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Abstract

We describe a planning algorithm, NDP2, that finds strong-cyclic solutions to nondeterministic planning problems

by using a classical planner to solve a sequence of classical planning problems. NDP2 is provably correct, and fixes

several problems with prior work.

We also describe two preprocessing algorithms that can provide a restricted version of the symbolic abstraction

capabilities of the well-known MBP planner. The preprocessing algorithms accomplish this by rewriting the planning

problems, hence do not require any modifications to NDP2 or its classical planner.

In our experimental comparisons of NDP2 (using FF as the classical planner) to MBP in six different planning

domains, each planner outperformed the other in some domains but not others. Which planner did better depended on

three things: the amount of nondeterminism in the planning domain, domain characteristics that affected how well the

abstraction techniques worked, and whether the domain contained unsolvable states.

Keywords: Automated Planning, Nondeterministic Actions, Strong Cyclic Solutions

1. Introduction

This paper is about a way to use classical planners to solve nondeterministic planning problems. Given a nonde-

terministic planning problem P and any classical planner CP, our NDP2 algorithm calls CP on a sequence of classical

planning problems derived from P, and uses CP’s solutions to construct a strong-cyclic solution for P. NDP2 is based

on the NDP algorithm [30], but overcomes several problems with that prior work. Our contributions are as follows:

• NDP2 corrects two problems that NDP had with unsolvable states. Although NDP’s pseudocode included a way

to deal with unsolvable states by making modifications to the planning domain, its authors did not implement
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this part of NDP, and did not realize that it has two significant problems: (1) when it encounters unsolvable

states, NDP modifies the domain model in a way that can make it exponentially larger, and (2) there are cases

in which unsolvable states will cause NDP to generate incorrect solutions.

NDP2 overcomes both of these problems. If NDP2 is used with a classical planner CP that is sound, complete,

and guaranteed to terminate on classical planning problems, then NDP2 will be sound, complete, and guaranteed

to terminate on nondeterministic planning problems.

• Planners such as MBP [9], POND [7], and Yoyo [28] do not represent states in the usual classical fashion, but

instead use binary decision diagrams (BDDs) [8] to represent sets of states that have common properties. This

provides substantial efficiency gains, by enabling those planners to plan for large sets of states at once. To

provide a limited form of MBP’s state-abstraction capability within an ordinary classical state representation,

the NDP paper [30] described a technique called “conjunctive abstraction” that involved modifying the planning

domain to include “abstract states” that represent sets of ordinary states. Although [30] provided examples of

such abstractions, it did not include an algorithm to produce them.

We provide preprocessing algorithms to make two kinds of planning-domain modifications similar to con-

junctive abstraction. When used as preprocessors to NDP2, these algorithms can sometimes provide state-

abstraction abilities analogous to MBP’s, and they preserve NDP2’s ability to be used with any classical planner.

• We provide the results of experimental comparisons of NDP2 (using FF [21] as the classical planner) with

MBP, on more than 4800 planning problems in six nondeterministic planning domains. Unlike [30], in which

the experimental tests were limited to planning domains in which all states were solvable, three of our six

domains include unsolvable states.

Our experiments showed NDP2 outperforming MBP in some planning domains, and MBP outperforming

NDP2 in others. Which algorithm performed better depended mainly on (1) the amount of nondeterminism

in the search space, (2) how well the nondeterminism could be abstracted out (either by using our abstraction

algorithms with NDP2, or by MBP using its BDDs), and (3) whether some of the nondeterministic outcomes

could lead to unsolvable states.

This paper is organized as follows. Section 2 provides definitions and notation. Section 3 gives an algorithm for

the case where all states are solvable, Section 4 extends the algorithm to deal with unsolvable states, and Section 5

motivates and describes our abstraction formalisms and algorithms. Section 6 provides the results of the experimental

evaluations, Section 7 is a discussion of related work, and Section 8 is the conclusion. Appendix A contains the

correctness proofs for NDP2, Appendix B describes techniques for translating solution policies from abstract to

non-abstract domains, and Appendix C describes a case where NDP [30] is unsound.
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2. Basic Definitions and Notation

Below, Sections 2.1 and 2.2 give definitions and notation for nondeterministic planning domains and classical

planning, and Section 2.3 defines determinizations of nondeterministic domains.

2.1. Nondeterministic Planning Domains

A nondeterministic planning domain is one in which each action may have more than one possible outcome.

Formally, it is a pair D = (L,O), where L is a function-free first-order language with finitely many constant symbols

(hence finitely many ground atoms), and O is a finite set of nondeterministic planning operators as defined below.

We will represent states in the usual classical fashion: if F = {all ground atoms of L}, then a state is a subset of

F, and the set of all possible states is S = 2F . A literal l is true in s if l is a non-negated atom and l ∈ s, or if l is a

negated atom ¬α and α < s; otherwise l is false in s.

Each operator o ∈ O is a pair

o = (pre(o), effects(o)),

where pre(o) is a conjunction of literals called o’s preconditions, and effects(o) is a set of conjunctions of literals

called o’s possible effects. Intuitively, pre(o) describes what must be true in order to use o, and each conjunction in

effects(o) describes one of the possible outcomes of using o. We sometimes will refer to o as o(x1, . . . , xn), where

x1, . . . , xn are the variable symbols in o in some canonical order.

An action a is a ground instance of an operator o, and pre(a) and effects(a) are the corresponding ground instances

of pre(o) and effects(o). If a is the action produced by replacing the variables in o(x1, . . . , xn) with constants c1, . . . , cn,

then we will sometimes refer to a as o(c1, . . . , cn). We will useA to denote the finite set of all possible actions, i.e., all

possible ground instances of the operators in O. An action a is executable in any state that satisfies pre(a). For each

state s, A(s) ⊆ A is the set of all actions that are executable in s.

Let a ∈ A(s), and let e1, . . . , en be the conjunctions in effects(a). For i = 1, . . . , n, let γ(s, ei) = (s− e−i )∪ e+
i , where

e+
i and e−i are the sets of atoms that appear positively and negatively in ei. Then the result of executing a in s is the

following set of states:1

γ(s, a) = {γ(s, ei)}ni=1 = {(s − e−i ) ∪ e+
i }

n
i=1.

A policy is a function π that maps some of the states into actions, i.e., π : S → A for some set of states S ⊆ S.

For each state-action pair (s, a) ∈ π, the intended meaning is that a is the action to perform in s. A hyperpolicy is a

function π∗ that maps sets of states into actions, i.e., π∗ : S → A, for some set S ⊆ 2S. For each pair (S , a) ∈ π∗, the

intended meaning is that a is the action to perform in every state s ∈ S (hence there is ambiguity about what action

to perform if s is in more than one S ∈ S). In the published literature on planning in nondeterministic environments,

the solutions to planning problems are defined to be policies—but for purposes of computational efficiency, most of

1When necessary to avoid ambiguity, we will write γD to refer to the value of γ in the planning domain D.
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the better-known planning algorithms (e.g., [37, 9, 28, 7]) reason instead about hyperpolicies, using Binary Decision

Diagrams (BDDs) to represent the sets in S.

The π-descendants of a state s are defined recursively as follows:

• s is a π-descendant of itself.

• If s′ is a π-descendant of s and π(s′) is defined, then every s′′ ∈ γ(s′, π(s′)) is also a π-descendant of s.

A π-result of s is any π-descendant s′ of s for which π(s′) is not defined (the intuition is that if we execute π starting

at s and end up at s′, then execution will cease). Thus we can define γ(s, π) = {s′ | s′ is a π-result of s}. Note that as a

special case, if π = ∅ then γ(s, π) = {s}. By extension, a π-result of a set of states S is any state that is a π-result of at

least one of the states in S .

A nondeterministic planning problem is a triple P = (D, S 0,G), where D = (L,O) is a nondeterministic planning

domain. S 0 ⊆ S is a set of initial states, and G ⊆ S is a set of goal states. P may have different kinds of solutions

[9, 16]:

• A weak solution must provide a possibility of reaching a goal state, but doesn’t need to guarantee that a goal

state will always be reached. More specifically, a policy π is a weak solution if for every s ∈ S 0, some goal state

sg ∈ G is a π-result of s.

• A strong cyclic solution is a policy π that has the following property: for every state s that is a π-descendant of

S 0, there is a goal state sg ∈ G that is a π-result of s. Such a policy is guaranteed to reach a goal state in every

fair execution, i.e., every execution that doesn’t remain in a cycle forever if there’s a possibility of leaving the

cycle.

• P may also have strong solutions [9, 16], but we will not need that definition in this paper.

A state s ∈ S is weakly solvable if the planning problem (D, {s},G) has at least one weak solution, and strong cyclically

solvable if (D, {s},G) has at least one strong cyclic solution. Otherwise s is unsolvable.

If every state that is reachable from S 0 is weakly solvable, then P is everywhere weakly solvable. Similarly, if

every state that is reachable from S 0 is strong-cyclically solvable, then P is everywhere strong-cyclically solvable. The

following lemma (the proof is in Appendix A) shows that the two terms are equivalent, so we will just say everywhere

solvable instead.

Lemma 1. A nondeterministic planning problem P = (D, S 0,G) is everywhere weakly solvable iff it is everywhere

strong cyclically solvable.

2.2. Classical Planning Domains

An operator or action o is classical (or deterministic) if effects(o) contains just one conjunction of literals. A

planning domain D = (L,O) is classical if every operator in O is classical. A planning problem P = (D, S 0,G) is
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classical if D is classical and there is just one initial state, i.e., S 0 = {s0} for some s0 ∈ S . In this case we will dispense

with S 0 and write P = (D, s0,G).

For classical planning problems, solutions are conventionally defined to be sequential plans rather than policies.

Formally, a plan is a sequence p = 〈a1, . . . , ak〉 of classical actions. Given a state s0, if there are states s1, . . . , sk,

such that for 1 ≤ i ≤ k, γ(si−1, ai) = {si}, then p is executable in s0 and γ(s0, p) = sk. Given a planning problem

P = (D, s0,G), a state s is solvable if there is a plan p such that γ(s, p) ∈ G. If s0 is solvable then we say that P itself

is solvable. If every state that is reachable from s0 is solvable, then P is everywhere-solvable.

If a plan p = 〈a1, . . . , ak〉 is executable at a state s0, then p is acyclic at s0 if each state s0, . . . , sk produced by

executing p is unique (the plan does not traverse the same state twice). In this case, p corresponds to a unique policy

π = {(s0, a1), (s1, a2), . . . , (sk−1, ak)} that we will call p’s policy image at s0.

2.3. Determinizations of Nondeterministic Domains

If o = (pre(o), effects(o)) is a nondeterministic operator and effects(o) = {e1, . . . , en}, then the determinization of

o is a set o of deterministic operators, one for each of o’s possible effects:

o = {(pre(o), e1), (pre(o), e2), . . . , (pre(o), en)}.

If an action a is a ground instance of o, then its determinization a = {a1, . . . , an} is defined similarly. The deter-

minization of a nondeterministic planning domain D = (L,O) is a classical planning domain D = (L,O), where

O =
⋃

o∈O o. The determinization of a nondeterministic planning problem P = (D, {s0},G) is a classical planning

problem P = (D, s0,G).

Lemma 2. For every state s in a nondeterministic planning problem P, s is weakly solvable in P if and only if it is

solvable in P.

The lemma is proved in Appendix A. From the lemma, it follows immediately that if a nondeterministic planning

problem P = (D, s0,G) is everywhere-solvable, then its determinization P = (D, {s0} ,G) also is everywhere-solvable.

3. Algorithm for Everywhere-Solvable Planning Problems

The clearest way to describe NDP2 is to start with an algorithm for a special case: planning problems that are

everywhere-solvable. This section presents that algorithm; and in Section 4 we will extend the algorithm to deal

correctly with unsolvable states.

Algorithm 1, NDPR, takes as input a nondeterministic planning problem P = (D, S 0,G) and a classical planner

CP. NDPR works by calling CP on problems of the form
(
D, s,G

)
, and combining CP’s solutions into a solution for

P. It is nearly identical to the NDP algorithm in [30], except that it omits NDP’s faulty pseudocode for unsolvable

states and it specifies exactly how to incorporate a plan into the policy (NDP left it unstated).
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Algorithm 1: NDPR, a planner for nondeterministic planning problems that are everywhere-solvable. (D, S 0,G)

is the planning problem, and CP is the classical planner.

Procedure NDPR(D, S 0,G,CP)1

π← ∅; D← a determinization of D2

loop3

S ← {all non-goal π-results of S 0}4

if S = ∅ then5

return π6

arbitrarily select a state s ∈ S7

if CP(D, s,G) returns a solution plan 〈a1, . . . , ak〉 then8

Let a1, . . . , ak be the nondeterministic versions of a1, . . . , ak9

for i = 1, . . . , k do10

if π(s) is defined then remove (s, π(s)) from π11

insert (s, ai) into π12

s← γD(s, ai)13

if a goal state is a π-descendant of s then break14

else15

// CP didn’t find a solution, so either CP is incomplete or the planning

problem is not everywhere-solvable.

return Failure16

NDPR first initializes π to be the empty policy, and generates the determinization D of D (Line 2). Line 3 begins

the main planning loop. If every π-result of S 0 is a goal state, then π is a strong cyclic solution, so NDPR returns it

(Line 6). Otherwise, NDPR selects a π-result s of S 0 that is not a goal state, and uses CP to search for a plan that

solves s in D. If CP is incomplete or if P is not everywhere-solvable, then CP may fail to find a solution plan for

(D, s,G); and in this case NDPR returns failure (Line 16). But if CP returns a solution plan p, then NDPR incorporates

the actions of p into π (Lines 10-14) one at a time, stopping if it finds a state that π already weakly solves. Note that if

CP is guaranteed to return acyclic solutions, then line 11 can be omitted and the condition in line 14 can be replaced

with a check to see if π(s) is defined.

Example. To illustrate how NDPR works, let D and D be the nondeterministic domain and its determinization as

shown in Figure 1 and Figure 2. Consider the nondeterministic planning problem P = (D, {s0}, {s2}), in which the set

of initial states is {s0} and there is a single goal state, s2. In NDPR’s first iteration, NDPR calls the classical planner

on the problem (D, s0, {s2}). Suppose that the classical planner returns the plan 〈a12〉. NDPR will incorporate this plan

into the currently empty policy π (Line 10–14). As a result, s1 is now a non-goal π-result of {s0}.
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s0 s1

s2

a1

a2

Figure 1: Graphic depiction of a nondeterministic planning domain.

Circles represent states, hyperedges represent actions.

s0 s1

s2

a11

a12

a2

Figure 2: Determinization of the planning domain in Figure 1. The

determinization of a1 is {a11, a12}.

In NDPR’s second iteration, it will call the classical planner on (D, s1, {s2}). Suppose the planner returns the plan

〈a2, a12〉. NDPR will incorporate the first action a2, but then stop incorporating the plan at Line 14 since s0 already

has a weak solution. There are now no non-goal π-result of {s0} (the intuition is that all of the π-results of {s0} are goal

states), and NDPR will exit on the next iteration (Line 6).

4. Dealing with Unsolvable States

Kuter et al [30] described a way for NDP to deal with unsolvable states by removing state-action pairs from the

domain. If CP returned failure on a state s, the idea was to take every state s′ and action a such that π(s′) = a and

s ∈ γ(s′, a) and modify the definition of a to make it inapplicable in s′. This requires modifying a’s precondition to

exclude s′ without excluding any other states. Such a precondition will be a large disjunction that includes a positive

or negative literal for every ground atom in the planning domain, and the number of ground atoms is often exponential

in the size of the domain description. Thus NDP’s way of dealing with unsolvable states often increases the size of the

domain description—and the computational overhead of evaluating action preconditions—by an exponential amount.

In Section 4.1 we present ConstrainProblem, a procedure for modifying a classical planning problem P = (D, s,G)

to make some of the actions inapplicable at the first step of any solution to P. Unlike removing state-action pairs,

ConstrainProblem only incurs a quadratic increase in the size of the domain description per constrained action. In

Section 4.2 we present Find-Acceptable-Plan, a procedure that uses ConstrainProblem to search for an acyclic plan

whose policy image avoids known unsolvable states. In Section 4.3 we present NDP2, a modified version of NDPR

(see Section 3) that uses Find-Acceptable-Plan to avoid with known unsolvable states.

4.1. Restricting which Actions Are Available

Algorithm 2 is the ConstrainProblem procedure, which takes a classical planning problem (D, s,G) and a set A of

actions, and returns a new planning problem (D
′
, s′,G) for which a solution is any solution to (D, s,G) that does not

start with an action in A.

For each operator o(x1, . . . , xn) ∈ O, we introduce a new predicate disallowedo (t1, . . . , tn). ConstrainProblem

begins by creating a new state s′ that is identical to s except that for each action o(c1, . . . , cn) ∈ A, s′ contains a new

atom of the form disallowedo(c1, . . . , cn). Then, for each operator oD
′

with variables x1, . . . , xn, ConstrainProblem
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Algorithm 2: ConstrainProblem takes a planning problem (D, s,G) and a set of actions A, and returns a new

planning problem P that has the same solutions minus the set of plans that start with an action in A.

Procedure ConstrainProblem(D, s,G, A)1

D
′
← D; s′ ← s2

foreach action o(c1, . . . , cn) ∈ A do3

s′ ← {disallowedo(c1, . . . , cn)} ∪ s′4

foreach operator o(x1, . . . , xn) ∈ D
′

do5

pre(o)← (¬disallowedo(x1, . . . , xn)) ∧ pre(o)6

foreach action a(c1, . . . , cn) ∈ A do7

effect(o)← {¬disalloweda(c1, . . . , cn)} ∪ effect(o)8

return (D
′
, s′,G)9

adds ¬disallowedo(x1, . . . , xn) to o’s preconditions (Line 6). This prevents any grounding of o with the constants

c1, . . . , cn from being applicable whenever disallowedo(c1, . . . , cn) is true.

Finally, to the effects of each action, ConstrainProblem adds the negation of the disallowed predicates that it added

to the initial state (Line 8). This ensures that ¬disalloweda(. . .) always holds after applying any action to the initial

state.

4.2. Avoiding Known-Unsolvable States

We use ConstrainProblem in Find-Acceptable-Plan (Algorithm 3), which is used to construct acyclic plans whose

nondeterministic images avoid known unsolvable states. Find-Acceptable-Plan’s parameters consist of a nondeter-

ministic planning domain D, its determinization D, an initial state s0, a set of goal states G, a classical planner CP,

and a set U of states to avoid.

In line 2, Find-Acceptable-Plan initializes five variables that it will maintain throughout its search: p is the current

plan, S is a list of states associated with p, s is the last state in S , and B is a mapping from states to sets of actions

known to lead to cycles or unsolvable states, and K is a set of states which can’t be part of any solution.

In Lines 3–22, Find-Acceptable-Plan repeatedly calls CP to try and extend p towards a goal state without causing

a cycle or choosing an action whose nondeterministic version leads to a state in U. In Line 4, Find-Acceptable-Plan

checks if s, the last state of p, is a goal state and returns p if it is.

Otherwise, Find-Acceptable-Plan calls CP to generate a plan from s to a goal state. This requires overcoming

two potential problems: (1) if the plan p generated by CP contains a cycle, then p cannot be translated into a policy

because it will require two different actions at one of its states, and (2) if p goes through a state in U, then it cannot

be translated into a policy that solves the nondeterministic problem (D, {s} ,G), since the states in U are known to be

unsolvable. Find-Acceptable-Plan makes progress by ensuring that CP never returns a plan that starts with an action
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Algorithm 3: Find-Acceptable-Plan takes a classical planning problem, classical planner, and set U of states to

avoid. It returns a plan for which no action’s nondeterministic version can go to a state in U.

Procedure Find-Acceptable-Plan(D,D, s0,G,CP,U)1

s← s0; p← 〈〉; S ← 〈s0〉; B← ∅; K ← U2

loop3

if s ∈ G then return p4

A← { action b(c1, . . . , cn) such that (s, b(c1, . . . , cn)) ∈ B}5

P′ ← ConstrainProblem(D, s,G, A)6

call CP on the planning problem P′7

if CP returns a solution plan 〈a1, . . . , ak〉 then8

foreach i = 1, . . . , k do9

ai ← the nondeterministic action in D that corresponds to ai10

s′ ← γD(s, ai)11

if s′ ∈ S ∪ K or γD(s, ai) ∩ U , ∅ then12

B← B ∪ {(s, ai)}13

break14

append ai to p and append s′ to S ; s← s′15

else CP returns Failure16

a′ ← last element of p17

remove last elements of p and S18

if S = 〈〉 then return Failure19

s′ ← last element of S20

B← B ∪ {(s′, a′)}; K ← K ∪ {s}21

s← s′22

it has seen before. First, it finds the set of actions in B associated with the current state that are known to cause

loops or lead to states in U (Line 5). Find-Acceptable-Plan then takes the classical problem P = (D, s,G), and uses

ConstrainProblem to create a new planning problem P′ for which these actions cannot appear in the first step of a

solution (Line 6). Find-Acceptable-Plan then calls the classical planner CP on this modified problem (Line 7). If CP

is sound and complete, there are two cases:

Case 1: CP returns a plan q = 〈a1, . . . , ak〉 that leads to a goal state. Then in lines 9 through 15, Find-Acceptable-Plan

iterates over the actions, adding them to the current plan p and updating the current state s. If ai leads to a state

already seen in p or to a known-unsolvable state in K, or if its nondeterministic counterpart ai leads to a state in

U, then Find-Acceptable-Plan inserts (s, ai) into B and stops integrating q (without removing already integrated

9



s0 s1

s2

a11

a12

a2

Figure 3: ConstrainProblem
(
D, s0, s1, ∅

)
, identical to the deter-

minization shown in figure 2.

s0

s′0

s1

s2

a11

a12

a12

a2

Figure 4: ConstrainProblem
(
D, s0, s1, {a11}

)
, with a new initial state s′0.

actions). Planning will restart at the state just before ai. If the plan is fully integrated, then, assuming CP is

sound, s is a goal state, and Find-Acceptable-Plan will return p on the next iteration of the main loop.

Case 2: CP cannot find a plan, and returns failure. Then Find-Acceptable-Plan backtracks to the previous state s′ in

S and adds the state-action (s′, a) pair leading to s to B, and adds s to the set of known-unsolvable states K.

(Line 21). If there is no previous state, then this means that there is no plan starting from s0 and reaching a goal

state whose policy image doesn’t lead to U, so Find-Acceptable-Plan returns Failure (Line 19).

Example. Let D and D be as in Figure 1 and Figure 2, and consider the call to

Find-Acceptable-Plan
(
D,D, s0, {s1} ,CP, {s2}

)
. The current state s will be set to s0, the list of states S set to

〈s0〉.

With B initially empty, the call to ConstrainProblem(D, s0, {s1}) will return an identical classical problem

P′ = (D, s0, {s1}) (Figure 3). When Find-Acceptable-Plan calls CP on P′, it will return the plan: 〈a11〉. Since the

nondeterministic action corresponding to a11 leads to s2 (which is in U), Find-Acceptable-Plan will break before

incorporating the first action of the plan, and add the pair (s0, a11) to B.

On the next iteration of Find-Acceptable-Plan, a11 will be in the set A of actions to constrain.

ConstrainProblem
(
D, s0, {s1} , {a11}

)
will return a classical problem (D

′
, s′0, {s1}), with a new initial state s′0 that has

the same set of applicable actions as s0, except for a11 (Figure 4). Since this problem is unsolvable, CP returns failure.

Hence Find-Acceptable-Plan also returns failure.

Theorem 1. Let CP be a sound and complete classical planner, U be a set of states, D be a nondeterministic planning

domain, and D = (L,O) be the determinization of D. Let S be the set of all states in L (i.e., S = 2F), F =

{all ground atoms over L}, and A be the set of all possible actions (i.e., all possible ground instantiations of the

planning operators in O).

Then Find-Acceptable-Plan(D,D, s0,G,CP,U) makes at most |S | · |A|+ 1 calls to CP, and returns an acyclic plan,

if such a plan exists, whose policy image in D avoids the states in U.

For the proof, see Appendix A.
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Algorithm 4: NDP2 is a modified version of NDPR that works correctly in all nondeterministic planning do-

mains. The call to CP in line 8 is replaced with a call to Algorithm 3, which uses CP to look for plans that do

not include nodes that NDP2 has identified as unsolvable.

Procedure NDP2(D, S 0,G,CP)1

π← ∅2

D← a determinization of D; U ← ∅3

loop4

S ← {all non-goal π-results of S 0}5

if S = ∅ then return π6

arbitrarily select a state s ∈ S7

// Find-Acceptable-Plan searches for an acyclic plan in D that avoids the states

in U

call Find-Acceptable-Plan(D,D, s,G,CP,U)8

if Find-Acceptable-Plan returns a solution plan 〈a1, . . . , ak〉 then9

Let 〈a1, . . . , ak〉 be the nondeterministic actions corresponding to 〈a1, . . . , ak〉10

for i = 1, . . . , k do11

if π(s) is defined then remove (s, π(s)) from π12

insert (s, ai) into π13

s← γD(s, ai)14

if a goal state is a π-descendant of s then break15

else16

// Find-Acceptable-Plan returned Failure

if s ∈ S 0 then return Failure17

U ← U ∪ {s}18

foreach s′ such that s ∈ γ (s′, π(s′)) do19

π← π \ {(s′, π(s′))}20

4.3. NDP2 Planning Algorithm

Algorithm 4 is the NDP2 algorithm, a modified version of NDPR that can deal with unsolvable states. The key

differences between NDP2 and NDPR are:

• When NDP2 encounters an unsolvable state, it removes all actions that lead to it from the policy and adds the

state to a set of known-unsolvable states U (line 18).

• NDP2 does not call the classical planner directly, but instead calls Find-Acceptable-Plan, which generates

solutions that avoid the states in U.
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Figure 5: A state in the Robot Navigation domain.

There are also two key differences between NDP2 and NDP:

• NDP removed state-action pairs directly from the domain instead of using Find-Acceptable-Plan. There are po-

tentially doubly-exponentially many states in the size of the domain [12], meaning possibly doubly-exponential

increase in the size of the determinization of the nondeterministic planning domain. Even in the case that a

single state is removed from the domain, identifying a state out of a set S must take on average log |S | space,

increasing the size of the determinized domain by an exponential amount in the size of the domain.

• As discussed in Appendix C, NDP used a plan integration routine which is unsound on problems with unsolv-

able states. NDP2 does not have this problem.

Theorem 2. Let CP be a sound and complete classical planner and P = (D, S 0,G) be a nondeterministic planning

problem with D = (L,O). Let S be the set of all states in L (i.e., S = 2F), F = {all ground atoms over L}, and A be

the set of all possible actions (i.e., all possible ground instantiations of the planning operators in O).

Then NDP2(D, S 0,G,CP) is sound and complete, and returns at most in |S |2 calls to Find-Acceptable-Plan.

For the proof, see Appendix A.

5. Abstractions and Compound Abstractions

In nondeterministic planning domains, some major representation and reasoning problems can occur if each action

has a very large number of possible outcomes. Probably the best-known example of this is the Robot Navigation

Domain [25, 37, 9, 28, 29], which is illustrated in Figure 5. In this domain, there is a building with several rooms, and

a robot that needs to go among these rooms to deliver packages. To go into or out of a room, the robot may need to open

a door, and there is a child (the “kid”) who can interfere with this by running around very quickly, nondeterministically

opening and closing some of the doors. This problem can be translated into a single-agent nondeterministic planning

problem by representing the kid’s actions as nondeterministic outcomes of the robot’s actions [25, 9].
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In a Robot Navigation domain with k “kid doors” (i.e., doors that the kid can open and close), each of the robot’s

actions can have 2k possible outcomes: one for each possible combination of open and closed kid doors. If a planner

has to plan for each of these outcomes separately, then this causes an exponential blowup in the amount of space

needed to represent the plan, and the amount of time needed to compute it.

Planners such as MBP [9], POND [7], and Yoyo [28] tackle this problem by using BDDs [8] to represent and

reason about sets of states rather than individual states. For example, consider the problem of finding a policy π

that will move the robot through door d1 in Figure 5, regardless of which kid doors are open and which ones are

closed. This policy will need to contain 2k state-action pairs: one for each possible combination of open and closed

kid doors. But in each of the 2k states, the only thing that matters is whether d1 is open or closed. A planner that uses

a BDD-based state representation can generate a much smaller hyperpolicy (see Section 2) such as

π∗ = {(S 1, a1), (S 2, a2)},

where S 1 = {all states in which the robot is in r1 and the door is open}, S 2 = {all states in which the robot is in r1 and

the door is closed}, a1 is the action of moving the robot from r1 to the corridor, and a2 is the action of opening the

door.

It is not feasible for NDP2 to use a similar BDD representation. That would require extensive modifications to

NDP2’s classical planner CP, which conflicts with the objective of allowing CP to be any classical planner. However,

we sometimes can get some of the same benefits, without having to modify CP at all, by preprocessing the planning

domain D to produce an abstracted planning domain D∗ in which some of the states represent sets of states in D.

Once this has been done, NDP2 can be called on D∗ rather than D.

For example, if D∗ contains two “abstract states” that represent the sets S 1 and S 2 above, then in D∗, NDP2 can

plan how to go through d1 with only two calls to CP. In this case, the solution to the planning problem is the same

hyperpolicy π∗ as in Eq. 5, but with S 1 and S 2 represented by abstract states rather than BDDs.

The conjunctive abstraction techniques in [30] were an initial version of that approach. However, that work did not

include a formal definition of conjunctive abstraction, and all of the modifications to the states and planning operators

were done manually. This left it unclear how or whether the approach could be generalized, and whether it could be

done automatically. In the following subsections, we develop an approach similar to conjunctive abstraction; but we

define it formally and provide pseudocode for the translations.

5.1. Language and States

Let D = (L,O) be a nondeterministic planning domain, and let L∗ be an augmented version of L such that

for every predicate symbol p of L, L∗ includes both p and a new predicate symbol p∗ of the same arity as p. If

α = p(c1, . . . , cn) is any ground atom of L, then α∗ = p∗(c1, . . . , cn) is the atom produced from α by replacing p with

p∗. We will call α∗ an abstraction of α and ¬α, because its purpose is for use in representing states in which α may

be either true or false.
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If s is a state and α < s, then according to the usual classical planning semantics, α is false in s and α is true in the

state s ∪ {α}. If we let s′ = s ∪ {α∗}, then s′ is an abstract state that is intended to represent both of the states s and

s ∪ {α}. More generally:

Definition 1. If s is a state and A = {α1, . . . , αk} is a set of ground atoms that are not in s, then s′ ∪ {α∗1, . . . , α
∗
k} is an

abstract state, and the set of states that are represented by s′ is {s ∪ A′ | A′ ⊆ A}. We let [s′] denote this set of states.

There is an important difference between abstract states and the belief states used in partially observable planning

problems. If an abstract state s′ contains the atom α∗, it does not mean that α’s truth value will be unknown at

execution time. Instead, s′ represents a set of fully observable states in which α may be either true or false, so that we

can plan for these states simultaneously.

Example. In the Robot Navigation domain, consider all states in which the robot and the packages are at the locations

shown in Figure 5, and all doors are closed except that d6 and d7 may each be either open or closed. There are four

such states:

s1 = {in(r1), loc(a,r1), loc(b,r4), loc(c,r1), open(d6), open(d7)}; (1)

s2 = {in(r1), loc(a,r1), loc(b,r4), loc(c,r1), open(d6)}; (2)

s3 = {in(r1), loc(a,r1), loc(b,r4), loc(c,r1), open(d7)}; (3)

s4 = {in(r1), loc(a,r1), loc(b,r4), loc(c,r1)}. (4)

Let

s∗ = {in(r1), loc(a,r1), loc(b,r4), loc(c,r1), open∗(d6), open∗(d7)}. (5)

Then the set of all states represented by s∗ is {s1, s2, s3, s4}.

5.2. Operators with Abstract Effects

We now will describe a way to rewrite planning operators to produce abstract states.

Let o be any operator in D, and let E = effects(o). Suppose that two of the conjunctions in E are e1 = e ∧ α

and e2 = e ∧ ¬α, where e is a (possibly empty) conjunction of literals and α is a literal not in e. In other words, one

possible effect of o is to make both e and α true, and another possible effect of o is to make e true and α false. Then

we can define the abstraction of E over {e1, e2} to be the set of conjunctions

E′ = (E − {e1, e2}) ∪ {e ∧ α∗ ∧ ¬α}.

The reason for including ¬α in this equation is because we will want to use E′ for the effects of an abstract operator,

and we need to ensure that such an operator will work correctly when executed in a state s that contains α. Recall that
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Algorithm 5: Compute a maximal abstraction of a set of conjunctions.

procedure Create-Abstract-Conjunction(E)1

while there is an abstractable pair of conjunctions e1, e2 ∈ E2

E ← the abstraction of E over {e1, e2}3

return E4

the intended meaning of α∗ is to assert that we are in an abstract state in which α may be either true or false, hence it

would be inconsistent for the abstract state to also contain an assertion that α is true.

We can perform the abstraction process iteratively, abstracting E′ over a pair of conjunctions to get E′′, abstracting

E′′ over another pair of conjunctions to get E′′′, and so forth until we get an abstraction E∗ of E that is maximal (i.e.,

E∗ cannot be abstracted any further).

In general, there may be more than one maximal abstraction of E. Algorithm 5 is a simple greedy algorithm to

compute one of them (we do not care which one). After the following example, we will define an abstract operator

whose effects are E∗.

Example. Consider a Robot Navigation problem in which there are two kid doors, d6 and d7. Here is a nondetermin-

istic action a to open d1 when the robot is in room r1:

pre(a) = in(r1) ∧ ¬open(d1), (6)

effects(a) = {e1, e2, e3, e4}, (7)

where

e1 = open(d1) ∧ ¬open(d6) ∧ ¬open(d7);

e2 = open(d1) ∧ ¬open(d6) ∧ open(d7);

e3 = open(d1) ∧ open(d6) ∧ ¬open(d7);

e4 = open(d1) ∧ open(d6) ∧ open(d7)}.

If we let E = effects(a), then E can be abstracted three times. The first abstraction is to replace e1 and e2 with

e5 = open(d1) ∧ ¬open(d6) ∧ open∗(d7) ∧ ¬open(d7),

the second one is to replace e3 and e4 with

e6 = open(d1), open(d6) ∧ open∗(d7) ∧ ¬open(d7),

and the third one is to replace e5 and e6 with

e7 = open(d1) ∧ open∗(d6) ∧ ¬open(d6) ∧ open∗(d7) ∧ ¬open(d7).
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This produces the maximal abstraction

E∗ = {open(d1) ∧ open∗(d6) ∧ ¬open(d6) ∧ open∗(d7) ∧ ¬open(d7)}. (8)

Definition 2. If o is a planning operator (or an action), then an abstraction of o is an operator (or action) o∗ such

that

1. pre(o∗) is the result of modifying pre(o) by replacing each negative literal ¬α with the conjunction ¬α ∧ ¬α∗;

2. effects(o∗) is a maximal abstraction of effects(o).

The reason for replacing negative literals with conjunctions in pre(o∗) is to prevent o∗ from being applied in cases

where applying it would be unsound. It is not necessary to replace positive literals with conjunctions, because no state

will ever contain both α and α∗.

Example. Let s1, s2, s3, s4, s∗ be as in Eqs. (1)–(5), and a be as in Eqs. (6)–(7). Then the following action a∗ is an

abstraction of a:

pre(a∗) = in(r1) ∧ ¬open(d1) ∧ ¬open∗(d1) (9)

effects(a∗) = {open(d1) ∧ open∗(d6) ∧ ¬open(d6) ∧ open∗(d7) ∧ ¬open(d7)}.

Thus γ(s1, a∗) = {s∗}.

In a∗’s precondition, the literal ¬open∗(d1) prevents a∗ from being applied to abstract states where applying it

would be unsound, such as the following state:

s∗∗ = {in(r1), loc(a,r1), loc(b,r4), loc(c,r1), open∗(d1), open∗(d6)}.

Before a∗ can be applied, [s∗∗] must first be split into two subsets: the states that satisfy open(d1) and the states that

don’t. a∗ will be applicable to the second subset but not the first one.

To provide a means for splitting abstract states into subsets, we will define, for each predicate symbol p of D, a

splitting operator split-p such that

pre(split-p) = {p∗(x1, . . . , xn)};

effects(split-p) = {¬p∗(x1, . . . , xn) ∧ p(x1, . . . , xn), ¬p∗(x1, . . . , xn)};

where n is the arity of p.

Example. Continuing the previous example, the operator split-open(x) has

pre(split-open) = {open∗(x)}; (10)

effects(split-open) = {¬open∗(x) ∧ open(x), ¬open∗(x)}.
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Thus, split-open(d1) will split s∗∗ into a pair of abstract states: one in which d1 is open, and one in which it is closed:

s∗1 = {in(r1), loc(a,r1), loc(b,r4), loc(c,r1), open(d1), open∗(d6)};

s∗2 = {in(r1), loc(a,r1), loc(b,r4), loc(c,r1), open∗(d6)}.

Note that although splitting operators resemble nondeterministic planning operators syntactically, their semantics

are quite different: they do not correspond to actions in D, and their possible outcomes do not model nondeterminism

in D. Instead, they simply perform bookkeeping operations for the purpose of translating sets of states (represented

as abstract states) back into ordinary states, and they do not appear in the solution policies returned by NDP2.

Definition 3. An abstraction of a nondeterministic planning domain D is a planning domain D∗ in which the set of

operators is O∗ ∪ Σ, where

• O∗ contains an abstraction of each planning operator o in D;

• Σ contains a splitting operator split-p for every predicate p in L such that p∗ appears in the effects of at least

one operator o ∈ O∗.

By extension, if P = (D, S 0,G) is a planning problem in D, then we will call P∗ = (D∗, S 0,G) an abstraction of P.

Since a solution π∗ to an abstracted problem represents a hyperpolicy, it is possible to extract an ordinary policy

π from it. Algorithm 7 in Appendix B is an algorithm for doing this. The basic idea is quite similar to a policy-

extraction algorithm that is provided with the MBP planner—and just as with MBP’s policy-extraction algorithm,

which is almost never used, there is no real need for Algorithm 7. Given any state s, finding the action to perform in s

is no harder to do with π∗ than with π, and in domains such as the Robot Navigation Domain, π∗ is much easier to use

since π is exponentially larger.

5.3. Compound Abstractions

In order to create abstract planning problems, we modified the planning operators’ effects to produce abstractions

of pairs of literals. But the preconditions of each planning operator still referred to the original literals rather than the

abstract ones, making it necessary to use splitting operators to map some of the abstract literals back to the original

literals before applying the planning operator. When certain conditions are satisfied, it is possible to modify some

of the planning operators’ preconditions to refer directly to the abstract literals, removing the need for the splitting

operators. We provide an algorithm to do this.

Let P∗ = (D∗, S 0,G) be an abstraction of a planning problem P = (D, S 0,G). Let Σ and O∗ be the sets of splitting

operators and planning operators in P∗. A splitting operator split-p ∈ Σ is compoundable with a planning operator

o ∈ O∗ if the following conditions hold:

• p occurs exactly once in pre(o), in a non-negated atom α;
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• Each conjunction e ∈ effects(o) contains at most one of α, ¬α, and α∗, and no other atom in effects(o) is

unifiable with α or α∗;

• p does not appear in G.

For each o ∈ O∗, we let Σo be the set of all splitting operators that are compoundable with o. For each splitting

operator split-p ∈ Σo, we let the compound operator split-p · o be an operator whose precondition is pre(o) with α

replaced by α∗, and whose effects are effects(o) with the following modifications:

• for each effect e ∈ effects(o) that does not contain α∗ or ¬α, replace e with e ∧ ¬α∗ ∧ α;

• for each effect e ∈ effects(o) that contains ¬α, replace ¬α with ¬α∗;

• add an additional effect ¬α ∧ ¬α∗, to represent the case where split-p’s nondeterministic outcome is ¬α ∧ ¬α∗

(whence o is inapplicable).

Example. Let a∗ be as in (9), and split-open be as in (10). Then split-open(d1) and a∗ are not compoundable, because

pre(a∗) contains ¬open(d1) rather than open(d1). But consider the following action b∗, which is an abstraction of an

action for exiting room r1 through door d1:

pre(b∗) = in(r1) ∧ open(d1);

effects(b∗) = {¬in(r1) ∧ in(hall) ∧ open∗(d6) ∧ open∗(d7)}.

In most Robot Navigation problems, the goal G consists entirely of package locations, so that the open predicate does

not occur in G, whence split-open(d1) is compoundable with b∗. The compound operator split-open(d1) · b∗ has

pre(split-open(d1) · b∗) = in(r1) ∧ open∗(d1);

effects(split-open(d1) · b∗) = {¬in(r1) ∧ in(hall) ∧ open∗(d6) ∧ open∗(d7) ∧ ¬open∗(d1) ∧ open(d1),

in(r1) ∧ ¬open(d1) ∧ ¬open∗(d1)}.

If two splitting operators split-p and split-q are both compoundable with o, then it is not hard to show that split-p

is compoundable with split-q · o.

If o ∈ O∗, and if Σ′ = {split-p1, . . . , split-pk} is an ordered set of splitting operators that are compoundable with o,

then we will define

Σ′ · o = split-p1 · split-p2 · . . . · split-pk · o.

We will define

O∗∗ = {Σ′ · o | o ∈ O∗ and Σ′ ⊆ Σo},

where Σo = {all splitting operators in Σ that are compoundable with o}, and where we assume an arbitrary sequential

order on the operators in each subset Σ′ of Σo. Thus O∗∗ includes all of the compound operators and all of the operators
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Algorithm 6: Compute a compound abstraction of a planning problem. Σ is the set of splitting operators in D∗,

and O∗ is the set of non-splitting planning operators in D∗.

Procedure Create-Compound-Operators(O∗,Σ)1

O∗∗ ← O∗2

foreach planning operator o ∈ O∗ do3

B← { all abstract predicates in pre(o)}4

foreach set of abstract predicates B′ ⊆ 2B do5

o∗∗ ← split-p1 · split-p2 · . . . · split-p|B′ | · o, where |B′| is the size of B′ and p1, p2, . . . , p|B′ | ∈ B′6

insert o∗∗ into O∗∗7

return O∗∗8

in O∗. Let ΣNC be the set of all splitting operators that are non-compoundable, i.e., each split-p ∈ ΣNC either p appears

in the goal G or p is in the precondition of some operator o but is not compoundable with o. Then the planning

problem P∗∗ = (L,O∗∗ ∪ ΣNC ,G) is a compound-abstract version of P∗.

Algorithm 6 is a high-level description of our procedure to automatically create compound abstractions of plan-

ning operators given a set of abstract predicates and the splitting operators for those predicates in the planning domain.

For each planning operator o in the planning domain, Algorithm 6 first generates all of the abstract predicates that

appear in the preconditions of o in the set B (Line 4). For each subset B′ of B, the algorithm then creates a compound

operator o∗∗ from the predicates in that subset and the planning operator o. The rationale behind considering every

subset is for the sake of completeness: the compound abstraction must create a planning operator for each possible

case where some of the literals in o’s precondition are abstracted and the rest are not.

For each abstract predicate p in B′, Algorithm 6 first finds the splitting operator for p and then creates a compound

abstraction of o with that splitting operator (Line 6). The compound operator o∗∗ is then inserted into the set of

operators to be returned by the algorithm (Line 7).

Algorithm 8 in Appendix B is an algorithm to translate a compound-abstract solution π∗∗ for P∗∗ into an abstract

policy π∗. The basic idea is quite simple; for each action in π∗∗ that is compound, the algorithm separates it into its two

component pieces (a splitting action and a ordinary abstract action). By first running Algorithm 8 and then running

Algorithm 7, one could extract an ordinary policy π. However, as we pointed out at the end of Section 5.2, there is no

real need to do this since the abstract policy π∗ is easier to work with.

6. Experimental Evaluation

We implemented NDP2 in Common Lisp, and compared it experimentally with MBP [9] in six fully-observable

nondeterministic planning domains that were chosen to present a variety of different issues for the planners to deal
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with. As NDP2’s classical planner in these experiments, we used FF [21], since it was the classical planner that had

worked best with NDP [30].

For each planning domain, we tested the planners on a large suite of randomly-generated test problems of multiple

sizes, for a total of about 4500 planning problems. We ran both NDP2 and MBP on Intel Xeon 2.33 GHz processors

running Red Hat Enterprise Linux 5.5. We gave both planners 2 hours and 2 GB of RAM to complete each planning

problem.

We attempted to broaden our comparison to include POND [7] and GAMER [11], but were unable to do so. POND

does not support planning problems that require cyclic solutions. In GAMER we ran into several implementation

issues that prevented it from creating proper ground versions of our problems. Thus, despite very helpful discussions

with the authors of these planners, we were not able to run them on the problems in our test suite.

Three of the planning domains are everywhere-solvable, and all three of them are well-known from previous

experimental studies:

• In the Robot Navigation domain with 7 kid doors (see Section 5), each action has 27 possible outcomes. Thus in

order to avoid a huge combinatorial explosion in the search space, it is essential for the planner to partition the

states into a small number of classes and plan over those classes, rather than reason about each state individually.

MBP’s BDD representation enables it do such reasoning quite well in this domain[37, 27], and we wanted to

see whether our abstraction techniques would work well enough to make NDP2 competitive with MBP.

• In the Hunter-Prey domain [2, 10], each action has roughly 5n outcomes, where n is the number of prey. Thus,

although the number of locations are polynomial, the amount of nondeterminism for the hunter after each of its

move increases combinatorially with the number of prey in the domain. Our abstraction techniques do not work

in this domain, and we wanted to see how this would affect NDP2’s performance.

• In the Nondeterministic Blocks World [26], reasoning over sets of states is not particularly useful, but there are

a large number of goal interactions (e.g., deleted-condition interactions) to deal with. Many classical planners

are good at reasoning about such interactions, and we wanted to see if NDP2 could take advantage of this.

In everywhere-solvable planning domains, NDP2 calls its classical planner at most once per reachable state, be-

cause the classical planner (assuming it is complete) will never return failure. But in planning domains that contain

unsolvable states, NDP2 may need to call the classical planner many times per state. To see how this would affect

NDP2’s performance, we compared NDP2 with MBP on three planning domains that contained many unsolvable

states:

• The Exploding Blocks World has been used in several of the International Planning Competitions, e.g., [44, 6].

For most planning problems in this domain, the solution must include actions that would be redundant in any

solution to the determinized version of the problem; and since the classical planner is unlikely to generate plans

that include those redundant actions, the classical planner will usually return plans that lead to unsolvable states
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in the original problem P. But this difficulty is mitigated by the small branching factor of the nondeterminism:

unlike the competition version of this domain, we only had one explosive block.

• The Tire World has also been used in several of the International Planning Competitions, e.g., [44, 6]. Like

the Exploding Blocks World, it requires solutions whose actions are redundant in the determinization. On one

hand, Tire World has fewer available actions per state than the Exploding Blocks World; but on the other hand,

the size of the smallest solution to Tire World problems grows exponentially with the number of locations in

the domain.

• Lost in Space is a new domain that we developed to test NDP2’s subroutines for avoiding unsolvable states.

For planning problems in this domain, the shortest solution for the determinized planning problem almost

always leads to unsolvable states in nondeterministic planning problem. Thus NDP2 must repeatedly modify

its determinization of the planning domain, in order to force the classical planner to avoid using any of the

problematic actions.

In the Robot Navigation domain, we tested the planners on the problems in our test suite, and also on abstract

and compound-abstract versions of the same problems. We used the translation algorithms (Algorithms 5 and 6) to

generate these versions of the problems. We did not bother to develop computer implementations of those algorithms,

but instead ran them by hand.

For the other planning domains in our experiments, we did not run separate experiments on abstract and

compound-abstract versions of the problems, because those versions of the problems are identical to the original

versions. The abstraction and compound-abstraction techniques modify a planning operator only when some of the

operator’s nondeterministic outcomes differ by a single literal—and in those domains, every pair of nondeterministic

outcomes differ by more than one literal.

6.1. Experiments with Everywhere-Solvable Domains

Robot Navigation [9]. The first set of experiments were in the Robot Navigation domain described previously, with

k = 7 (i.e., all 7 doors were kid doors). We varied the number of packages n from 1 to 10. For each value of n,

we measured each planner’s average CPU time on 100 randomly-generated problems. As in [38], MBP’s CPU times

include both its preprocessing and search times. Omitting the former would not have significantly affected the results,

because the preprocessing times were never more than a few seconds, and usually below one second.

In addition to testing the algorithms on Robot Navigation problems, we also tested them on abstract and

compound-abstract versions of the problems. We used the translation algorithms (Algorithms 5 and 6) to generate

these versions, performing these algorithms manually rather than running them on the computer. Those algorithms

are easy to perform by hand; and furthermore, the Robot Navigation domain was the only one of our experimental

domains in which we needed to use them. In all of the other planning domains in our experiments, the abstract and

compound-abstract versions are identical to the original domain.
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Figure 6: Average CPU times on Robot Navigation problems with 7 kid doors, as a function of the number of packages.

Figure 6 shows the average CPU times for all cases where a planner solved all 100 problems (a meaningful average

is impossible if the planner solves some of the problems but not all of them). The labels MBP and NDP2 are for the

original planning problems, MBP-A and NDP2-A are for the abstract versions of the problems, and MBP-CA and

NDP2-CA are for the compound-abstract versions of the problems. We discuss the results below.

MBP did worse on the abstract versions of the problems than on the original problems, because the splitting

operators increased the branching factor of MBP’s search space by creating branches in MBP’s BDD structure in

places where MBP would not ordinarily have created branches. MBP did better on the compound-abstract problems

than the abstract ones, because the compound operators alleviated the search-space blowup caused by the splitting

operators.

Surprisingly, MBP did better on the compound-abstract versions of problems with 5 or more packages than on the

original versions of those problems. This puzzles us, but we suspect the compound-abstraction helped MBP to focus

its search on parts of the search space that were relevant for finding a solution.

On the original planning problems, where NDP2 had to reason about each of the 27 outcomes of each action, its

performance was quite poor. It solved all of the 1-package problems, and some of the 2- and 3-package problems, but

no problems larger than that. As we had hoped, NDP2 did better on the abstracted versions of the problems: it solved

all of the problems with 3 or fewer packages, and some problems with 4 to 7 packages. But this was still much worse

than MBP’s performance, and we believe it is because FF’s hill-climbing algorithm returned plans with extraneous

split actions that produced needless branches in the policy.

In the compound-abstract planning problems, NDP2 did dramatically better: it completed problems with up to 10

packages, and it outperformed MBP on problems with 7 or more packages. In the original problems, NDP2 had to
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Figure 7: Average CPU times in seconds in Hunter-Prey problems with

one prey, as a function of grid size.
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Figure 8: Average CPU times in seconds in Hunter-Prey problems as a

function of the number of prey, on a 5 × 5 grid.

call FF roughly 27 times for every step of the initial weak solution—but in the compound-abstract problems, NDP2’s

number of calls to FF was less than twice the number of steps in the initial weak solution.

Hunter-Prey [2, 10]. In this domain, the world is an n×n grid in which a hunter wants to catch one or more prey. The

hunter has five possible actions; move north, south, east, or west, and catch (the latter is applicable only when the

hunter and prey are in the same location). Each prey has also five actions: the four movement actions plus a stay-still

action. Like the kid in the Robot Navigation domain, the prey are not represented as separate agents: instead, their

possible actions are encoded as nondeterministic outcomes of the hunter’s actions.

Figure 7 shows running times when there is just one prey and the grid size varies from 2× 2 to 8× 8, and Figure 8

shows running times when the grid size is fixed at 5 × 5 and the number of prey varies from 1 to 5. Each data point is

the average of 100 randomly generated problems.

MBP’s running times were quite good, because MBP’s BDDs did quite well at compressing the search space.2 By

the nature of the domain, any strong cyclic policy must cover most of the problem’s reachable states, yet MBP could

use a single BDD to represent the set of all states in which the hunter needed to move in a particular direction.

In contrast, NDP2 had to reason about each of those states separately. When there was just one prey, the number

of states, and thus NDP2’s running time, grew polynomially with the number of locations. But the number of states

grew exponentially with the number of prey, so NDP2 did not solve any problems with more than one prey.

Nondeterministic Blocks World [26]. The nondeterministic Blocks World is like the classical Blocks World, except

that an action may have three possible outcomes: (1) the same outcome as in the classical case, (2) the block slips out

2MBP did not work as well on Hunter-Prey problems in [27, 29], because those papers used a version of the Hunter-Prey domain in which prey

could not occupy adjacent squares—a restriction that interfered greatly with the effectiveness of MBP’s BDDs. We did not use such a restriction in

this paper.
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Figure 9: Average CPU times in the nondeterministic Blocks World, as a function of the number of blocks.

of the gripper and drops on the table, and (3) the action fails completely and the state does not change. Neither of the

abstraction techniques can be used in this domain, for the same reason as in the Hunter-Prey domain.

Figure 9 shows the planners’ average CPU times in this domain, as a function of the number of blocks. Each data

point represents the average running time on 100 random problems. NDP2 outperformed MBP for three reasons:

1. There were no large sets of states that could be clustered together; hence MBP’s BDD-based representation

could not make much difference.

2. MBP did not exploit the heuristics used in the classical planners, hence MBP searched most of the state space

in most planning problems.

3. Every action has three outcomes, but they are structured so that at least one of them (and often two) lead to

a state already seen by the planner. Thus the number of calls NDP2 must make to FF scales linearly with the

number of blocks in the problem.

6.2. Planning Domains with Unsolvable States

Exploding Blocks World [6]. The nondeterministic Exploding Blocks World is much like the classical Blocks World

except that there may be one or more exploding blocks, which may or may not destroy the table or block underneath

them when they are put down. In order for a problem to have a solution, there must be enough accessible spare blocks

to defuse the exploding blocks. In any solution, a spare block must be uncovered and placed on the table before an

exploding block is moved. Then the exploding blocks must be repeatedly placed on the spare until it explodes, making

it safe to move the exploding block elsewhere.

Figure 10 shows the completion times for each planner when there is a single exploding block and a single spare

block, with a total of n + 1 blocks in the initial state, and n blocks in the goal state. There were 100 planning problems

for each number of blocks between 3 and 8. As with the previous blocks world variant, NDP2 outperformed MBP for

all but the smallest problems. Most likely, MBP performed poorly in the exploding blocks domain for much the same
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Figure 10: Average CPU times in Exploding Blocks World, as a function of the number of blocks.

reasons it performed poorly with nondeterministic blocks world problems, that is the lack of a heuristic function and

lack of clusterable states.

In the exploding blocks world, the only nondeterministic actions are actions that move unexploded blocks. Thus

the amount of nondeterminism is lower than in the nondeterministic blocks world, so we might expect NDP2 to

perform much better than it did on the nondeterministic blocks world problems. However, moving an exploding block

before defusing it with the spare block leads to an unsolvable state, and there is no reason for FF to avoid this sequence

of events. Even when an exploding block is in hand and a spare block is clear and on the table, there are as many

actions available in the initial state which lead to unsolvable states as there are clear blocks, and NDP2 may need

to rule out each action in turn. Somewhat surprisingly, the relative lack of nondeterminism balances out with the

propensity to find unsolvable states, and NDP2 performs similarly in both the exploding and nondeterministic blocks

world variants, despite vastly different structures in their nondeterminism.

Tire World [6]. Our Tire World variant consists of a triangular grid of connected places with tires interspersed between

them, and the goal is to move the car from the initial location to a goal location. The car may get a flat tire after every

move, meaning the car must carry a spare tire, and replace it once it is consumed. In our experiments, we added tires

at random to the initial state until the problem was solvable.

A before, we tested the planners on 100 problems of each size. Figure 11 shows how many problems of each size

the planners solved, and Figure 12 shows the average CPU times on the problem sizes in cases where the planners

solved all problems of that size. MBP solved every problem with 3 to 21 locations, and generally solved these

problems faster than NDP2; but did not solve any problem with more than 21 locations. NDP2 solved all problems

with 3 to 10 locations, most of the problems with 15 to 45 locations, and some problems with up to 66 locations.

In each Tire World problem, the number of states in the smallest strong cyclic solution is exponential in the length

of the shortest solution to the determinized problem. Furthermore, many times the shortest determinized solution leads

through an area where there would not be enough spare tires if any flats occur, hence the nondeterministic domain
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Figure 11: Completed problems (out of 100) in Triangle Tire World, as a function of the number of locations.
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Figure 12: Average CPU time in Triangle Tire World, as a function of the number of locations, for the cases (see Figure 12) where the planner

completed all 100 problems of that size.

contains an exponential number of unsolvable states (not all of which are immediately apparent).

This means NDP2’s running time is potentially doubly-exponential due to the number of calls it must make to CP:

exponential in the length of the shortest determinized solution, and exponential in the difference in length between

the shortest successful path to the goal if no flat tires occur, and the length of the shortest successful path to the goal

if a flat tire occurs at every move. Consequently, for the problems of sizes 15 and 21, there were a few problems

that NDP2 did not solve within the time limit, even though MBP solved all 100 problems of each size. This is why

Figure 12 contains data points for MBP but not NDP2 at those sizes.

On the other hand, many of the problems have solutions that differ only slightly from the shortest path, and NDP2’s

performance is “only” exponential in the length of that path, and so NDP2’s indirect use of FF’s heuristic function

enabled it to solve some of the planning problems all the way up to size 66, even though MBP could not solve any

problems larger than size 21.

26



●

●

●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ●

1e
−

02
1e

+
00

1e
+

02
●

●

●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ●

5 15 25 35 45 55 65 75 85 955 15 25 35 45 55 65 75

Number of Locations

A
ve

ra
ge

 C
P

U
 T

im
es

 (
se

co
nd

s)

● NDP2
MBP

Figure 13: Average CPU times of MBP and NDP2 on problems (out of 20) in Lost in Space, as a function of the number of locations.

Lost in Space. As we mentioned earlier, our original purpose in developing the Lost in Space (LiS) domain was

to test NDP2’s subroutines for avoiding unsolvable states. But the domain has another property that made it useful

for our experiments: the domain is simple enough that we can use it to gauge the worst case performance of the

Find-Acceptable-Plan subroutine.

A planning problem instance in the LiS planning domain is a simple line of locations, with the agent at one end

and the goal at the other. The solution to an LiS planning problem is a policy that moves the agent from its initial

location to the goal. The agent can move between locations by using one of two actions: walking between connected

locations; and teleporting between any two locations, which can succeed or leave the agent lost and unable to move.

This means that for a problem with n locations, there are n + 1 states, n2 + 2n − 2 actions, and a single correct policy.

Since the teleport action in our determinization of LiS always leads to the goal, FF will almost always return plans that

use it. Thus NDP2 should have to make O(n3) calls to the classical planner to develop a policy for an LiS planning

problem.

We ran both NDP2 and MBP 20 times on each of 20 problem instances with 5 to 100 locations. There is only

one problem instance for each problem size in the LiS planning domain, but we ran the algorithms 20 times on each

instance in order to reduce statistical variations in the running times—especially the running times of NDP2’s calls to

FF, which makes some random choices that cause its running time to vary.

NDP2 was able to solve all problems. MBP did not solve problems with more than 80 locations. In addition to the

results above, we also report the average CPU times of the planners in our experiments. Figure 13 shows the average

CPU time for each planner per size of problem. As expected, FF consistently used the determinized version of teleport

for every state until ConstrainProblem removed that option. Both NDP2 and MBP showed sub-exponential growth of

CPU time in the number of locations, though NDP2 has a slower growth rate, overcoming its initial disadvantage for

problems with 70 or more locations.
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6.3. Summary and Discussion of the Experimental Results

Here is a quick summary of the results in each domain, along with our understanding of the reasons for those

results:

• In the Robot Navigation domain, the amount of nondeterminism was extremely high. Here, NDP2’s perfor-

mance against MBP depended on how good a way we gave it to deal with the nondeterminism. Without

abstraction, it did quite badly. With ordinary abstraction it did a little better, and with compound abstraction it

did much better.

• In the Hunter-Prey domain, our abstraction techniques weren’t applicable, so we couldn’t give NDP2 a way to

deal with the nondeterminism in this domain. Consequently, NDP2 did badly.

• In the Nondeterministic Blocks World and the Exploding Blocks World domains, the amount of nondeterminism

was relatively small, and FF’s search heuristics worked well. Thus NDP2 did much better than MBP.

• In the Triangle Tire World domain, NDP2’s performance on each problem depended on whether the plans

returned by FF contained “bad” actions (i.e., actions that looked good in the determinized domain but led to

unsolvable states in the nondeterminized domain). Consequently, NDP2’s performance is in some ways better

than MBP’s (e.g., how many problems it could solve), and in some ways worse than MBP’s (e.g., the amount

of CPU time it used).

• What happened in the Lost in Space domain was similar to what happened in the Triangle Tire World domain.

But in this case, the number of bad actions in this domain is much smaller, so NDP2 did much better overall.

7. Related Work

7.1. Using a Classical Planner as a “Black Box”

There have been several other works that proposed to use classical planning algorithms as a “black box” to generate

solutions for non-classical planning problems. The most notable one is FF-Replan [42], which uses the FF planner

[21] to first generate a plan (i.e., a weak policy) for a determinization of a Markov Decision Process (MDP). Markov

Decision Processes (MDPs) are like nondeterministic planning domains in the sense that each action can have more

than one possible outcome, but they differ from the latter in that each possible outcome of an action has a probability

attached to it; costs and rewards are attached to the actions and states, respectively.

FF-Replan introduced several determinization strategies for probabilistic PDDL actions; among which, all-effects

determinization is the basis for our determinization mechanism in NDP2. While FF-Replan is an on-line replanning

algorithm that ensures a single execution to be realized and only works for everywhere solvable planning problems,

NDP2 generates, offline, a solution for all possible outcomes of the nondeterminism in the execution and it can deal
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with planning problems that are not everywhere solvable. Both approaches have different advantages and disadvan-

tages as discused in the literature several times previously. NDP2 differs from FF-Replan in several ways: NDP2 can

use any classical planning algorithm, unmodified; it does offline generation of a complete solution policy rather than

online generation of a single execution trace; and it finds strong cyclic solutions in nondeterministic domains.

There are several relatively recent MDP planners that use a classical planner (typically FF) as a black-box. An

example for this class of MDP planners include RFF [41]. Like FF-Replan, RFF uses FF to generate weak plans.

It then runs several Monte-Carlo simulations to determine the probability of the execution of a policy π ending in a

non-goal π-result of an intiial state. RFF then uses FF to generate weak plans from those states, integrates them into

the policy, and reruns the Monte-Carlo simulations. RFF repeats this process until the probability of an execution

failing falls below a fixed parameter. Although both RFF and NDP2 can handle dead-ends in planning domains and

incrementally build the policy, NDP2 does so by explicitly and symbolically reasoning about them; RFF does so by

reasoning about failure probabilities. Thus, each planner has access to different kinds of knowledge and models.

FF-Hindsight [43] is also an MDP planner inspired by FF-Replan which uses FF as part of its heuristic and

generates weak solutions to a planning problem. For each state evaluated, FF-Hindsight creates sets of time-varying

classical planning problems and uses FF to find which portions are solvable. This is an optimistic measure of how

likely it is that the agent can reach the goal from this state. FF-Hindsight then uses the solvability estimate to pick

which action is most likely to lead to the goal. Although the idea of using heuristics to generate execution paths in

FF-Hindsight is similar to that of FF-Replan and NDP2, FF-Hindsight differs from NDP2 in that it does not generate

strong cyclic solution policies.

There are also other approaches for planning with nondeterministic actions based on the idea of classical planners.

The work described in [1] is also for non-probabilistic settings, but it’s aimed for contingency planning in partial-

observable domains. The work of [34] uses determinizations of probabilistic actions and use classical planners to

generate sequences of actions for execution.

FIP [14] is a recent NDP-inspired planner which shows a number optimizations that can be done if the classi-

cal planner is treated not as a black box, but as a glass box, directly incorporated into the planner. Optimizations

include directly removing state-action pairs from the domain (eliminating the need for Find-Acceptable-Plan), pre-

ferring deterministic operators, and stopping the search for a weak plan when a solved state is found. An additional

optimization, the goal-alternative search, would be easy to implement in NDP2, but it requires an additional call to

Find-Acceptable-Plan, which is already the bottleneck in most of our experiments. Since FIP is based on NDP, it has

NDP’s plan incorporation bug described in Appendix C, but it should be straightforward to incorporate our fix for

this bug into FIP.

Another recent work, described in [33], has made incremental extensions to some of the ideas in NDP. This work

introduces a definition of solution quality, and PrP looks for policies that are optimal according to that definition.

Another difference is that PrP’s implementation is based on the SAS+ formalism, whereas NDP2’s implementation

uses a non-probabilistic version of PPDDL.
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The planner described in [22] generates cyclic solutions to partially observable planning problems by successively

producing linear plans (i.e., weak policies) and combining those plans into a conditional and cyclic plan, in a way

similar to our work, However, this work cannot use classical planners as NDP2 does; instead, it requires substantially

rewriting those planners for bookkeeping for policy generation.

The GAMER planner [11] translates nondeterministic problems into a PDDL-like language for describing two-

player games and uses a game solver to find a solution. GAMER performed well in ICAPS-08 planning competition,

but a bug in its grounding process prevented us from running it in our experiments.

7.2. Other Planning Techniques for Nondeterministic Planning Domains.

Probably the first work on planning in fully-observable nondeterministic domains is described in [15], which is a

breadth-first search algorithm over an AND-OR tree. Other early works on fully-observable nondeterministic domains

include the Cassandra planning system [39], CNLP [36], Plinth [18], and UCPOP [35], and QBFPlan [40]. However,

all these works describe a special-purpose planning algorithm for nondeterministic planning domains, and thus, do

not focus on using classical planners as a black box.

One of the earliest attempts to use model-checking techniques for planning under nondeterminism was first in-

troduced in the SimPlan planner of [25]. SimPlan is based on model checking techniques that work over explicit

representations of states in the state space; i.e., the planner represents and reasons explicitly about every state vis-

ited during the search. Symbolic model-checking approaches to planning in nondeterministic domains were first

introduced in [17, 9]. MBP is one of the best planners that uses Binary Decision Diagrams (BDDs) for this purpose.

UMOP [23, 24] exploits some of the ideas from the MBP planner, as a starting point for multi-agent planning,

and combines BDDs with a heuristic-search algorithm for strong and strong cyclic planning [24]. Heuristic search

provides some performance improvements over unguided BDD-based planning, such as in MBP on some simpler

examples than MBP was tested on. We have not compared UMOP to NDP2 in this paper because of this reason; the

authors of UMOP discussed and suggested some possibilities for scaling their approach to larger problems.

ND-SHOP2 [26] uses HTN planning techniques to control the search space in nondeterministic planning. ND-

SHOP2 showed how HTN knowledge could improve nondeterministic planning performance, and performed com-

petitively with MBP. Yoyo [29] extended this line of work by combining HTN planning with a compact BDD state

representation to get several orders of magnitutde in performance gains over ND-SHOP2 and MBP. Both of these

planners use domain-specific planning knowledge to organize the search space while generating solution policies.

Unlike them, NDP2 relies solely on the classical planner’s domain-independent heuristic search capabilities.

Planners such as MBP [4], POND [7] and Contingent-FF [20] can generate solution policies for partially observ-

able planning problems. Most of them cannot generate cyclic solutions, except for an extended version of MBP [3],

which can generate strong cyclic solutions to a class of partially observable problems. We believe the ideas in NDP2

could also be generalized to partial observability.
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Finally, [13] reports an approach for analyzing deterministic planning domains and identifying structural features

and dependencies among those features using model-checking techniques. Although this approach has some similar-

ities to our pairwise effect abstraction technique, their approach focusses on using the results of a domain analysis

to prune the search space whereas we use pairwise effect abstractions for state-space compression. It would be in-

teresting to investigate as a future work if the domain analysis method can be used for identifying more general and

effective features for state compression.

7.3. A Final Note on MDPs.

MDP problems for control theory and operations research do not usually include a notion of goal states; when

they do, they are usually formulated as stochastic shortest-path (SSP) problems. See [32] for an excellent survey of

MDP planning and planning techniques from an AI perspective.

In SSPs, every action has nonzero probabilities for all of its outcomes, whence the probability that we’ll never

leave the cycle is zero. Algorithms for solving SSP problems attempt to compute a policy that will achieve the goals

with probability 1 [31]. Note also that this property is analogous to the “fairness” assumption in strong-cyclic solutions

in nondeterministics planning domains [9] (and as also defined in Section 2.1 in this paper).

SSPs can be solved either by MDPs or by nondeterministic planning models, and the planners using the latter

have been shown empirically to be more efficient on such problems [5]. The primary reason is that planners that use

nondeterministic models do less search than MDP planners because they are not looking for optimal solutions.

8. Conclusions

NDP2, like the earlier NDP algorithm [30], solves nondeterministic planning problems by calling a classical

planner on a sequence of deterministic planning problems, and using the classical planner’s plans to construct a

strong cyclic solution policy for the nondeterministic problem. However, in order to avoid NDP’s difficulties with

unsoundness and combinatorial explosion in the presence of unsolvable states, NDP2 has a different (and provably

correct) way of dealing with unsolvable states.

We also have provided algorithms to translate a planning problem P into two different “abstract” versions of P in

which there are states that represent sets of P’s states. These overcome another limitation of [30], which described

a similar “conjunctive abstraction” technique without providing an algorithm to compute it. The well-known MBP

planner uses BDDs to compute abstractions that are significantly more powerful than ours—but since our abstractions

do not use BDDs, they preserve NDP2’s ability to be used with any classical planner.

NDP2’s primary advantage over MBP is that MBP uses none of the sophisticated search heuristics used in classical

planners, hence can sometimes visit many more states than it needs to. Since NDP2 uses a classical planner as a

subroutine, the classical planner’s search heuristics can sometimes help NDP2 to visit significantly fewer states than

MBP. This happened in the Robot Navigation domain and the Nondeterministic Blocks World, where NDP2 did much

better than MBP.
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NDP2’s main disadvantage compared to MBP is that in many of the cases where MBP’s BDDs can represent a

set of states as a single abstract state, our abstraction algorithms cannot do so. Thus there are cases where NDP2

must plan for different states separately but MBP can plan for the entire set of states at once. This happened in our

Hunter-Prey experiments, where MBP performed much better than NDP2.

Our experimental results with Exploding Blocks World, Tire World, and Lost in Space showed that NDP2’s tech-

nique for avoiding unsolvable states works quite well: NDP2 completed nearly every problem that MBP completed,

and many more that MBP could not complete. In the Exploding Blocks World and Lost in Space domain, where both

planners completed enough problems to compare speed, NDP2 completed large problems much faster than MBP.

Future work. Since MBP’s BDD-based abstractions give it an advantage in some cases, and NDP2’s access to classi-

cal search heuristics gives it an advantage in other cases, it might be possible to obtain better performance than both

MBP and NDP2 by writing an NDP2-like planner that incorporates an FF-like algorithm operating over BDDs, or by

finding other ways to combine BDDs and relaxed planning graphs. Existing work such as [7] has already investigated

ways to combine planning graphs and BDDs, but these approaches typically require complicated and potentially ex-

ponential representations due to the mutex conditions in planning graphs, which degrade the abstraction capabilities

in BDDs. Since FF’s relaxed planning graphs do not include mutex conditions, they might be a better fit for BDDs.

Further improvements may also be achievable by coupling NDP2 and FF more tightly. When NDP2 calls FF, it

must wait until FF reaches a goal. If we could intervene to stop FF as soon as it reaches a state that is already part of

NDP2’s current partial solution, this would provide a substantial speedup because it would prevent FF from wasting

time retracing large parts of the solutions that it found during the previous times NDP2 called it.

We note that some MDP planning algorithms (e.g., LAO* [19]) can generate cyclic solution policies. With proper

modifications to these planners and their inputs, it would be interesting to compare them with NDP2 and classical

planners. This may provide a path toward developing an NDP2-like algorithm for MDPs.
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Appendix A. Theoretical Properties

This appendix provides the theoretical properties of the NDP2 planning procedure, its subroutines

Find-Acceptable-Plan and ConstrainProblem, and the abstraction and compound abstraction techniques. Most of the

lemmas in this appendix are not mentioned in the body of the paper, but they are used in the proofs of the theorems.

Lemma 1. A nondeterministic planning problem P = (D, S 0,G) is everywhere weakly solvable iff it is everywhere

strong cyclically solvable.

Proof. (⇒): Let s0, . . . , sk be the set of states reachable from s0. Since P is everywhere weakly solvable, let

p0, p1, . . . , pk be a set of weak solutions for each si.

Let π0 be the policy formed by setting π0(s) = a for every (s, a) ∈ p0. By construction, if π0(s) is defined, there is

a goal π0-descendant of s.

Let πi+1 be the policy formed by setting πi+1(s) = πi(s) for every state s such that πi is defined, and πi+1(s) = a for

every state such that πi(s) is not defined and (s, a) ∈ pi+1. Again, by construction, every state for which πi+1 is defined

has a goal πi+1-descendant.

Since πk-descendants of s0 are a subset of the states reachable from s0, every πk descendant of s0 has a path to the

goal, and πk is a strong cyclic solution to P.

(⇐): Suppose P is everywhere strong cyclicly solvable and let s be a state in P reachable from S 0. If P were not

everywhere weakly solvable, then there would exist at least one state s that is reachable from s but there is no path

from s to a goal. But this is a contradiction by definition of strong cyclic solutions. 2

Lemma 2. For every state s in a nondeterministic planning problem P, s is weakly solvable in P if and only if it is

solvable in P.

Proof. Let P = (D, {s0},G) be a nondeterministic planning problem, and P be a determinization of P.

(⇒): Let s be a state in D and suppose (D, {s},G) has a weak solution π = {(si−1, ai)}ni=1 where s0, . . . , sn is the

sequence of states produced by π in D. Let p = 〈a′1, . . . a
′
n+1〉 be a plan such that each a′i is a determinization of ai and
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γ(si−1, a′i) = {si} since π is a weak solution for (D, {s},G). By construction, the plan p is a solution for the classical

planning problem (D, s,G).

(⇐): Suppose P has a solution plan p = 〈a1, . . . , an〉. It follows that from the way determinizations are constructed,

π is a weak solution for P: if ai is applied in the state si−1 in p, then (si−1, a′i) ∈ π such that ai ∈ a′i . 2

Lemma 3. Let CP be a sound classical planner that is guaranteed to terminate. Then Find-Acceptable-Plan returns

in at most |S | · |A|+ 1 calls to CP, where S and A are the set of states and actions in the classical domain, respectively.

Proof. To prove the bounds in the lemma, we need to show that after every call to CP, if Find-Acceptable-Plan did

not exit then it adds a new state-action pair to B. From this it follows that since there are only a finite number of states

and actions, Find-Acceptable-Plan must eventually return.

Note that the only time a state is removed from S is when CP returns failure, after which Find-Acceptable-Plan

adds the state to K (Line 21). This means that once NDP2 adds a state to S , it either stays in S or is moved to K.

Since line 12 forbids adding a state to S which is already in either S or K, every state in S is unique, and we never

add a state to S more than once.

Now we need to show that after every call to CP, Find-Acceptable-Plan either returns success or failure, or adds a

new state-action pair to B. Look at what happens when CP returns a plan 〈a0, . . . , an〉 from the current state s to the

goal, going through states 〈s1, . . . sn+1〉. Since CP is sound, sn+1 is a goal state. If Find-Acceptable-Plan accepts the

whole plan, Find-Acceptable-Plan will return success on the next iteration.

Suppose Find-Acceptable-Plan rejects the first action a0. We know (s, a0) < B, since ConstrainProblem prevents

those actions from being applicable as the first action in the plan. So if line 12 rejects a0, then (s, a0) is a new pair

added to B. Otherwise, a0 is added to the current plan, and the current state is set to s1.

Note that everywhere Find-Acceptable-Plan adds state-action pairs to B, the state part of the pair is the last state

in S . So suppose Find-Acceptable-Plan accepts actions a0 . . . ai, and rejects action ai+1. Since Find-Acceptable-Plan

only accepts actions that lead to states never before in S , the state-action pairs (s1, a1), . . . , (si, ai), (si+1, ai+1) < B.

And so (si+1, ai+1) is a new state-action pair added to B.

Now look at what happens when CP returns failure. Find-Acceptable-Plan removes the last action from the plan

(a′), and, if it does not return failure, adds the pair (s′, a′) to B, where s′ is the previous state in the current plan. From

above, we know that when we added a′ to the plan that (s′, a′) < B. Furthermore, since Find-Acceptable-Plan added

a′ to p, s′ hasn’t been the last state in S until now, so (s′, a′) is still not in B. So (s′, a′) is a new pair added to B. 2

Having shown termination, we can now show that Find-Acceptable-Plan returns failure or returns an acyclic plan

whose policy image avoids the states in U. As shorthand, we call these plans U-acceptable. More formally, a plan p

is U-acceptable in a state s with respect to a nondeterministic domain D, its determinization D, a classical planning

problem (D, s,G) and a set of states U if:

• p is applicable in the state s in the classical planning domain D.
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• It is acyclic (no repeated states).

• For every state-action pair (si, ai) in the image of p on (D, s,G), let ai be the corresponding nondeterministic

action in D. Then γD(si, ai) ∩ U = ∅.

Lemma 4. If CP is sound and guaranteed to terminate, then Find-Acceptable-Plan is sound and it returns either a

failure or a U-acceptable plan that ends in a goal state.

Proof. Since Find-Acceptable-Plan checks if the last state in its partial plan p reaches the goal before returning a plan,

it is enough to show that the partial plan p in the procedure is always a U-acceptable plan.

Since any prefix of a U-acceptable plan is still U-acceptable, we can do induction on the size of p in

Find-Acceptable-Plan, looking only at additions to p. In the base case, p is empty, meeting the U-acceptable re-

quirements trivially.

By the inductive hypothesis, assume p is U-acceptable and Find-Acceptable-Plan is adding an action a to p. Since

the only location for this is in line 12, Find-Acceptable-Plan has already checked in line 12 that it does not form a

loop in p, and that its corresponding action in D does not lead to any state in U. If CP is sound, then a is applicable

in s. So a appended to p is a U-acceptable plan. 2

Before we can show the completeness of Find-Acceptable-Plan, we need a utility lemma that says we can take a U-

acceptable plans from states a to b and b to c to produce a U-acceptable plan from a to c. Note that the concatenation

of any two U-acceptable plans may not be U-acceptable, since the resultant plan may visit some states twice.

Lemma 5. With a nondeterministic domain D, its determinization D, a classical planning problem (D, s0,G) and a

set of states U, let p be a U-acceptable plan from s0 to some state s1 and p′ be a U-acceptable plan from s1 to some

state s2. Let S be a directed graph where the nodes are the states associated with p and p′ and the edges are the

actions from p and p′.

Then any acyclic path from s0 to s2 in S corresponds to a U-acceptable plan from s0 to s2.

Proof. Let p′′ be any acyclic path through S . Then p′′ is U-acceptable since p′′ only goes through state transitions

appearing in p applied at s0 or p′ applied at s1, p′′ is by definition acyclic, and no action in S leads to a state in U. 2

Now we can show that Find-Acceptable-Plan is not only sound and guaranteed to terminate, but also complete:

Lemma 6. If CP is sound and complete, Find-Acceptable-Plan is complete.

Proof. To show that Find-Acceptable-Plan is complete, it is enough to show that Find-Acceptable-Plan never back-

tracks from a state along a U-acceptable path to a goal. We show this by contradiction.

Suppose Find-Acceptable-Plan is backtracking for the first time from a partial plan p with associated sates s0, . . . , s

from which there is a U-acceptable plan to the goal. Since p is U-acceptable, there is an action a applicable in s, the

last state of p, which is along U-acceptable path to the goal. Since CP is complete, Find-Acceptable-Plan added the

transition (s, a) to B sometime before hitting line 21.
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Now we reason about how and when (s, a) appeared in B. There are two locations in Find-Acceptable-Plan where

B is modified. Either (s, a) must have been added via line 13 or line 21. We now show contradictions in four cases:

1. (s, a) was added to B with a partial plan that was a strict prefix of p.

2. (s, a) was added to B with the partial plan p.

3. (s, a) was added to B with a partial plan p′ where p is a strict prefix of p′.

4. (s, a) was added to B with a partial plan p′ where neither p nor p′ is a prefix of the other.

Case 1. (s, a) was added to B with a partial plan that was a strict prefix of p. Since, by the soundness of

Find-Acceptable-Plan (Lemma 4), p is irredundant, a proper prefix will not go through s, which is a necessary condi-

tion to hit both line 13 and line 21.

Case 2. (s, a) was added to B with the partial plan p. For line 13, since a appended to p is part of a U-acceptable

path, it will not create a cycle, and its policy image contains no states in U, so the conditional on line 12 would prevent

Find-Acceptable-Plan from reaching that line. For line 21, this would mean that the state s immediately precedes itself

in p, which violates the soundness lemma for Find-Acceptable-Plan.

Case 3. (s, a) was added to B with a partial plan p′ where p is a strict prefix of p′. Say (s, a) was added to B while

Find-Acceptable-Plan had a partial plan p′ with a prefix of p that goes through states s0, . . . , s, . . . , s′. To ban (s, a)

in line 13, CP must have produced a plan that goes from s′ through s and then some s′′ = γD(s, a) which forms a

cycle. But since s is already in S , line 12 would have stopped integrating the plan when it hit the action that lead to

s. To ban (s, a) in line 21, we would have to be planning from a state directly following s with the previous action a.

By the soundness lemma the current plan is irredundant , so p′ must be a appended to p. Since this is also along a

U-acceptable path to the goal, it violates our assumption that the first backtrack from a U-acceptable path happened

with a current plan of p.

Case 4. (s, a) was added to B with a partial plan p′ where neither p nor p′ is a prefix of the other. In order to place

(s, a) in B, p′ must either terminate at s for line 13 or terminate at sa = γD(s, a) for line 21. In either case, p′ is

U-acceptable. Since p is U-acceptable and s is along a U-acceptable path to the goal, then there is a plan pg from s to

the goal such that p adjoined pg is a U-acceptable plan. Since p′ is U-acceptable, by Lemma 5, one can construct a

U-acceptable plan ps from just the states and actions in p′ and pg. Since p adjoined pg must be irredundant, pg must

not lead to any state in p′ that also appears in p. Let sd be the first state along p′ that differs from the states along

p or the last state along p′ if no states differ. Since p′ is irredundant and pg references no states in p′ before sd, ps

must go through sd. However, this means that Find-Acceptable-Plan must have backtracked past sd when there was

a U-acceptable plan to the goal from that point. So the backtracking at s is not the first time, which contradicts our

assumption.

Therefore, since any backtracking along a U-acceptable path to the goal causes a contradiction,

Find-Acceptable-Plan is complete. 2
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Theorem 1. Let CP be a sound and complete classical planner, U be a set of states, D be a nondeterministic planning

domain, and D = (L,O) be the determinization of D. Let S be the set of all states in L (i.e., S = 2F), F =

{all ground atoms over L}, and A be the set of all possible actions (i.e., all possible ground instantiations of the

planning operators in O).

Then Find-Acceptable-Plan(D,D, s0,G,CP,U) makes at most |S | · |A|+ 1 calls to CP, and returns an acyclic plan,

if such a plan exists, whose policy image in D avoids the states in U.

Proof. Immediately follows from lemmas 3, 4, and 6. 2

Lemma 7. If CP is sound and guaranteed to terminate, then NDP2 returns in at most |S |2 calls to

Find-Acceptable-Plan, where S is the set of states in the domain.

Proof. By Lemma 4, we have that Find-Acceptable-Plan is sound and terminates. Every iteration of NDP2 selects s,

a non-goal π-result of S 0, and either produces a weak plan from that state to a goal state, or fails to find a plan, and

adds s to U.

If NDP2 found a plan for s, it will not be a non-goal π-result of S 0 again unless NDP2 adds a child of s to U.

Since there are finitely many states, there can be at most |S | many iterations of the main planning loop before NDP2

either returns or adds a state to U.

Once a state is in U, since Find-Acceptable-Plan is sound, no action added to the policy will lead to that state. So

again, NDP2 can only add at most |S | states to U before there is no path from any leaf state state to a goal that does

not lead to a state in U.

With at most |S | iterations between adding a state to U and at most |S | additions to U, NDP2 must return in at

most |S |2 calls to Find-Acceptable-Plan. 2

As written, this means that NDP2 will make O
(
|S |3 · |A|

)
calls to CP. Notice, however, that we only add states to

U. This means that in Find-Acceptable-Plan, we can cache B and K per starting state (caching p will not be helpful).

This means that Find-Acceptable-Plan will only call CP O (|S | · |A|) times per starting state, which reduces NDP2’s

number of calls to CP to O(|S |2 · |A|).

Lemma 8. If CP is sound, then after each iteration of NDP2, there are no inescapable cycles in π. That is, every

π-descendant state of the initial state has a path to a π-result of the initial state.

Proof. The proof is by induction on the changes to π.

When π is empty, the initial state is a π-result of itself, so the lemma is trivially true. For the induction step, there

are two ways NDP2 can change π:

1. Merging a plan from Find-Acceptable-Plan to π (line 11).

2. Find-Acceptable-Plan returns failure (line 19).
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Case 1. Merging a plan from Find-Acceptable-Plan to π. NDP2 will merge the plan until it reaches the end of

the plan, which by by Lemma 4 is a goal state, or reaches a state in π which has a goal state π-descendant. In either

case, all modified states in π and any state that had modified states as π-results now have a path to a goal π-result of

S 0.

Notice that if that if NDP2 did not change the action for states already in the policy, that when NDP2 integrated a

plan that went from a state s through a π-ancestor s′ of s, it could create an inescapable cycle.

Case 2. Find-Acceptable-Plan returns failure. When Find-Acceptable-Plan returns failure on a state s, actions

which lead to s are removed from π. So any state which claimed s as a π-descendant can now claim one of s’s parents

as a π-result. 2

Lemma 9. If CP is sound, NDP2 is sound.

Proof. If NDP2 returns a policy, by the previous lemma all π-descendants of the initial state have a path to a non-goal

π-result or a goal state. Since NDP2 terminated without failure, there are no more non-goal π-results in the policy, so

all states have a path to a goal state, and π is a valid strong cyclic plan. 2

Lemma 10. If CP is sound and complete, at every point in the execution of NDP2 on a nondeterministic problem

P = (D, S 0,G), the set U is a subset of all unsolvable states. Thus any state in U cannot appear in any strong-cyclic

solution policy for P.

Proof. The proof is by induction on the size of U.

Let s be the first state added to U, which means Find-Acceptable-Plan returned failure when planning from s.

Since U is empty and by Lemma 6 Find-Acceptable-Plan is complete, there is no path to a goal state from s, and so s

would not be a π-descendant of s0 in any valid strong cyclic policy.

Induct. Assume U contains only states which may not appear in any strong cyclic policy. Let s be the

next state added to U, which means Find-Acceptable-Plan returned failure when planning from that state. Since

Find-Acceptable-Plan is complete, all possible paths from s to a goal state also lead to a state in U, and thus s must

also not appear in any valid policy. 2

Lemma 11. If CP is sound and complete, NDP2 is complete.

Proof. Proof by contradiction. Assume NDP2 is not complete. Then there is a domain D, initial states S 0, goal set G,

and strong cyclic policy π such that NDP2(D, S 0,G,CP) returns failure, even though π is a valid strong cyclic policy.

This means Find-Acceptable-Plan returned failure from an initial state, and so there is no path to the goal which

also doesn’t lead to a state in U. However, π has paths from each of the initial states to the goal, and so some action

along each of those paths must lead to a state in U. This is a contradiction with the above lemma, that U will never

contain states that appear in any strong-cyclic solution.

2
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Theorem 2. Let CP be a sound and complete classical planner and P = (D, S 0,G) be a nondeterministic planning

problem with D = (L,O). Let S be the set of all states in L (i.e., S = 2F), F = {all ground atoms over L}, and A be

the set of all possible actions (i.e., all possible ground instantiations of the planning operators in O).

Then NDP2(D, S 0,G,CP) is sound and complete, and returns at most in |S |2 calls to Find-Acceptable-Plan.

Proof. Immediately follows from lemmas 7, 9, and 11. 2

Appendix B. Extracting Solutions from Abstract and Compound-Abstract Problems

Given a problem P and it’s abstraction P∗, let s∗ be an abstraction of a state s, let a∗ from P∗ be an action such

that γP∗ (s∗, a∗) =
{
s1
∗, . . . , sn

∗, s′1, . . . , s
′
j

}
, where states s′1, . . . , s

′
j are non-abstract, and let a be the action in P whose

abstraction is a∗ where γP(s, a) =
{
s1, . . . , sm, s′1, . . . , s

′
j

}
(n < m). Then for each si (i = 1, . . . ,m), there is a merge

action merge ({. . .})i such that the policy {(s, a), (s1,merge ({. . .})1) , . . . , (sm,merge ({. . .})m)} has exactly the same π

results as the policy {(s∗, a∗)}. We call this policy the unabstracted image of (s∗, a∗) in s. We skip the details of how

to find merge ({. . .})i from si, since this is just a variant of the maximal abstraction algorithm.

For any non-goal non-abstract state s, we define the π-path corresponding to state s recursively as a sequence of

states, starting with s. If s′ is on the π-path corresponding to s, then:

• If π(s′) is not a split-p or merge ({}) action, then s′ is the last state on the π-path corresponding to s.

• If π(s′) is the action merge ({. . .}), then γ(s′,merge ({. . .})) is the next state in the π-path corresponding to s.

• If π(s′) is the action split-p(. . .) and γ(s′, split-p(. . .)) = {s1, s2}, then only one of s1 or s2 is consistent with s,

and that state is on the π-path corresponding to s.

If the π-path corresponding to s is finite (it does not loop forever), then the last state s′ is the π-corresponding state

to s, and the action π(s′) is executable in state s.

Given a solution π∗ for P∗, Algorithm 7 can extract a solution for P. It loops over the solution, picking a non-

abstract state s where π assigns an action with abstract effects. After the first iteration, this may include states where

the current policy assigns a merge ({. . .}) action.

Algorithm 7 then finds the π-corresponding state s∗ (which is potentially equal to s) and replaces π(s) with π(s∗).

Algorithm 7 then, for every child si of s for which π(si) is undefined, adds the corresponding action from the unab-

stracted image of (s∗, a∗).

The policy π should be a strong cyclic solution to a partially unabstracted P∗ after every iteration of the main loop.

So if after merging the unabstracted image of (s∗, a∗), s no longer has a path to the goal, then Algorithm 7 picks a

state in the children of s replaces the policy for it with a merge ({. . .}) action pointing to one of the former children of

s (one in γ(s, a∗)). Algorithm 7 terminates when no abstracted actions are left in the solution.

Let P∗∗ be a compound-abstract version of P∗, and π∗∗ be a solution for P∗∗. Algorithm 8 is an algorithm to extract

an abstract plan π∗ from π∗∗. It works by iterating over the state-action pairs in π∗∗, modifying them to translate
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Algorithm 7: Algorithm to map an abstract policy π∗ into a policy that isn’t abstract.

Procedure unabstract (P = ((L,O) , S 0,G) , P∗, π∗)1

while ∃(s, a∗) ∈ π∗ where s is not abstract and a∗ < O do2

Let s∗ be the π∗-corresponding state of s3

Let {(s, a) , (s1,merge ({. . .})1) , . . . , (sn,merge ({. . .})n)} be the unabstracted image of (s∗, a∗) in s4

π∗ ← (π∗ \ {(s, π∗(s))}) ∪ {(s, a)}5

π∗ ← π∗ ∪ {(si,merge ({. . .})i) | π∗(si) is not defined}6

if s has no goal π∗-descedants then7

Pick s′ ∈ γ(s, a∗) such that s′ has a path to the goal8

Let s′′ be the first state on the path from s′ to the goal such that π∗(s′′) is not a merge ({. . .}) or split-p9

operator

Pick s j ∈ γ(s, a) such that s′′ is an abstraction of s j10

π∗ ←
(
π∗ \

{(
s j, π

∗
(
s j

))})
∪

{(
s j,merge ({. . .}) j

)}
11

Remove any non-π∗-descendants of S 012

return π∗13

Algorithm 8: Algorithm to map a compound-abstract policy into an abstract policy that isn’t compound.

Procedure Map-to-Uncompound(π∗∗,O∗∗,Σ)1

while π∗∗ contains any compound actions do2

foreach (s, a) ∈ π∗∗ do3

if a has the form split-p(. . .) · o(. . .) where split-p ∈ Σ and o ∈ O∗∗ then4

remove (s, a) from π∗∗5

π∗∗ ← π∗∗ ∪ {(s, split-p(. . .)}6

s′ ← {s \ {p∗(. . .)}} ∪ p(. . .)7

if π∗∗(s′) has no goal π∗∗-descendant then8

remove (s′, π∗∗(s′)) from π∗∗9

π∗∗ ← π∗∗ ∪ {(s′, o(. . .)}10

return π∗∗11

each compound action split-p(. . .) · o∗∗(. . .) into its components split-p(. . .) and o∗∗(. . .). With each pass of the main

loop, Algorithm 8 reduces the maximum amount of compounding. It terminates when none of the actions in π∗∗ is

compound.
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Algorithm 9: The NDP algorithm from [30], which is unsound in domains which have unsolvable states.

Procedure NDP(D, S 0,G,CP)1

π← ∅2

D← a determinization of D; U ← ∅3

loop4

S ← {all non-goal π-results of S 0}5

if S = ∅ then return π6

arbitrarily select a state s ∈ S7

call CP(D, s,G)8

if CP returns a solution plan p then9

Let π′ be the policy image of p applied at s10

π← π ∪ {(s, a) ∈ π′ | π(s) is not defined}11

else12

// CP returned Failure

if s ∈ S 0 then return Failure13

foreach s′ such that s ∈ γ (s′, π(s′)) do14

modify D̄ to make the determinizations of π(s′) inapplicable at s’15

π← π \ {(s′, π(s′))}16

Appendix C. Unsoundness of NDP

Algorithm 9 is the NDP algorithm from [30]. Unlike NDP2, NDP incorporates a plan by first converting it to a

policy (presumably by first removing any cycles from the from the plan), and then incorporating any state-action pairs

for any state where the current policy is undefined. Here we show by example that this is unsound. NDP, if used in

the presence of unsolvable states, may return policies which are not strong cyclic solutions.

Example. Consider the nondeterministic planning problem P = (D, S 0,G) where S 0 = {s0} and G =
{
sg

}
). Fig-

ure C.14 illustrates the nondeterministic planning problem P. In the figure, D is the determinization of D.

In NDP’s first iteration, let CP return the shortest classical solution: 〈a0, a31〉 (Figure C.15). After NDP incor-

porates the plan into the current policy π, there will be one non-goal π-result of S 0, s3. On the next iteration, NDP

will select s3, and call CP on the problem (D, s3,G). Since there are no solutions to that problem, NDP will remove

(s1, a3) from π and will make a31 and a32 inapplicable at s1 in D.

Now s1 is the only non-goal π-result of S 0. NDP will now call CP on the classical planning problem (D, s1,G).

CP will return the plan 〈a1, a2, a4, a5, a6〉. NDP will incorporate just the first two actions from the plan, but it will

not incorporate a4, since s0 already has an action, i.e., a0, in the current policy. This leaves us with the policy shown
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Figure C.14: A nondeterministic domain D and its determinization, D.
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Figure C.15: A classical solution to (D, s0, sg) and its incorporation into the empty policy.
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Figure C.16: A classical solution to (D, s1, sg) that avoids s3, and the resulting policy produced by NDP.

on the right in Figure C.16, where there is an inescapable loop between s0, s1, and s2. There are now no non-goal

π-results of S 0, and so NDP will exit on the next iteration of the loop, returning the policy found in Figure C.16 which

is not a solution to the original problem.

So by never changing the action already associated with a state, NDP can create loops where states have no path

to the goal. This violates one of the invariants that makes NDP2 work, which is that after every iteration, every state

in the execution structure has a path to a goal or leaf state. This invariant is made explicit and proven in Lemma 8 in

Appendix A.

43


