, David W. Aha

2
, and Elizabeth Carter

1

1Department of Computer Science & Engineering;

Lehigh University; Bethlehem, PA 18015

 2Navy Center for Applied Research in Artificial Intelligence;

Naval Research Laboratory (Code 5514); Washington, DC 20375

ulj208@lehigh.edu | munoz@cse.lehigh.edu | david.aha@nrl.navy.mil | eec209@lehigh.edu

Abstract. The vast majority of research on AI planning has focused on

automated plan recognition, in which a planning agent is provided with a set of

inputs that include an initial goal (or set of goals). In this context, the goal is

presumed to be static; it never changes, and the agent is not provided with the

ability to reason about whether it should change this goal. For some tasks in

complex environments, this constraint is problematic; the agent will not be able

to respond to opportunities or plan execution failures that would benefit from

focusing on a different goal. Goal driven autonomy (GDA) is a reasoning

framework that was recently introduced to address this limitation; GDA

systems perform anytime reasoning about what goal(s) should be satisfied [4].

Although promising, there are natural roles that case-based reasoning (CBR)

can serve in this framework, but no such demonstration exists. In this paper, we

describe the GDA framework and describe an algorithm that uses CBR to

support it. We also describe an empirical study with a multiagent gaming

environment in which this CBR algorithm outperformed a rule-based variant of

GDA as well as a non-GDA agent that is limited to dynamic replanning.

1 Introduction

One of the most frequently cited quotes from Helmuth von Moltke, one of the greatest

military strategists in history, is that “no plan survives contact with the enemy” [1].

That is, even the best laid plans need to be modified when executed because of (1) the

non-determinism in one’s own actions (i.e., actions might not have the intended

outcome), (2) the intrinsic characteristics of adversarial environments (i.e., the

opponent might execute unforeseen actions, or even one action among many possible

choices), and (3) imperfect information about the world state (i.e., opponents might be

only partially aware of what the other side is doing).

As a result, researchers have taken interest in planning that goes beyond the classic

deliberative model. Under this model, the state of the world changes solely as a result

of the agent executing its plan. So in a travel domain, for example, a plan may include

an action to fill a car with enough gasoline to follow segments (A,B) and (B,C) to

drive to location C from location A. The problem is that the dynamics of the

environment might change (e.g., segment (B,C) might become unavailable due to

some road damage). Several techniques have been investigated that respond to

contingencies which may invalidate the current plan during execution. This includes

contingency planning [2], in which the agent plans in advance for plausible

contingencies. In the travel example, the plan might include an alternative subplan

should (B,C) becomes unavailable. One such subplan might call to fill up with more

gasoline at location B and continue using the alternative, longer route (B,D), (D,C). A

drawback of this approach is that the number of alternative plans required might grow

exponentially with the number of contingencies that need to be considered. Another

alternative suggested is conformant planning [3], where the generated plan is

guaranteed to succeed. For example, the plan might fill up with enough gasoline at B

so that, even if it has to go back to B after attempting to cover the segment (B,C), it

can continue with the alternative route (B,D), (D,C). The drawback is that the plan

might execute many unnecessary steps for contingencies that do not occur (such as

obtaining additional gasoline while initially in location B).

Recently, another alternative, called Goal Driven Autonomy (GDA), was proposed

to solve this problem [4, 5]. GDA agents continuously monitor the current plan’s

execution and assess whether the actual states visited during the current plan’s

execution match expectations. When mismatches occur (i.e., when the state does not

meet expectations), a GDA monitor will suggest alternative goals that, if

accomplished, would fulfill its overarching objectives. In our travel example, the

GDA monitor might suggest that the agent first drive to location D and then to C.

In this paper we introduce and assess CB-gda, the first GDA system to employ

case-based reasoning (CBR) methods [6]. CB-gda uses two case bases to dynamically

generate goals. The first case base relates goals with expectations, while the latter’s

cases relate mismatches with (new) goals. We describe an empirical study of CB-gda

on the task of winning games defined using a complex gaming environment (DOM).

Our study revealed that, for this task, CB-gda outperforms a rule-based variant of

GDA when executed against a variety of opponents. CB-gda also outperforms a non-

GDA replanning agent against the most difficult of these opponents and performs

similarly against the easier ones. In direct matches, CB-gda defeats both the rule-

based GDA system and the non-GDA replanner.

The rest of the paper continues as follows. Section 2 describes a testbed that we use

for our experiments and for motivating some of the GDA concepts. Section 3 presents

the GDA framework. In Section 4, we discuss related work. In Section 5, we

introduce our case-based GDA algorithm and give an example of its behavior in

Section 6. Finally, Section 7 presents our empirical study and Section 8 discusses the

results and plans for future work.

2 DOM Environment

Domination (DOM) games are played in a turn-based environment in which two

teams (of bots) compete to control specific locations called domination points. Each

time a bot on team t passes over a domination point, that point will belong to t. Team t

receives one point for every 5 seconds that it owns a domination point. Teams

compete to be the first to earn a predefined number of points. Domination games have

been used in a variety of combat games, including first-person shooters such as

Unreal Tournament and online role-playing games such as World of Warcraft.

Domination games are popular because they reward team effort rather than

individual performance. No awards are given for killing an opponent team’s bot,

which respawns immediately in a location selected randomly from a set of map

locations, and then continues to play. Killing such bots might be beneficial in some

circumstances, such as killing a bot before she can capture a location, but the most

important factor influencing the outcome of the game is the strategy employed. An

example strategy is to control half plus one of the domination locations. A location is

captured for a team whenever a bot in that team moves on top of the location and

within the next 5 game ticks no bot from another team moves on top of that location.

Figure 1 displays an example of DOM map with five domination points [7].

Bots begin the game and respawn with 10 health points. Enemy encounters

(between bots on opposing teams) are handled by a simulated combat consisting of

successive die rolls, each of which makes the bots lose some number of health points.

The die roll is modified so that the odds of reducing the opponent health points

increase with the number of friendly bots in the vicinity. Combat finishes when the

first bot health points decreases to 0 (i.e., the bot dies). Once combat is over, the death

bot is respawned from a spawn point owned by its team in the next game tick. Spawn

point ownership is directly related to domination point ownership, if a team owns a

given domination point the surrounding spawn points also belong to that team.

 The number of possible states in DOM is a function of (1) the number of cells in

the map, which is n * m where n is the number of rows and m is the number of

columns, (2) the number, b, of bots in each team, (3) for each bot the number of

health points (between 0 and 10), (4) the number, t, of teams, (5) the number, d, of

domination locations, (6) a number between 0 and 5 for each domination location; 0

indicates than no other team is trying to capture the location and 1 to 5 indicates the

number of game ticks since a bot has attempted to capture the location belonging to a

different team. The total number of states is (n  m)
(b t) 11

(bt)  6
d
  (t+1)

d
. The

exponent (t+1) accounts for the beginning of the game in which the domination

locations do not belong to any team. In our experiments, n = m = 70, b = 3, t = 2, and

d = 4. Hence, the number of possible states is 210
34

.

Figure 1: An example DOM game map with five domination points (yellow

flags), where small rectangles identify the agents’ respawning locations, and the

remaining two types of icons denote each player’s agents.

Figure 2: The GDA conceptual model

Because of the large number of possible states, we follow the state abstraction

model of Auslander et al. (2008) for decision making by the AI agents in DOM

games [7]. Since there is no reward for killing an opponent, emphasis is made into

controlling the domination locations. Hence the states in the abstract model simply

indicate which team owns the domination locations, reducing the number of states to

d
(t+1)

. The decisions that the agent makes is to decide to which domination location to

send each bot. Thus, in the abstract model the number of actions is (bt)
d
.

DOM is a good testbed for testing algorithms that integrate planning and execution

because domination actions are non-deterministic; if a bot is told to go to a

domination location the outcome is uncertain because the bot may be killed along the

way. Domination games are also adversarial; two or more teams compete to control

the domination points. Finally, domination games are imperfect information games; a

team only knows the locations of those opponent bots that are within the range of

view of one of the team’s own bots.

3 Goal Driven Autonomy

Goal driven autonomy permits autonomous agents to direct the focus of their planning

activities, and thus become more self-sufficient.

Definition: Goal Driven Autonomy (GDA) is a goal reasoning method for

problem solving in which autonomous agents dynamically identify and self-

select their goals throughout plan execution.

The GDA conceptual model has four steps, as shown within the Controller

component in Figure 2. This model extends the conceptual model of online classical

planning [8], whose components include a Planner, a Controller, and a State

Transition System  = (S,A,E,γ) with states S, actions A, exogenous events E, and

state transition function γ: S(AE)2
S
. In the GDA model, the Controller is centric.

It receives as input a planning problem (MΣ,sc,gc), where MΣ is a model of Σ, sc is the

current state (e.g., initially sc), and gcG is a goal that can be satisfied by some set of

states SgS. It passes this problem to the Planner Π, which generates a sequence of

actions Ac=[ac,…,ac+n] and a corresponding sequence of expectations Xc=[xc,…xc+n],

where each xiXc is a set of constraints that are predicted to hold in the corresponding

sequence of states [sc+1,…,sc+n+1] when executing Ac in sc using MΣ. The Controller

sends ac to Σ for execution and retrieves the resulting state sc+1, at which time it

performs the following knowledge-intensive (and GDA-specific) tasks:

1. Discrepancy detection: GDA detects unexpected events before deciding how to

respond to them. This task compares observations sc+1 with expectation xc. If one

or more discrepancies (i.e., unexpected observations) dD are found in sc+1, then

explanation generation is performed to explain them.

2. Explanation generation: This module explains a detected discrepancy d. Given

also state sc, this task hypothesizes one or more explanations exEx of their cause.

3. Goal formulation: Resolving a discrepancy may warrant a change in the current

goal(s). This task generates goal gG given a discrepancy d, its explanation ex,

and current state sc.

4. Goal management: New goals are added to the set of pending goals GPG, which

may also warrant other edits (e.g., removal of other goals). The Goal Manager will

select the next goal g′GP to be given to the Planner. (It is possible that g=g′.)

The GDA model makes no commitments to the choice of Planner or algorithms for

these four tasks. For example, Muñoz-Avila et al. (2010) describe GDA-HTNbots [4],

a system that implements a simple GDA strategy in which Π=SHOP [9], the

Discrepancy Detector triggers on any mismatch between the expected and current

states, a rule-based reasoner is used for the Explanation Generator and Goal

Formulator, and the Goal Manager simply replaces the current goal with any newly

formulated goal. However, CBR is not employed in GDA-HTNbots.

4 Related Work

Cox’s (2007) investigation of self-aware agents inspired the conception of GDA [10],

with its focus on integrated planning, execution, and goal reasoning. Some of the

terms we adopt, such as expected and actual states, are directly borrowed from that

work.

In the introduction we discussed two alternatives to GDA: contingency planning

and conformant planning. Their main drawback is that, before plan execution, they

require the a priori identification of possible contingencies. In DOM games, a plan

would need to determine which domination points to control, which locations to send

a team’s bots, and identify alternative locations when this is not possible. An

alternative to generating contingencies beforehand is performing plan repair. In plan

repair, if a mismatch occurs during plan execution (i.e., between the conditions

expected to be true to execute the next action and the actual world state), then the

system must adapt the remaining actions to be executed in response to the changing

circumstances [11, 12]. The difference between plan repair and GDA is that plan

repair agents retain their goals while GDA agents can reason about which goals

should be satisfied. This also differentiates GDA from replanning agents, which

execute a plan until an action becomes inapplicable. At this point, the replanning

agent simply generates a new plan from the current state to achieve its goals [13, 14,

15].

There has been some research related to reasoning with goals. Classical planning

approaches attempt to achieve all assigned goals during problem solving [16]. Van

den Briel et al. (2004) relax this requirement so that only a maximal subset of the

goals must be satisfied (e.g., for situations where no plan exists that satisfies all the

given goals) [17]. Unlike GDA, this approach does not add new goals as needed.

Formulating new goals has been explored by Coddington and Luck (2003) and

Meneguzzi and Luck (2007), among others [18, 19]. They define motivations that

track the status of some state variables (e.g., the gasoline level in a vehicle) during

execution. If these values exceed a certain threshold (e.g., if the gasoline level falls

below 30%), then the motivations are triggered to formulate new goals (e.g., fill the

gas tank). In contrast, we investigate the first case-based approach for GDA, where

goals are formulated by deriving inferences from the game state and the agent’s

expectations using case-based planning techniques.

5 Case-Based Goal Driven Autonomy

Our algorithm for case-based GDA uses two case bases as inputs: the planning case

base and the mismatch-goal case base. The planning case base (PCB) is a collection

of triples of the form (sc, gc, ec, pl), where sc is the observed state of the world

(formally, this is defined as a list of atoms that are true in the state), gc is the goal

being pursued (formally, a goal is a predicate with a task name and a list of

arguments), ec is the state that the agent expects to reach after accomplishing gc

starting from state sc, and pl is a plan that achieves gc. The mismatch-goal case base

(MCB) is a collection of pairs of the form (mc, gc), where mc is the mismatch (the

difference between the expected state ec and the actual state sc) and gc is the goal to

try to accomplish next. In our current implementation both PCB and MCB are defined

manually. In Section 6 we will discuss some approaches we are considering to learn

both automatically.

CB-gda(D, A, ginit, PCB, SIMg(), thg, MCB, SIMs(), ths, SIMm(), thm) =

// Inputs:

// D: Domain simulator (here, DOM) A: The CBR intelligent agent

// ginit: Initial goal PCB: Planning case base

// SIMg(): True iff goals are similar MCB: Mismatch-goal case base

// SIMs():True iff states are similar SIMm(): True iff mismatches are similar

// thg/s/m: Thresholds for defining whether goals/state/mismatches are similar

// Output: the final score of simulation D

1. run(D,A,ginit)

2. while status(D)=Running do

3. | si  currentState(D) ; gi  currentGoal(A,D)

4. | while SIMg(currentTask(A),gi) do

5. | | wait(t)

6. | | ec retrieve(PCB, gi, si, SIMs(), ths, SIMg(), thg)

7. | | sD  currentState(D)

8. | | if ec≠sD then

9. | | gc  retrieve(MCB, ec, mismatch(ec,sD), SIMm(), thm)

10.| | run(D,A,gc)

11. return game-score(D)

The algorithm above displays our CBR algorithm for GDA, called CB-gda. It runs

the game D for the GDA-controlled agent A, which is ordered to pursue a goal ginit.

Our current implementation of A is a case-based planner that searches in the case base

PCB for a plan that achieves ginit. The call to run(D,A, ginit) represents running this

plan in the game. (Line 1). While the game D is running (Line 2), the following steps

are performed. Variables si and gi are initialized with the current game state and

agent’s goal (Line 3). The inner loop continues running while A is attempting to

achieve gi (Line 4). The algorithm waits a time t to let the actions be executed (Line

5). Given the current goal gi and the current state si, agent A searches for a case (sc, gc,

ec, pl) in PCB such that the binary relations SIMs(si,sc) and SIMg(gi,gc) hold and returns

the expected state ec. SIM(a,b) is currently an equivalence relation. (Line 6). We

follow the usual textbook conventions [20] to define SIM(a,b), which is a Boolean

relation that holds true whenever the parameters a and b are similar to one another

according to a similarity metric sim() and a threshold th (i.e., sim(a,b)  th). Since

the similarity function is an equivalence relation, the threshold is 1. The current state

sD in D is then observed (Line 7). If the expectation ec and sD do not match (Line 8),

then a case (mc, gc) in MCB is retrieved such that mismatch mc and mismatch(ec,sD),

are similar according to SIMm(); this returns a new goal gc (Line 9), Finally, D is run

for agent A with this new goal gc (Line 10). The game score is returned as a result

(Line 11).

From a complexity standpoint, each iteration of the inner loop is dominated by the

steps for retrieving a case from PCB (Line 6) and from MCB (Line 9). Retrieving a

case from PCB is of the order of O(|PCB|), assuming that computing SIMs() and

SIMg() are constant. Retrieving a case from MCB is of the order of O(|MCB|),

assuming that computing SIMm() is constant. The number of iterations of the outer

loop is O(N/t), assuming a game length of time N. Thus, the complexity of the

algorithm is O((N/t)  max{|PCB|,|MCB|}).

We claim that, given sufficient cases in PCB and MCB, CB-gda will successfully

guide agent A in accomplishing its objective while playing the DOM game. To assess

this, we will use two other systems for benchmarking purposes. The first is HTNbots

[13], which has been demonstrated to successfully play DOM games. It uses

Hierarchical Task Network (HTN) planning techniques to rapidly generate a plan,

which is executed until the game conditions change, at which point HTNbots is called

again to generate a new plan. This permits HTNbots to react to changing conditions

within the game. Hence, it is a good benchmark for CB-gda. The second

benchmarking system is GDA-HTNbots [4], which implements a GDA variant of

HTNbots using a rule-based approach (i.e., rules are used for goal generation), in

contrast to the CBR approach we propose in this paper.

6 Example

We present an example of CB-gda running on the DOM game. Suppose there are 3

domination points in the current instance of the game: dom1, dom2, and dom3. As we

explained before, the possible states that are modeled by the case-based agent is the

Cartesian product ioi of the owner oi of the domination point i. For instance, if there

are 3 domination points, the state (E,F,F) denotes the state where the first domination

point is owned by the enemy and the other two domination points are owned by our

friendly team. Suppose that the case base agent was invoked with the goal ginit =

control-dom1, which sets as its goal to control dom1. Suppose that this is the

beginning of the game, so the starting state is (N,N,N), indicating that no team

controls any of the domination points. Suppose that the case-based agent A retrieves a

case (sc, gc, ec, pl) in PCB such that gc = control-dom1 and sc = (N,N,N). Thus, pl is

executed in Line 1 and si = (N,N,N) and gi = control-dom1 in Line 3.

After waiting for some time t, the PCB case base is consulted for a similar case

(Line 6). Assume we retrieve the same case as before: (sc, gc, ec, pl), where sc =si,

gc=gi, and ec = (F,N,N). This case says that with this state and with this goal, the

expected state is one where the controlled team owns dom1. Now suppose that the

current state sD as obtained in Line 7 is (E,N,N), which means that sD differs from sc

(Line 8). At this point, a case is searched in the MCB case base (Line 9). Suppose that

a case (mc, gc) exists (and is retrieved) such that mc = (F/E,_,_), which means there is

only a mismatch in the ownership of dom1. Suppose that gc = control-dom2-and-dom3,

a goal that tells the case-based agent to control dom2 and dom3. This goal is then

pursued by the case-based agent in Line 10.

Table 1: Domination Teams and Descriptions

Opponent Team
Description Difficulty

Dom1 Hugger Sends all agents to domination point 0. Trivial

First Half Of Dom Points
Sends an agent to the first half +1 domination

points. Extra agents patrol between the 2 points.
Easy

2nd Half Of Dom Points
Sends an agent to the second half +1 domination

points; extra agents patrol between the two points.
Easy

Each Agent to One Dom
Each agent is assigned to a different domination

point And remains there for the entire game.
Medium-easy

Greedy Distance
Each turn the agents are assigned to the closest

domination point They do not own.
Hard

Smart Opportunistic

Sends agents to each domination point The team

doesn’t own. If possible, it will send multiple

agents to each un-owned point.

Very hard

Table 2: Average Percent Normalized Difference in the
Game AI System vs. Opponent Scores (with average Scores in parentheses)

Opponent Team

(controls enemies)

Game AI System (controls friendly forces)

HTNbots HTNbots-GDA CB-gda

Dom1 Hugger 81.2%†

(20,002 vs. 3,759)

80.9%

(20,001 vs. 3,822)

81.0%

(20,001 vs. 3,809)

First Half Of Dom

Points
47.6%

(20,001 vs. 10,485)

42.0%

(20,001 vs. 11,605)

45.0%

(20,000 vs. 10,998)

2nd Half Of Dom

Points
58.4%

(20,003 vs. 8,318)

12.5%

(20,001 vs. 17,503)

46.3%

(20,001 vs. 10,739)

Each Agent to One

Dom

49.0%

(20,001 vs. 10,206)

40.6%

(20,002 vs. 11,882)

45.4%

(20,001 vs. 10,914)

Greedy Distance -17.0%
(16,605 vs. 20,001)

0.4%
(19,614 vs. 19,534)

17.57%

(20,001 vs. 16,486)

Smart Opportunistic -19.4%
(16,113 vs. 20,001)

-4.8%
(19,048 vs. 20,001)

12.32%

(20,000 vs. 17,537)

 †Bold face denotes the highest average measure in each row

7 Empirical Study

We performed an exploratory investigation to assess the performance of CB-gda. Our

claim is that our case-based approach to GDA can outperform our previous rule-based

approach (GDA-HTNbots) and a non-GDA replanning system (HTNbots [13]) in

playing DOM games. To assess this hypothesis we used a variety of fixed strategy

opponents as benchmarks, as shown in Table 1. These opponents are displayed in

order of increasing difficulty.

We recorded and compared the performance of these systems against the same set

of hard-coded opponents in games where 20,000 points are needed to win and square

maps of size 70 x 70 tiles. The opponents above were taken from course projects and

previous research using the DOM game and do not employ CBR or learning.

Opponents are named after the strategy they employ. For example, Dom 1 Hugger

sends all of its teammates to the first domination point in the map [7]. Our

performance metric is the difference in the score between the system and
Table 3: Average Percent Normalized Difference in the Game AI System vs.
Opponent Scores (with average Scores in parentheses) with Statistical Significance

Opponent CB-gda – Map 1 CB-gda - Map 2

Dom 1 Hugger 80.8% (20003 vs. 3834) 78.5% (20003 vs. 4298)

81.2% (20001 vs. 3756) 78.0% (20000 vs. 4396)

80.7% (20001 vs. 3857) 77.9% (20003 vs. 4424)

81.6% (20002 vs. 3685) 77.9% (20000 vs. 4438)

81.0% (20003 vs. 3802) 78.0% (20000 vs. 4382)

Significance 3.78E-11 1.92E-11

First Half of Dom

Points

46.0% (20000 vs. 10781) 53.1% (20000 vs. 9375)

45.8% (20001 vs. 10836) 56.7% (20002 vs. 8660)

44.9% (20001 vs. 11021) 54.6% (20002 vs. 9089)

46.1% (20000 vs. 10786) 52.0% (20001 vs. 9603)

43.4% (20001 vs. 11322) 53.7% (20001 vs. 9254)

Significance 4.98E-08 1.38E-07

Second Half of

Dom Points

45.6% (20002 vs. 10889) 60.6% (20000 vs. 7884)

47.2% (20002 vs. 10560) 61.7% (20000 vs. 7657)

44.1% (20001 vs. 11188) 61.7% (20000 vs. 7651)

45.1% (20000 vs. 10987) 61.0% (20001 vs. 7797)

45.8% (20000 vs. 10849) 60.8% (20002 vs. 7848)

Significance 4.78E-08 7.19E-10

Each Agent to One

Dom

46.1% (20001 vs. 10788) 54.9% (20002 vs. 9019)

46.2% (20000 vs. 10762) 53.7% (20002 vs. 9252)

44.7% (20002 vs. 11064) 56.8% (20001 vs. 8642)

44.6% (20000 vs. 11077) 55.4% (20000 vs. 8910)

47.6% (20002 vs. 10481) 57.7% (20002 vs. 8469)

Significance 6.34E-08 7.08E-08

Greedy Distance 6.4% (20001 vs. 18725) 95.6% (20003 vs. 883)

8.3% (20001 vs. 18342) 92.7% (20002 vs. 1453)

5.0% (20000 vs. 18999) 64.6% (20004 vs. 7086)

9.0% (20001 vs. 18157) 94.9% (20004 vs. 1023)

12.7% (20001 vs. 17451) 98.0% (20004 vs. 404)

Significance 1.64E-03 6.80E-05

Smart Opportunistic 4.5% (20000 vs. 19102) 13.4% (20001 vs. 17318)

11.5% (20000 vs. 17693) 13.9% (20001 vs. 17220)

11.5% (20000 vs. 17693) 1.0% (20001 vs. 19799)

10.6% (20000 vs. 17878) 10.7% (20002 vs. 17858)

13.4% (20009 vs. 17333) 12.0% (20003 vs. 17594)

Significance 1.23E-03 1.28E-03

opponent while playing DOM, divided by the system’s score. The experimental setup

tested these systems against each of these opponents on the map used in the

experiments of GDA-HTNbots [4]. Each game was run three times to account for the

randomness introduced by non-deterministic game behaviors. Each bot follows the

same finite state machine. Thus, the difference of results is due to the strategy pursued

by each team rather than by the individual bot’s performance.

The results are shown in Table 2, where each row displays the normalized average

difference in scores (computed over three games) against each opponent. It also

shows the average scores for each player. The results for HTNbots and GDA-

HTNbots are the same as reported in [4], while the results for CB-gda are new. We

repeated the same experiment with a second map and obtained results consistent with

the ones presented in Table 2 except for the results against Greedy, for which we

obtained inconclusive results due to some path-finding issues.

In more detail, we report the results of additional tests here designed to determine

whether the performance differences between CB-gda and the opponent team

strategies are statistically significant. Table 3 displays the results of playing 10 games

over two maps (5 games per map) against the hard-coded opponents. We tested the

difference in score between the opponents using the Student’s t-test. For the

significance value p of each opponent, the constraint p < 0.05 holds. Hence, the score

difference is statistically significant.

Table 4: Average Percent Normalized Difference for the Dynamic Game AI Systems
 vs. CB-gda Scores (with average scores in parentheses)

We also ran games in which the two dynamic opponents (i.e., HTNbots and GDA-

HTNbots) competed directly against CB-gda using the same setup as reported for

generating Table 2. As shown in Table 4, CB-gda easily outperformed the other two

dynamic opponents. Again, we repeated this study with a second map and obtained

results consistent with the ones we present in Table 4.

8 Discussion and Future Work

Looking first at Table 2, CB-gda outperformed GDA-HTNbots, alleviating some of

the weaknesses that the latter exhibited. Specifically, against the easier and medium

difficulty-level opponents (the first 4 in Table 2), HTNbots performed better than

GDA-HTNbots (i.e., GDA-HTNbots outperformed those easy opponents but

HTNbots did so by a wider margin). The reason for this is that the rule-based GDA

strategy didn’t recognize that HTNbots had already created an immediate winning

strategy; it should have not suggested alternative goals. CB-gda still suffers from this

problem; it suggests new goals even though the case-based agent is winning from the

outset. However, CB-gda’s performance is very similar to HTNbots’s performance

and only against the third opponent (2
nd

 Half Of Dom Points) is HTNbots’s

performance observably better. Against the most difficult opponents (the final two in

Table 2), GDA-HTNbots outperformed HTNbots, which demonstrated the potential

utility of the GDA framework. However, GDA-HTNbots was still beaten by Smart

Opportunistic (in contrast, HTNbots did much worse), and it managed to draw against

Opponent Team

(controls enemies)

Game AI System (controls friendly forces)

CB-gda’s Performance

HTNbots 8.1% (20,000 vs. 18,379)

GDA-HTNbots 23.9% (20,000 vs. 15,215)

Greedy (in contrast, HTNbots lost). In contrast, CB-gda clearly outperforms these two

opponents and is the only dynamic game AI system to beat the Smart Opportunistic

team. Comparing CB-gda to GDA-HTNbots, CB-gda outperformed HTNbots-GDA

on all but one opponent, Dom 1 Hugger, and against that opponent the two agents

recorded similar score percentages. From Table 4 we observe that CB-gda

outperforms both HTNbots and GDA-HTNbots.

One reason for these good results is that CB-gda’s cases were manually populated

in PCB and MCB by an expert DOM player. Therefore, they are high in quality. In

our future work we want to explore how to automatically acquire the cases in PCB

and MCB. Cases in the PCB are triples of the form (sc, gc, ec, pl); these could be

automatically captured in the following manner. If the actions in the domain are

defined as STRIPS operators (an action is a grounded instance of an operator), then ec

can be automatically generated by using the operators to find the sequence of actions

that achieves gc from sc (i.e., ec is the observed state of the game after gc is satisfied).

This sequence of actions will form the plan pl. Cases in MCB have the form (mc, gc).

These cases can be captured by observing an agent playing the game. The current

state sc can be observed from the game, and the expectation ec can be obtained from

PCB. Thus, it is possible to compute their mismatch mc automatically.

We plan to investigate the use of reinforcement learning to learn which goal is the

best choice instead of a manually-coded case base. Learning the cases could enable

the system to learn in increments, which would allow it to address the problem of

dynamic planning conditions. We also plan to assess the utility of GDA using a richer

representation of the state. As explained earlier, states are currently represented as n-

tuples that denote the owner of each domination point. Thus, the total number of

states is (t+1)
d
. In our maps d=4 domination points and there were only two

opponents (i.e., t = 2), which translates into only 81 possible states. For this reason,

our similarity relations were reduced to equality comparisons. In the future we plan to

include other kinds of information in the current state to increase the granularity of

the agent’s choices, which will result in a larger state space. For example, if we

include information about the locations of CB-gda’s own bots, and the size of the map

is n  m, then the state space will increase to (t+1)
d
 

(n  m)
b
. In a map where n = m

= 70 and the number of bots on CB-gda’s team is 3, then the state space will increase

from size 81 to 814900
6
 states. This will require using some other form of state

abstraction, because otherwise the size of PCB would be prohibitively long.

We plan to use continuous environment variables and provide the system represent

and reason about these variables. The explanation generator aspect of the agent could

be expanded to dynamically derive explanations via a comprehensive reasoning

mechanism. Also, we would like to incorporate the reasoning that some discrepancies

do not require goal formulation.

9 Summary

We presented a case-based approach for goal driven autonomy (GDA), a method for

reasoning about goals that was recently introduced to address the limitation of

classical AI planners, which assume goals are static (i.e., they never change), and

cannot reason about nor self-select their goals. In a nutshell, our solution involves

maintaining a case base that maps goals to expectations given a certain state (the

planning case base - PCB) and a case base that maps mismatches to new goals (the

mismatch-goal case base - MCB). We introduced an algorithm that implements the

GDA cycle and uses these case bases to generate new goals dynamically. In tests on

playing Domination (DOM) games, the resulting system (CB-gda) outperformed a

rule-based variant of GDA (GDA-HTNbots) and a pure replanning agent (HTNbots)

against the most difficult manually-created DOM opponents and performed similarly

versus the easier ones. In further testing, we found that CB-gda significantly

outperformed each of these manually-created DOM opponents. Finally, in direct

matches versus GDA-HTNbots and HTNbots, CB-gda outperformed both algorithms.

Acknowledgements

This work was sponsored by DARPA/IPTO and NSF (#0642882). Thanks to PM

Michael Cox for providing motivation and technical direction. The views, opinions,

and findings contained in this paper are those of the authors and should not be

interpreted as representing the official views or policies, either expressed or implied,

of DARPA or the DoD.

References

1. Moltke, H.K.B.G. von. Militarische werke. In D.J. Hughes (Ed.) Moltke on the art

of war: Selected writings. Novato, CA: Presidio Press. (1993)

2. Dearden R., Meuleau N., Ramakrishnan S., Smith, D., & Washington R.

Incremental contingency planning. In M. Pistore, H. Geffner, & D. Smith (Eds.)

Planning under Uncertainty and Incomplete Information: Papers from the ICAPS

Workshop. Trento, Italy. (2003)

3. Goldman, R., & Boddy, M. Expressive planning and explicit knowledge.

Proceedings of the Third International Conference on Artificial Intelligence

Planning Systems. pp. 110-117. Edinburgh, UK: AAAI Press. (1996)

4. Muñoz-Avila, H., Aha, D.W., Jaidee, U., Klenk, M., & Molineaux, M. Applying

goal directed autonomy to a team shooter game. To appear in Proceedings of the

Twenty-Third Florida Artificial Intelligence Research Society Conference. Daytona

Beach, FL: AAAI Press. (2010)

5. Molineaux, M., Klenk, M., & Aha, D.W. Goal-driven autonomy in a Navy strategy

simulation. To appear in Proceedings of the Twenty-Fourth AAAI Conference on

Artificial Intelligence. Atlanta, GA: AAAI Press. (2010)

6. López de Mantaras, R, McSherry, D., Bridge, D.G., Leake, D.B., Smyth, B., Craw,

S., Faltings, B., Maher, M.L., Cox, M.T., Forbus, K.D., Keane, M., Aamodt, A., &

Watson, I.D. Retrieval, reuse, revision and retention in case-based reasoning.

Knowledge Engineering Review, 20(3), 215-240. (2005)

7. Auslander, B., Lee-Urban, S., Hogg, C., & Munoz-Avila, H. Recognizing the

enemy: Combining reinforcement learning with strategy selection using case-

based reasoning. Proceedings of the Ninth European Conference on Case-Based

Reasoning. pp. 59-73. Trier, Germany: Springer. (2008)

8. Nau, D.S. Current trends in automated planning. AI Magazine, 28(4), 43–58.

(2007)

9. Nau, D., Cao, Y., Lotem, A., & Muñoz-Avila, H. SHOP: Simple hierarchical

ordered planner. Proceedings of the Sixteenth International Joint Conference on

Artificial Intelligence. pp. 968-973. Stockholm: AAAI Press. (1999)

10. Cox, M.T. Perpetual self-aware cognitive agents. AI Magazine, 28(1), 32-45.

(2007)

11. Fox, M., Gerevini, A., Long, D., & Serina, I. Plan stability: Replanning versus

plan repair. Proceedings of the Sixteenth International Conference on Automated

Planning and Scheduling. pp. 212-221. Cumbria, UK: AAAI Press. (2006)

12. Warfield, I., Hogg, C., Lee-Urban, S., Munoz-Avila, H. Adaptation of hierarchical

task network plans. Proceedings of the Twentieth Flairs International Conference

pp. 429-434. Key West, FL: AAAI Press. (2007).

13. Hoang, H., Lee-Urban, S., & Muñoz-Avila, H. Hierarchical plan representations

for encoding strategic game AI. Proceedings of the First Conference on Artificial

Intelligence and Interactive Digital Entertainment. pp. 63-68. Marina del Ray, CA:

AAAI Press. (2005)

14. Ayan, N.F., Kuter, U., Yaman F., & Goldman R. Hotride: Hierarchical ordered

task replanning in dynamic environments. In F. Ingrand, & K. Rajan (Eds.)

Planning and Plan Execution for Real-World Systems – Principles and Practices

for Planning in Execution: Papers from the ICAPS Workshop. Providence, RI.

(2007)

15. Myers, K.L. CPEF: A continuous planning and execution framework. AI

Magazine, 20(4), 63-69. (1999)

16. Ghallab, M., Nau, D.S., & Traverso, P. Automated planning: Theory and practice.

San Mateo, CA: Morgan Kaufmann. (2004)

17. van den Briel, M., Sanchez Nigenda, R., Do, M.B., & Kambhampati, S. Effective

approaches for partial satisfaction (over-subscription) planning. Proceedings of the

Nineteenth National Conference on Artificial Intelligence. pp. 562-569. San Jose,

CA: AAAI Press. (2004)

18. Coddington, A.M., & Luck, M. Towards motivation-based plan evaluation.

Proceedings of the Sixteenth International FLAIRS Conference. pp. 298-302.

Miami Beach, FL: AAAI Press. (2003)

19. Meneguzzi, F.R., & Luck, M. (2007). Motivations as an abstraction of meta-level

reasoning. Proceedings of the Fifth International Central and Eastern European

Conference on Multi-Agent Systems. pp. 204-214. Leipzig, Germany: Springer.

20. Bergmann, R. Experience management: Foundations, development methodology,

and internet-based applications. New York: Springer. (2002)

