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Abstract. The vast majority of research on AI planning has focused on 

automated plan recognition, in which a planning agent is provided with a set of 

inputs that include an initial goal (or set of goals). In this context, the goal is 

presumed to be static; it never changes, and the agent is not provided with the 

ability to reason about whether it should change this goal. For some tasks in 

complex environments, this constraint is problematic; the agent will not be able 

to respond to opportunities or plan execution failures that would benefit from 

focusing on a different goal. Goal driven autonomy (GDA) is a reasoning 

framework that was recently introduced to address this limitation; GDA 

systems perform anytime reasoning about what goal(s) should be satisfied [4]. 

Although promising, there are natural roles that case-based reasoning (CBR) 

can serve in this framework, but no such demonstration exists. In this paper, we 

describe the GDA framework and describe an algorithm that uses CBR to 

support it. We also describe an empirical study with a multiagent gaming 

environment in which this CBR algorithm outperformed a rule-based variant of 

GDA as well as a non-GDA agent that is limited to dynamic replanning. 

1 Introduction 

One of the most frequently cited quotes from Helmuth von Moltke, one of the greatest 

military strategists in history, is that “no plan survives contact with the enemy” [1]. 

That is, even the best laid plans need to be modified when executed because of (1) the 

non-determinism in one’s own actions (i.e., actions might not have the intended 

outcome), (2) the intrinsic characteristics of adversarial environments (i.e., the 

opponent might execute unforeseen actions, or even one action among many possible 

choices), and (3) imperfect information about the world state (i.e., opponents might be 

only partially aware of what the other side is doing).  

As a result, researchers have taken interest in planning that goes beyond the classic 

deliberative model. Under this model, the state of the world changes solely as a result 

of the agent executing its plan. So in a travel domain, for example, a plan may include 

an action to fill a car with enough gasoline to follow segments (A,B) and (B,C) to 

drive to location C from location A. The problem is that the dynamics of the 

environment might change (e.g., segment (B,C) might become unavailable due to 

some road damage). Several techniques have been investigated that respond to 

contingencies which may invalidate the current plan during execution. This includes 

contingency planning [2], in which the agent plans in advance for plausible 

contingencies. In the travel example, the plan might include an alternative subplan 

should (B,C) becomes unavailable. One such subplan might call to fill up with more 

gasoline at location B and continue using the alternative, longer route (B,D), (D,C). A 



 

 

 

 

 

 

drawback of this approach is that the number of alternative plans required might grow 

exponentially with the number of contingencies that need to be considered. Another 

alternative suggested is conformant planning [3], where the generated plan is 

guaranteed to succeed. For example, the plan might fill up with enough gasoline at B 

so that, even if it has to go back to B after attempting to cover the segment (B,C), it 

can continue with the alternative route (B,D), (D,C). The drawback is that the plan 

might execute many unnecessary steps for contingencies that do not occur (such as 

obtaining additional gasoline while initially in location B). 

Recently, another alternative, called Goal Driven Autonomy (GDA), was proposed 

to solve this problem [4, 5]. GDA agents continuously monitor the current plan’s 

execution and assess whether the actual states visited during the current plan’s 

execution match expectations. When mismatches occur (i.e., when the state does not 

meet expectations), a GDA monitor will suggest alternative goals that, if 

accomplished, would fulfill its overarching objectives. In our travel example, the 

GDA monitor might suggest that the agent first drive to location D and then to C.  

In this paper we introduce and assess CB-gda, the first GDA system to employ 

case-based reasoning (CBR) methods [6]. CB-gda uses two case bases to dynamically 

generate goals. The first case base relates goals with expectations, while the latter’s 

cases relate mismatches with (new) goals. We describe an empirical study of CB-gda 

on the task of winning games defined using a complex gaming environment (DOM). 

Our study revealed that, for this task, CB-gda outperforms a rule-based variant of 

GDA when executed against a variety of opponents. CB-gda also outperforms a non-

GDA replanning agent against the most difficult of these opponents and performs 

similarly against the easier ones. In direct matches, CB-gda defeats both the rule-

based GDA system and the non-GDA replanner. 

The rest of the paper continues as follows. Section 2 describes a testbed that we use 

for our experiments and for motivating some of the GDA concepts. Section 3 presents 

the GDA framework. In Section 4, we discuss related work. In Section 5, we 

introduce our case-based GDA algorithm and give an example of its behavior in 

Section 6. Finally, Section 7 presents our empirical study and Section 8 discusses the 

results and plans for future work.  

2 DOM Environment 

Domination (DOM) games are played in a turn-based environment in which two 

teams (of bots) compete to control specific locations called domination points. Each 

time a bot on team t passes over a domination point, that point will belong to t. Team t 

receives one point for every 5 seconds that it owns a domination point. Teams 

compete to be the first to earn a predefined number of points. Domination games have 

been used in a variety of combat games, including first-person shooters such as 

Unreal Tournament and online role-playing games such as World of Warcraft. 

Domination games are popular because they reward team effort rather than 

individual performance. No awards are given for killing an opponent team’s bot,  

 



 

 

 

 

 

 

which respawns immediately in a location selected randomly from a set of map 

locations, and then continues to play. Killing such bots might be beneficial in some 

circumstances, such as killing a bot before she can capture a location, but the most 

important factor influencing the outcome of the game is the strategy employed. An 

example strategy is to control half plus one of the domination locations. A location is 

captured for a team whenever a bot in that team moves on top of the location and 

within the next 5 game ticks no bot from another team moves on top of that location. 

Figure 1 displays an example of DOM map with five domination points [7].  

Bots begin the game and respawn with 10 health points.  Enemy encounters 

(between bots on opposing teams) are handled by a simulated combat consisting of 

successive die rolls, each of which makes the bots lose some number of health points. 

The die roll is modified so that the odds of reducing the opponent health points 

increase with the number of friendly bots in the vicinity. Combat finishes when the 

first bot health points decreases to 0 (i.e., the bot dies). Once combat is over, the death 

bot is respawned from a spawn point owned by its team in the next game tick.  Spawn 

point ownership is directly related to domination point ownership, if a team owns a 

given domination point the surrounding spawn points also belong to that team.   

 The number of possible states in DOM is a function of (1) the number of cells in 

the map, which is n * m where n is the number of rows and m is the number of 

columns, (2) the number, b, of bots in each team, (3) for each bot the number of 

health points (between 0 and 10), (4) the number, t, of teams, (5) the number, d, of 

domination locations, (6) a number between 0 and 5 for each domination location; 0 

indicates than no other team is trying to capture the location and 1 to 5 indicates the 

number of game ticks since a bot has attempted to capture the location belonging to a 

different team. The total number of states is (n  m)
(b t) 11

(bt)  6
d
  (t+1)

d
. The 

exponent (t+1) accounts for the beginning of the game in which the domination 

locations do not belong to any team. In our experiments, n = m = 70, b = 3, t = 2, and 

d = 4. Hence, the number of possible states is 210
34

. 

 

 

Figure 1: An example DOM game map with five domination points (yellow 

flags), where small rectangles identify the agents’ respawning locations, and the 

remaining two types of icons denote each player’s agents. 



 

 

 

 

 

 

Figure 2: The GDA conceptual model 

 

Because of the large number of possible states, we follow the state abstraction 

model of Auslander et al. (2008) for decision making by the AI agents in DOM 

games [7]. Since there is no reward for killing an opponent, emphasis is made into 

controlling the domination locations. Hence the states in the abstract model simply 

indicate which team owns the domination locations, reducing the number of states to 

d
(t+1)

. The decisions that the agent makes is to decide to which domination location to 

send each bot. Thus, in the abstract model the number of actions is (bt)
d
. 

DOM is a good testbed for testing algorithms that integrate planning and execution 

because domination actions are non-deterministic; if a bot is told to go to a 

domination location the outcome is uncertain because the bot may be killed along the 

way. Domination games are also adversarial; two or more teams compete to control 

the domination points. Finally, domination games are imperfect information games; a 

team only knows the locations of those opponent bots that are within the range of 

view of one of the team’s own bots.  

3 Goal Driven Autonomy  

Goal driven autonomy permits autonomous agents to direct the focus of their planning 

activities, and thus become more self-sufficient. 

Definition: Goal Driven Autonomy (GDA) is a goal reasoning method for 

problem solving in which autonomous agents dynamically identify and self-

select their goals throughout plan execution.  

The GDA conceptual model has four steps, as shown within the Controller 

component in Figure 2. This model extends the conceptual model of online classical 

planning [8], whose components include a Planner, a Controller, and a State 

Transition System  = (S,A,E,γ) with states S, actions A, exogenous events E, and 

state transition function γ: S(AE)2
S
. In the GDA model, the Controller is centric. 

It receives as input a planning problem (MΣ,sc,gc), where MΣ is a model of Σ, sc is the 



 

 

 

 

 

 

current state (e.g., initially sc), and gcG is a goal that can be satisfied by some set of 

states SgS. It passes this problem to the Planner Π, which generates a sequence of 

actions Ac=[ac,…,ac+n] and a corresponding sequence of expectations Xc=[xc,…xc+n], 

where each xiXc is a set of constraints that are predicted to hold in the corresponding 

sequence of states [sc+1,…,sc+n+1] when executing Ac in sc using MΣ. The Controller 

sends ac to Σ for execution and retrieves the resulting state sc+1, at which time it 

performs the following knowledge-intensive (and GDA-specific) tasks:  

1. Discrepancy detection: GDA detects unexpected events before deciding how to 

respond to them. This task compares observations sc+1 with expectation xc. If one 

or more discrepancies (i.e., unexpected observations) dD are found in sc+1, then 

explanation generation is performed to explain them.  

2. Explanation generation: This module explains a detected discrepancy d. Given 

also state sc, this task hypothesizes one or more explanations exEx of their cause.  

3. Goal formulation: Resolving a discrepancy may warrant a change in the current 

goal(s). This task generates goal gG given a discrepancy d, its explanation ex, 

and current state sc.  

4. Goal management: New goals are added to the set of pending goals GPG, which 

may also warrant other edits (e.g., removal of other goals). The Goal Manager will 

select the next goal g′GP to be given to the Planner. (It is possible that g=g′.) 

The GDA model makes no commitments to the choice of Planner or algorithms for 

these four tasks. For example, Muñoz-Avila et al. (2010) describe GDA-HTNbots [4], 

a system that implements a simple GDA strategy in which Π=SHOP [9], the 

Discrepancy Detector triggers on any mismatch between the expected and current 

states, a rule-based reasoner is used for the Explanation Generator and Goal 

Formulator, and the Goal Manager simply replaces the current goal with any newly 

formulated goal. However, CBR is not employed in GDA-HTNbots.  

4 Related Work 

Cox’s (2007) investigation of self-aware agents inspired the conception of GDA [10], 

with its focus on integrated planning, execution, and goal reasoning. Some of the 

terms we adopt, such as expected and actual states, are directly borrowed from that 

work. 

In the introduction we discussed two alternatives to GDA: contingency planning 

and conformant planning. Their main drawback is that, before plan execution, they 

require the a priori identification of possible contingencies. In DOM games, a plan 

would need to determine which domination points to control, which locations to send 

a team’s bots, and identify alternative locations when this is not possible. An 

alternative to generating contingencies beforehand is performing plan repair. In plan 

repair, if a mismatch occurs during plan execution (i.e., between the conditions 

expected to be true to execute the next action and the actual world state), then the 

system must adapt the remaining actions to be executed in response to the changing 

circumstances [11, 12]. The difference between plan repair and GDA is that plan 

repair agents retain their goals while GDA agents can reason about which goals 

should be satisfied. This also differentiates GDA from replanning agents, which 

execute a plan until an action becomes inapplicable. At this point, the replanning 

agent simply generates a new plan from the current state to achieve its goals [13, 14, 

15].  



 

 

 

 

 

 

There has been some research related to reasoning with goals. Classical planning 

approaches attempt to achieve all assigned goals during problem solving [16]. Van 

den Briel et al. (2004) relax this requirement so that only a maximal subset of the 

goals must be satisfied (e.g., for situations where no plan exists that satisfies all the 

given goals) [17]. Unlike GDA, this approach does not add new goals as needed. 

Formulating new goals has been explored by Coddington and Luck (2003) and 

Meneguzzi and Luck (2007), among others [18, 19]. They define motivations that 

track the status of some state variables (e.g., the gasoline level in a vehicle) during 

execution. If these values exceed a certain threshold (e.g., if the gasoline level falls 

below 30%), then the motivations are triggered to formulate new goals (e.g., fill the 

gas tank). In contrast, we investigate the first case-based approach for GDA, where 

goals are formulated by deriving inferences from the game state and the agent’s 

expectations using case-based planning techniques. 

5 Case-Based Goal Driven Autonomy 

Our algorithm for case-based GDA uses two case bases as inputs: the planning case 

base and the mismatch-goal case base. The planning case base (PCB) is a collection 

of triples of the form (sc, gc, ec, pl), where sc is the observed state of the world 

(formally, this is defined as a list of atoms that are true in the state), gc is the goal 

being pursued (formally, a goal is a predicate with a task name and a list of 

arguments), ec is the state that the agent expects to reach after accomplishing gc 

starting from state sc, and pl is a plan that achieves gc. The mismatch-goal case base 

(MCB) is a collection of pairs of the form (mc, gc), where mc is the mismatch (the 

difference between the expected state ec and the actual state sc) and gc is the goal to 

try to accomplish next. In our current implementation both PCB and MCB are defined 

manually. In Section 6 we will discuss some approaches we are considering to learn 

both automatically.  

  

 

CB-gda(D, A, ginit, PCB, SIMg(), thg, MCB, SIMs(), ths, SIMm(), thm) =  

// Inputs:  

// D: Domain simulator (here, DOM)              A: The CBR intelligent agent   

// ginit: Initial goal    PCB: Planning case base  

// SIMg(): True iff goals are similar  MCB: Mismatch-goal case base 

// SIMs():True iff states are similar   SIMm(): True iff mismatches are similar  

// thg/s/m: Thresholds for defining whether goals/state/mismatches are similar 

// Output: the final score of simulation D 

1.  run(D,A,ginit)                          

2.  while status(D)=Running do   

3.  |      si  currentState(D) ; gi  currentGoal(A,D)       

4.  |      while SIMg(currentTask(A),gi) do      

5.  | | wait(t)   

6.  | | ec retrieve(PCB, gi, si, SIMs(), ths, SIMg(), thg)    

7.  | |     sD  currentState(D) 

8.  | | if ec≠sD then           

9.  | |      gc  retrieve(MCB, ec, mismatch(ec,sD), SIMm(), thm) 

10.| |      run(D,A,gc)       

11. return game-score(D) 



 

 

 

 

 

 

 

The algorithm above displays our CBR algorithm for GDA, called CB-gda. It runs 

the game D for the GDA-controlled agent A, which is ordered to pursue a goal ginit.  

Our current implementation of A is a case-based planner that searches in the case base 

PCB for a plan that achieves ginit. The call to run(D,A, ginit ) represents running this 

plan in the game. (Line 1). While the game D is running (Line 2), the following steps 

are performed. Variables si and gi are initialized with the current game state and 

agent’s goal (Line 3). The inner loop continues running while A is attempting to 

achieve gi (Line 4). The algorithm waits a time t to let the actions be executed (Line 

5). Given the current goal gi and the current state si, agent A searches for a case (sc, gc, 

ec, pl) in PCB such that the binary relations SIMs(si,sc) and SIMg(gi,gc) hold and returns 

the expected state ec. SIM(a,b) is currently an equivalence relation. (Line 6). We 

follow the usual textbook conventions [20] to define SIM(a,b), which is a Boolean 

relation that holds true whenever the parameters a and b are similar to one another 

according to a similarity metric sim() and a threshold th (i.e., sim(a,b)  th).  Since 

the similarity function is an equivalence relation, the threshold is 1.  The current state 

sD in D is then observed (Line 7). If the expectation ec and sD do not match (Line 8), 

then a case (mc, gc) in MCB is retrieved such that mismatch mc and mismatch(ec,sD), 

are similar according to SIMm(); this returns a new goal gc (Line 9), Finally, D is run 

for agent A with this new goal gc (Line 10). The game score is returned as a result 

(Line 11). 

From a complexity standpoint, each iteration of the inner loop is dominated by the 

steps for retrieving a case from PCB (Line 6) and from MCB (Line 9). Retrieving a 

case from PCB is of the order of O(|PCB|), assuming that computing SIMs() and 

SIMg() are constant. Retrieving a case from MCB is of the order of O(|MCB|), 

assuming that computing SIMm() is constant. The number of iterations of the outer 

loop is O(N/t), assuming a game length of time N. Thus, the complexity of the 

algorithm is O((N/t)  max{|PCB|,|MCB|}).  

We claim that, given sufficient cases in PCB and MCB, CB-gda will successfully 

guide agent A in accomplishing its objective while playing the DOM game. To assess 

this, we will use two other systems for benchmarking purposes. The first is HTNbots 

[13], which has been demonstrated to successfully play DOM games. It uses 

Hierarchical Task Network (HTN) planning techniques to rapidly generate a plan, 

which is executed until the game conditions change, at which point HTNbots is called 

again to generate a new plan. This permits HTNbots to react to changing conditions 

within the game. Hence, it is a good benchmark for CB-gda. The second 

benchmarking system is GDA-HTNbots [4], which implements a GDA variant of 

HTNbots using a rule-based approach (i.e., rules are used for goal generation), in 

contrast to the CBR approach we propose in this paper. 

6 Example 

We present an example of CB-gda running on the DOM game. Suppose there are 3 

domination points in the current instance of the game: dom1, dom2, and dom3. As we 

explained before, the possible states that are modeled by the case-based agent is the 

Cartesian product ioi of the owner oi of the domination point i. For instance, if there 

are 3 domination points, the state (E,F,F) denotes the state where the first domination 

point is owned by the enemy and the other two domination points are owned by our 

friendly team. Suppose that the case base agent was invoked with the goal ginit = 



 

 

 

 

 

 

control-dom1, which sets as its goal to control dom1. Suppose that this is the 

beginning of the game, so the starting state is (N,N,N), indicating that no team 

controls any of the domination points. Suppose that the case-based agent A retrieves a 

case (sc, gc, ec, pl) in PCB such that gc = control-dom1 and sc = (N,N,N). Thus, pl is 

executed in Line 1 and si = (N,N,N) and gi = control-dom1  in Line 3. 

After waiting for some time t, the PCB case base is consulted for a similar case 

(Line 6). Assume we retrieve the same case as before: (sc, gc, ec, pl), where sc =si, 

gc=gi, and ec = (F,N,N). This case says that with this state and with this goal, the 

expected state is one where the controlled team owns dom1. Now suppose that the 

current state sD as obtained in Line 7 is (E,N,N), which means that sD differs from sc 

(Line 8). At this point, a case is searched in the MCB case base (Line 9). Suppose that 

a case (mc, gc) exists (and is retrieved) such that mc = (F/E,_,_), which means there is 

only a mismatch in the ownership of dom1. Suppose that gc = control-dom2-and-dom3, 

a goal that tells the case-based agent to control dom2 and dom3. This goal is then 

pursued by the case-based agent in Line 10. 

 
Table 1: Domination Teams and Descriptions 

Opponent Team 
Description Difficulty 

Dom1 Hugger  Sends all agents to domination point 0. Trivial 

First Half Of Dom Points  
Sends an agent to the first half +1 domination 

points. Extra agents patrol between the 2 points. 
Easy 

2nd Half Of Dom Points  
Sends an agent to the second half +1 domination 

points; extra agents patrol between the two points. 
Easy 

Each Agent to One Dom 
Each agent is assigned to a different domination 

point And remains there for the entire game. 
Medium-easy 

Greedy Distance  
Each turn the agents are assigned to the closest 

domination point They do not own. 
Hard 

Smart Opportunistic 

Sends agents to each domination point The team 

doesn’t own. If possible, it will send multiple 

agents to each un-owned point. 

Very hard 

Table 2: Average Percent Normalized Difference in the 
Game AI System vs. Opponent Scores (with average Scores in parentheses) 

Opponent Team 

(controls enemies) 

Game AI System (controls friendly forces) 

HTNbots HTNbots-GDA CB-gda 

Dom1 Hugger  81.2%† 

(20,002 vs. 3,759) 

80.9% 

(20,001 vs. 3,822) 

81.0% 

(20,001 vs. 3,809) 

First Half Of Dom 

Points  
47.6% 

(20,001 vs. 10,485) 

42.0% 

(20,001 vs. 11,605) 

45.0% 

(20,000 vs. 10,998) 

2nd Half Of Dom 

Points  
58.4% 

(20,003 vs. 8,318) 

12.5% 

(20,001 vs. 17,503) 

46.3% 

(20,001 vs. 10,739) 

Each Agent to One 

Dom 

49.0% 

(20,001 vs. 10,206) 

40.6% 

(20,002 vs. 11,882) 

45.4% 

(20,001 vs. 10,914) 

Greedy Distance  -17.0% 
(16,605 vs. 20,001) 

0.4% 
(19,614 vs. 19,534) 

17.57% 

(20,001 vs. 16,486) 

Smart Opportunistic  -19.4% 
(16,113 vs. 20,001) 

-4.8% 
(19,048 vs. 20,001) 

12.32% 

(20,000 vs. 17,537) 

        †Bold face denotes the highest average measure in each row   



 

 

 

 

 

 

7 Empirical Study 

We performed an exploratory investigation to assess the performance of CB-gda. Our 

claim is that our case-based approach to GDA can outperform our previous rule-based 

approach (GDA-HTNbots) and a non-GDA replanning system (HTNbots [13]) in 

playing DOM games. To assess this hypothesis we used a variety of fixed strategy 

opponents as benchmarks, as shown in Table 1. These opponents are displayed in 

order of increasing difficulty.   

We recorded and compared the performance of these systems against the same set 

of hard-coded opponents in games where 20,000 points are needed to win and square 

maps of size 70 x 70 tiles.  The opponents above were taken from course projects and 

previous research using the DOM game and do not employ CBR or learning.  

Opponents are named after the strategy they employ. For example, Dom 1 Hugger 

sends all of its teammates to the first domination point in the map [7].  Our 

performance metric is the difference in the score between the system and  
Table 3: Average Percent Normalized Difference in the Game AI System vs. 
Opponent Scores (with average Scores in parentheses) with Statistical Significance 

Opponent CB-gda – Map 1 CB-gda  - Map 2 

Dom 1 Hugger 80.8% (20003 vs. 3834) 78.5% (20003 vs. 4298) 

81.2% (20001 vs. 3756) 78.0% (20000 vs. 4396) 

80.7% (20001 vs. 3857) 77.9% (20003 vs. 4424) 

81.6% (20002 vs. 3685) 77.9% (20000 vs. 4438) 

81.0% (20003 vs. 3802) 78.0% (20000 vs. 4382) 

Significance 3.78E-11 1.92E-11 

First Half of Dom 

Points 

46.0% (20000 vs. 10781) 53.1% (20000 vs. 9375) 

45.8% (20001 vs. 10836) 56.7% (20002 vs. 8660) 

44.9% (20001 vs. 11021) 54.6% (20002 vs. 9089) 

46.1% (20000 vs. 10786) 52.0% (20001 vs. 9603) 

43.4% (20001 vs. 11322) 53.7% (20001 vs. 9254) 

Significance 4.98E-08 1.38E-07 

Second Half of 

Dom Points 

45.6% (20002 vs. 10889) 60.6% (20000 vs. 7884) 

47.2% (20002 vs. 10560) 61.7% (20000 vs. 7657) 

44.1% (20001 vs. 11188) 61.7% (20000 vs. 7651) 

45.1% (20000 vs. 10987) 61.0% (20001 vs. 7797) 

45.8% (20000 vs. 10849) 60.8% (20002 vs. 7848) 

Significance 4.78E-08 7.19E-10 

Each Agent to One 

Dom 

46.1% (20001 vs. 10788) 54.9% (20002 vs. 9019) 

46.2% (20000 vs. 10762) 53.7% (20002 vs. 9252) 

44.7% (20002 vs. 11064) 56.8% (20001 vs. 8642) 

44.6% (20000 vs. 11077) 55.4% (20000 vs. 8910) 

47.6% (20002 vs. 10481) 57.7% (20002 vs. 8469) 

Significance 6.34E-08 7.08E-08 

Greedy Distance 6.4% (20001 vs. 18725) 95.6% (20003 vs. 883) 

8.3% (20001 vs. 18342) 92.7% (20002 vs. 1453) 

5.0% (20000 vs. 18999) 64.6% (20004 vs. 7086) 

9.0% (20001 vs. 18157) 94.9% (20004 vs. 1023) 

12.7% (20001 vs. 17451) 98.0% (20004 vs. 404) 

Significance 1.64E-03 6.80E-05 

Smart Opportunistic 4.5% (20000 vs. 19102) 13.4% (20001 vs. 17318) 

11.5% (20000 vs. 17693) 13.9% (20001 vs. 17220) 

11.5% (20000 vs. 17693) 1.0% (20001 vs. 19799) 

10.6% (20000 vs. 17878) 10.7% (20002 vs. 17858) 

13.4% (20009 vs. 17333) 12.0% (20003 vs. 17594) 

Significance 1.23E-03 1.28E-03 



 

 

 

 

 

 

opponent while playing DOM, divided by the system’s score. The experimental setup 

tested these systems against each of these opponents on the map used in the 

experiments of GDA-HTNbots [4]. Each game was run three times to account for the 

randomness introduced by non-deterministic game behaviors. Each bot follows the 

same finite state machine. Thus, the difference of results is due to the strategy pursued 

by each team rather than by the individual bot’s performance. 

The results are shown in Table 2, where each row displays the normalized average 

difference in scores (computed over three games) against each opponent. It also 

shows the average scores for each player. The results for HTNbots and GDA-

HTNbots are the same as reported in [4], while the results for CB-gda are new. We 

repeated the same experiment with a second map and obtained results consistent with 

the ones presented in Table 2 except for the results against Greedy, for which we 

obtained inconclusive results due to some path-finding issues. 

In more detail, we report the results of additional tests here designed to determine 

whether the performance differences between CB-gda and the opponent team 

strategies are statistically significant.  Table 3 displays the results of playing 10 games 

over two maps (5 games per map) against the hard-coded opponents. We tested the 

difference in score between the opponents using the Student’s t-test. For the 

significance value p of each opponent, the constraint p < 0.05 holds. Hence, the score 

difference is statistically significant. 

Table 4: Average Percent Normalized Difference for the Dynamic Game AI Systems 
 vs. CB-gda Scores (with average scores in parentheses) 

 

 

 

We also ran games in which the two dynamic opponents (i.e., HTNbots and GDA-

HTNbots) competed directly against CB-gda using the same setup as reported for 

generating Table 2. As shown in Table 4, CB-gda easily outperformed the other two 

dynamic opponents. Again, we repeated this study with a second map and obtained 

results consistent with the ones we present in Table 4.  

8 Discussion and Future Work 

Looking first at Table 2, CB-gda outperformed GDA-HTNbots, alleviating some of 

the weaknesses that the latter exhibited. Specifically, against the easier and medium 

difficulty-level opponents (the first 4 in Table 2), HTNbots performed better than 

GDA-HTNbots (i.e., GDA-HTNbots outperformed those easy opponents but 

HTNbots did so by a wider margin). The reason for this is that the rule-based GDA 

strategy didn’t recognize that HTNbots had already created an immediate winning 

strategy; it should have not suggested alternative goals. CB-gda still suffers from this 

problem; it suggests new goals even though the case-based agent is winning from the 

outset. However, CB-gda’s performance is very similar to HTNbots’s performance 

and only against the third opponent (2
nd

 Half Of Dom Points) is HTNbots’s 

performance observably better. Against the most difficult opponents (the final two in 

Table 2), GDA-HTNbots outperformed HTNbots, which demonstrated the potential 

utility of the GDA framework. However, GDA-HTNbots was still beaten by Smart 

Opportunistic (in contrast, HTNbots did much worse), and it managed to draw against 

Opponent Team 

(controls enemies) 

Game AI System (controls friendly forces) 

CB-gda’s Performance 

HTNbots  8.1% (20,000 vs. 18,379) 

GDA-HTNbots  23.9% (20,000 vs. 15,215) 



 

 

 

 

 

 

Greedy (in contrast, HTNbots lost). In contrast, CB-gda clearly outperforms these two 

opponents and is the only dynamic game AI system to beat the Smart Opportunistic 

team.  Comparing CB-gda to GDA-HTNbots, CB-gda outperformed HTNbots-GDA 

on all but one opponent, Dom 1 Hugger, and against that opponent the two agents 

recorded similar score percentages. From Table 4 we observe that CB-gda 

outperforms both HTNbots and GDA-HTNbots.  

One reason for these good results is that CB-gda’s cases were manually populated 

in PCB and MCB by an expert DOM player. Therefore, they are high in quality. In 

our future work we want to explore how to automatically acquire the cases in PCB 

and MCB. Cases in the PCB are triples of the form (sc, gc, ec, pl); these could be 

automatically captured in the following manner. If the actions in the domain are 

defined as STRIPS operators (an action is a grounded instance of an operator), then ec 

can be automatically generated by using the operators to find the sequence of actions 

that achieves gc from sc (i.e., ec is the observed state of the game after gc is satisfied). 

This sequence of actions will form the plan pl. Cases in MCB have the form (mc, gc). 

These cases can be captured by observing an agent playing the game. The current 

state sc can be observed from the game, and the expectation ec can be obtained from 

PCB. Thus, it is possible to compute their mismatch mc automatically.  

We plan to investigate the use of reinforcement learning to learn which goal is the 

best choice instead of a manually-coded case base. Learning the cases could enable 

the system to learn in increments, which would allow it to address the problem of 

dynamic planning conditions. We also plan to assess the utility of GDA using a richer 

representation of the state. As explained earlier, states are currently represented as n-

tuples that denote the owner of each domination point. Thus, the total number of 

states is (t+1)
d
. In our maps d=4 domination points and there were only two 

opponents (i.e., t = 2), which translates into only 81 possible states. For this reason, 

our similarity relations were reduced to equality comparisons. In the future we plan to 

include other kinds of information in the current state to increase the granularity of 

the agent’s choices, which will result in a larger state space. For example, if we 

include information about the locations of CB-gda’s own bots, and the size of the map 

is n  m, then the state space will increase to (t+1)
d
  

(n  m)
b
. In a map where n = m 

= 70 and the number of bots on CB-gda’s team is 3, then the state space will increase 

from size 81 to 814900
6
 states. This will require using some other form of state 

abstraction, because otherwise the size of PCB would be prohibitively long.  

We plan to use continuous environment variables and provide the system represent 

and reason about these variables.  The explanation generator aspect of the agent could 

be expanded to dynamically derive explanations via a comprehensive reasoning 

mechanism.  Also, we would like to incorporate the reasoning that some discrepancies 

do not require goal formulation. 

9 Summary 

We presented a case-based approach for goal driven autonomy (GDA), a method for 

reasoning about goals that was recently introduced to address the limitation of 

classical AI planners, which assume goals are static (i.e., they never change), and 

cannot reason about nor self-select their goals. In a nutshell, our solution involves 

maintaining a case base that maps goals to expectations given a certain state (the 

planning case base - PCB) and a case base that maps mismatches to new goals (the 

mismatch-goal case base - MCB). We introduced an algorithm that implements the 



 

 

 

 

 

 

GDA cycle and uses these case bases to generate new goals dynamically. In tests on 

playing Domination (DOM) games, the resulting system (CB-gda) outperformed a 

rule-based variant of GDA (GDA-HTNbots) and a pure replanning agent (HTNbots) 

against the most difficult manually-created DOM opponents and performed similarly 

versus the easier ones. In further testing, we found that CB-gda significantly 

outperformed each of these manually-created DOM opponents. Finally, in direct 

matches versus GDA-HTNbots and HTNbots, CB-gda outperformed both algorithms. 
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