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Abstract This paper presents a motion-planning strategy
for multiple, mobile sensor platforms using visual sensors
with a finite field of view. Visual sensors are used to collect
position measurements of potential targets within the search
domain. Measurements are assimilated into a multi-target
Bayesian likelihood ratio tracker that recursively produces a
probability density function over the possible target posi-
tions. Vehicles are dynamically routed using a controller
based on a concept from artificial physics, where vehicle
motion depends on the target probability at their location
as well as the distance to nearby agents. In this paradigm,
the inverse log-likelihood ratio represents temperature, i.e.,
high likelihood corresponds to cold temperature and low
likelihood corresponds to high temperature. Vehicles move
at a temperature-dependent speed along the negative gradi-
ent of the temperature surface while interacting locally with
other agents via a Lennard-Jones potential in order to emer-
gently transition between the three states of matter—solid,
liquid, and gas.We show that the gradient-following behavior
corresponds to locally maximizing the mutual information
between the measurements and the target state. The per-
formance of the algorithm is experimentally demonstrated
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1 Introduction

Ground target tracking is now readily available using low-
cost aerial vehicles equipped with visual sensors. Example
applications include search-and-rescue (Almurib et al. 2011)
and aerial surveillance (Yang et al. 2009). The use of mobile
platforms for aerial tracking involves several challenges,
including bandwidth limitations of the communication net-
work and intelligent routing of the vehicles to gain informa-
tion. This paper describes a physics-inspiredmotion planning
strategy based on the output of a Bayesian likelihood ratio
tracker that collects noisy measurements of potential targets.
The proposed motion planner has the advantage that vehi-
cle motion is coupled to target detection in such a way that
the mutual information between the target state and the mea-
surements is locally maximized, while also maintaining a
complexity that is linear in the number for agents. The algo-
rithm represents amanifestation of theDynamicData-Driven
Application Systems (DDDAS) (Darema 2004) paradigm,
in which sensor measurements are used to guide subsequent
collection of more data.

There are many approaches to multiple target tracking in
the literature. Probabilistic approaches such asBlanding et al.
(2007), Willett et al. (2002), Stone et al. (1999), Clark and
Bell (2005), Huang andWang (2012) use Bayesian inference
combined with maximum likelihood or multiple-hypothesis
trackers to track multiple (moving) targets. Although the
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above approaches address how to combine sensor measure-
ments to track and detect targets, only a few techniques (Peot
et al. 2005; Rafi et al. 2006; Kim and Kim 2008) effec-
tively move the mobile platforms to find targets and most of
these techniques focus on the use of a single sensor platform.
Other approaches (Charrow et al. 2015; Isler and Magdon-
Ismail 2008) focus on mapping or optimal sensor selec-
tion. Recently, several authors, (e.g., Hoffmann and Tomlin
2010; Kreucher et al. 2003), have used information-based
approaches to design optimal sensor placement/control, but
it is difficult to scale these approaches to a large number of
vehicles due to the complexity in calculating mutual infor-
mation (Charrow et al. 2015; Julian et al. 2012). In particular,
Charrow et al. (2015) presents work that approximates the
mutual information over a finite time horizon for which vehi-
cle paths are optimized to find a single moving target. While
similar to our approach, the control used in Charrow et al.
(2015) is better suited for tracking single vehicles, as opposed
to the multi-target scenario considered here. Most similar
to the work presented here are physics-inspired swarm con-
trollers (Cuevas et al. 2014; Apker and Potter 2012; Spears
et al. 2004), where vehicles switch behaviors based on their
“temperature” to improve the speed and quality of informa-
tion gathering. However, the behavior in these approaches is
explicitly imposed, leading to a large number of tuning para-
meters. Additionally, these strategies tend to be heuristic, and
hence may not have performance guarantees.

In this paper, we describe a potential-based motion-
planning strategy for multiple mobile sensor platforms to
collaboratively search for multiple mobile targets using
visual sensors with a finite field of view. The sensors give
a noisy scalar measurement of target presence, e.g., the mea-
surement signal increases if a target is within the sensor
field of view. Sensor measurement data are assimilated by
a Bayesian likelihood ratio tracker (LRT) that uses a recur-
sive formulation to produce a probability density function
over the set of possible target positions. In the LRT formula-
tion, the probability builds in locations near potential targets
until a predetermined threshold is reached and a detection
is called. Multiple targets may be present; the LRT fuses
all measurements into a single state space. The inverse of
the state-space posterior, analogous to temperature, triggers
emergent search behaviors corresponding to the states of
matter: solid, liquid, and gas. The physics-inspired approach
results in emergent behaviors that are intuitively plausible
and therefore more amenable to human interaction with or
control of the multi-vehicle team. An inverse log-likelihood
formulation is used so that a higher target likelihood cor-
responds to a lower temperatures and measurements with a
target present add likelihood, whereasmeasurements with no
target present subtract likelihood.

The novelty of this target detection strategy lies in the fol-
lowing architecture. There are two main components to the

target detection: (1) theLRT for detection, and (2) a potential-
based, physics-inspired motion planner that guides vehicles
to areas where the probability of detection is higher. Unlike
other potential-based control strategies, the proposed motion
planner avoids local minima by coupling the planner to the
LRT detector. Vehicle motion is guided by the temperature
surface according to artificial forces. The first force is along
the negative gradient of the temperature surface; the speed
along the gradient is proportional to the temperature. The sec-
ond force is a spring-like interaction between vehicles via
a Lennard-Jones potential (Lennard-Jones 1924), which is
commonly used to model molecular dynamics between ener-
getic particles.We show that the gradient-following behavior
corresponds to locally maximizing the mutual information
between the sensor measurements and the target state. The
combination of these forces leads to three distinct behav-
iors corresponding to three states of physical matter: (a) a
solid state, in which vehicles coalesce into a lattice structure
around likely target locations; (b) a liquid state, in which the
vehicles migrate towards colder regions likely to a harbor
target; and (c) a gas state, in which solitary vehicles move
quickly through hotter regions where targets are unlikely to
be found. One key difference between this algorithm and
other physics-inspired approaches is that the three states of
matter are emergent, so that there are fewer tuning para-
meters. The presented algorithm, though implemented in a
centralized system, is inherently decentralized under an all-
to-all communication architecture, and thereby amenable to
distributed computation.

There are several papers in the literature, (e.g., Schwa-
ger et al. 2011; Gayle et al. 2009), that use potential-based
approaches similar to the kind used in this work, however,
they suffer from several shortcomings. The primary short-
coming of potential-based algorithms is that vehicles may
fall into local minima of the potential. In Gayle et al. (2009),
the authors decrease the probability of remaining in a local
minima by introducing an excitation factor, which is a heuris-
tic method for hill climbing. One of the main benefits of the
algorithm presented in this paper is that it avoids local min-
ima by coupling vehicle control to target detection via the
evolvingLRT surface.Another advantage is that the LRT sur-
face generated on-the-fly (and recursively updated) doesn’t
incur the excessive computational burden imposedby explicit
calculation of the mutual information, which usually scales
exponentially.

We demonstrate the proposed cooperative detector first
in simulation, and then in a motion-capture experimental
testbed, utilizing the Laboratory for Autonomous Systems
Research at the Naval Research Laboratory in Washing-
ton, D.C. The experimental testbed is composed of two
Ascending Technologies Pelican quadrotors with downward
facing Point Grey Chameleon cameras and three Sphero
robots—rolling targets programmed to perform a random
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walk. Although visual sensors are described here, any sensor
characterized by its probability of detection and probability
of false alarm may be employed in this algorithm.

The primary contribution of this paper is a physics-based
motion planner for a multi-vehicle, aerial sensor network
that uses a Bayesian likelihood ratio tracker incorporating
position information from onboard cameras to track mul-
tiple moving targets. One of the novelties of the DDDAS
paradigm is that it directly couples the motion planning
to the estimation scheme, so gathered information directly
influences the subsequent movement of the platforms. As a
secondary contribution, we show that the gradient-following
behavior of the planner locally maximizes the mutual infor-
mation between the measurement and the target state. Unlike
other information-based techniques, the algorithmdeveloped
in this paper scales linearly with the number of agents as
a result of the rapid drop-off of the Lennard-Jones poten-
tial. Additionally, the three states of matter are emergent,
based on a combination of the speed control, Lennard-
Jones potential, and gradient-descent behaviors. Vehicles are
deployed to detect an unknown number of moving targets in
a computationally efficient manner that locally maximizes
the probability of detecting targets.

The rest of the paper is organized as follows. Section 2
summarizes the likelihood-ratio detection and tracking cal-
culations and the model used for the quadrotors’ visual sen-
sors. Section 3 presents the physics-based motion-planning
algorithm for a team of mobile sensors. Section 4 shows
experimental results from the quadrotor testbed. Section 5
summarizes the paper and ongoing work.

2 Likelihood-ratio detection and tracking

This section reviews the likelihood ratio tracker (Stone et al.
1999) and formulates sensor and motion models for the vehi-
cles and targets, respectively. The output of the tracker is used
in the physics-inspired motion planner presented in Sect. 3.

2.1 Likelihood-ratio tracking

A likelihood ratio tracker is used to estimate the positions
of possibly multiple targets. This framework is sometimes
called “track-before-detect” (Stone et al. 1999), because it
is based on recursive Bayesian estimation. A Bayesian filter
is a probabilistic approach for assimilating noisy measure-
ments into a probability density function over the target state
space, in this case their two-dimensional position. The filter
implementation comprises the discrete steps of predicting
and updating. Let θk = (xk, yk) ∈ Ω denote the target posi-
tion (state) at time step k and zk denote the measurement at
time k. The predict step involves computing the conditional

probability (Stone et al. 1999)

p(θk |zk−1) =
∫

Ω

p(θk |θk−1)p(θk−1|zk−1)dθk−1. (1)

The measurement update is proportional to the product of
the measurement likelihood p(zk |θk) and the predicted state
(Stone et al. 1999):

p(θk |zk) = p(zk |θk)p(θk |zk−1)

p(zk |zk−1)
, (2)

where

p(zk |zk−1) =
∫

Ω

p(zk |θk)p(θk |zk−1)dθk

is the integral of the numerator. Note thatmeasurements from
multiple sensors are assimilated by executing multiple, inde-
pendent update steps.

A likelihood-ratio tracker replaces the measurement like-
lihood with the measurement likelihood ratio, i.e., the ratio
of two likelihood functions. The numerator of the likelihood
ratio represents the conditional probability of the measure-
ment given that the target is present (θ+

k ), whereas the
denominator represents the conditional probability of the
measurement given that the target is not present (θ−

k ). Thus,
the log-likelihood ratio is

logL(zk |θk) = log
p(zk |θ+

k )

p(zk |θ−
k )

= log(p(zk |θ+
k )) − log(p(zk |θ−

k )). (3)

Let P = log(p). The update step in the log-likelihood ratio
tracker becomes

P(θk |zk) = log
L(zk |θk)p(θk |zk−1)

p(zk |zk−1)

= P(zk |θ+
k ) − P(zk |θ−

k )

+P(θk |zk−1) − P(zk |zk−1). (4)

The first term in (4) represents the new, positive informa-
tion (likelihood the target is present), whereas the second
term represents the new, negative information (likelihood the
target is not present). The third term represents the prior infor-
mation and the fourth term is a normalization constant.When
the log-likelihood ratio surpasses a pre-defined threshold,
the target is declared detected; otherwise, the sub-threshold
target probabilities are maintained as hypotheses. Note, the
inverse log-likelihood-ratio posterior represented by temper-
ature is −P(θk |zk).
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2.2 Predict step: integrating the diffusion equation

The predict step (2) involves updating the likelihood ratio in
the absence of measurements. We allow targets to move ran-
domly; we do not estimate their velocities. The target motion
model is a random walk, which can be described mathemati-
cally by the diffusion equation with constant diffusivity, also
called the heat equation.

Consider the two-dimensional heat equation with diffu-
sivity α, i.e.,

∂P

∂t
= α

(
∂2P

∂x2
+ ∂2P

∂y2

)
.

The alternating direction implicit (ADI) method (Moin
(2010)) is a fractional-step method for numerically integrat-
ing the heat equation. ADI employs the difference operators
Ax and Ay representing the spatial derivatives in the x and
y directions, respectively. For example, if probability P is
discretized over n × n grid points, then Ax P is a vector of
length n × n with elements

Pi+1, j − 2Pi, j + Pi−1, j

�x2
, i = 1, . . . , n, j = 1, . . . , n.

Let I be the n × n identity matrix. The solution is obtained
from P(θk−1|zk−1) using matrix inversion to solve the fol-
lowing equation for P(θk |zk−1):

(
I − α�t

2
Ax

) (
I − α�t

2
Ay

)
P(θk |zk−1)

=
(
I + α�t

2
Ax

) (
I + α�t

2
Ay

)
P(θk−1|zk−1).

To ensure that no information crosses the boundary of the
search domain, we enforce Neumann boundary conditions
around the perimeter of Ω by specifying that the normal
component of the gradient is zero.

This motion model diffuses likelihood into locations that
are not visited. It promotes visitation of areas of low likeli-
hood to ensure that a target has not moved to that location.
Note that while a random walk motion model is used in this
paper, it is not necessary for the use of the proposed control
strategy; any motion model for updating target position may
be used.

2.3 Update step: the sensor measurement model

Consider a measurement data model based on an imperfect
sensor with finite field of view. Suppose the criterion location
for a positive response is chosen such that targetswithin range
ρtarget are detectedwith probability Pd and false alarms occur
with probability Pf per time step. The sensitivity m of each

sensor is (Macmillan and Creelman 2008)

m = z(Pd) − z(Pf ), (5)

where z(·) represents the z-transformation into standard devi-
ation units given by the quantile function (Macmillan and
Creelman 2008)

z(p) = √
2erf−1(2p − 1).

For example, Pd = 0.95 and Pf = 0.1 yields m = 2.92.
Letwk represent unit-normal measurement noise in standard
deviation units at time step k. When the target is absent, the
measurement data is zk = wk , whereas when the target is
present the measurement data is zk = m + wk . Assuming a
zero-mean Gaussian sensor model (Richards 2005) yields

p(zk |θ−
k ) = 1√

2π
exp

(
− z2k

2

)
(6)

p(zk |θ+
k ) = 1√

2π
exp

(
− (zk − m)2

2

)
. (7)

(The sensor noise variance is absent because zk and m are
already assumed to be in standard deviation units.) The log-
likelihood ratio (3) becomes

logL(zk |θk) = − (zk − m)2

2
+ z2k

2
= m

(
zk − m

2

)
, (8)

where m is a function of the sensor Pd and Pf given by (5).
While the methodology above would apply to any sensor

characterized by its Pd and Pf , in this paper the sensor is
a camera with a known field of view (FOV) and resolution.
Using standard image processing techniques (Nán 2015), the
camera places a bounding box around targets within the FOV.
When there is a target present, (8) with zk = m + wk is
applied to the prior uniformly inside a disc of radius ρtarget
located at the center of the bounding box. In areas of the
FOV where there is no target, (8) with zk = wk is applied to
the prior uniformly. Pd and Pf for a camera are complicated
functions of the camera resolution, the size of the object in
the FOV, and the quality of the image processing algorithm.
For the experiments presented in this paper, Pd and Pf were
treated as tuning parameters for the tracker and were chosen
to improve the performance of the estimation and control
strategy.

3 Physics-inspired motion planning

The agent motion is driven by a combination of two artificial
forces. The first force guides the vehicle down the gradient
of the inverse log-likelihood surface, i.e., the temperature
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Fig. 1 Diagram depicting the three emergent behaviors of the pro-
posed algorithm. Vehicles in cold areas near a target form a crystalline
formation with nearby agents. Vehicles flow like a liquid from warm
areas to cold areas. Since speed is proportional to temperature, vehicles
in hot areas travel quickly like gas molecules

surface, in a manner that resembles a flowing liquid. The
speed of movement down the gradient is determined by the
temperature at the vehicle location: colder temperatures cor-
respond to slower speeds. The second force is the gradient of
a Lennard-Jones potential (Lennard-Jones 1924) between the
agents. The Lennard-Jones potential is a common approxi-
mation used in physical chemistry to model molecular gas
dynamics. Figure 1 shows the vehiclesmoving like gasmole-
cules in areas where there are no targets and gathering like
solid molecules with other agents where there are likely to
be targets. In this algorithm, as opposed to other physics-
inspired swarm controllers, the transitions between states of
matter (solid, liquid, gas) are emergent.

Let r j
k denote the position of agent j ∈ {1, . . . , N } at time

step k. The Lennard-Jones potential is (Lennard-Jones 1924)

V j
k =

N∑
i �= j

4ε
(
σ 12||r j

k − r ik ||−12 − σ 6||r j
k − r ik ||−6

)
, (9)

where ε is the depth of the well and σ is the distance at
which the potential between two agents is zero. An example
of the Lennard-Jones potential between two agents is shown
in Fig. 2. Note that the strength of the potential drops quickly
to zero for large distances. Thus, the interaction between two
agents only happens when they are close to one another.

Let T j
k = −P(θk |zk, j) in (4) be the temperature at vehi-

cle j at time k and V j
k be the Lennard-Jones potential (9) for

the j th vehicle. We prescribe the desired velocity for each
vehicle by a feedback controller. The desired velocity for the

Fig. 2 Example of Lennard-Jones potential; ε = σ = 1.0

j th vehicle is

ṙ j
k = −min(1 + eT

j
k , vmax )kP∇T j

k − kV∇V j
k , (10)

where kP and kV are control gains and vmax is the maximum
speed of the agent (the same for all agents). The depen-
dence on temperature causes the vehicles to slow downwhen
they are near a possible target in order to collect more mea-
surements in that area. This behavior, along with the sensor
aggregation caused by the Lennard-Jones potential, seeks
to increase the chances that a target will be detected. The
algorithm works well in simulations when the gain on the
Lennard-Jones potential is one order of magnitude smaller
than the gradient-following gain. Additionally, σ is set to
ensure that the vehicles do not collide with each other, which
depends on the scale of the vehicle. Consequently, there are
only three parameters to tune: either kP or kV , ε (the well
depth), and T0 (the detection threshold).

As seen in Eq. (10), we multiply the gradient of the tem-
perature potential by a heuristic scaling factor. This scaling
factor, in combination with the Lennard-Jones potential, is
what causes the states-of-matter behavior to be emergent. In
the scaling factor, the speed of the vehicle is scaled by the
temperature such that the speed increases when the temper-
ature is high, and decreases when the temperature is slow.
This causes vehicles to “freeze” in place when they are near
an area of high probability and, conversely, to speed up when
they are in areas of low probability. The full architecture (in
pseudocode form) is shown in Algorithm 1.

Unlike other works in the field, the architecture shown
in Algorithm 1 avoids local minima in an informative, non-
heuristic fashion. A vehicle may fall into a local minima if it
is surrounded by hills of low target likelihood. However, if
there is no target present underneath the vehicle, the temper-
ature will increase (from negative information) to the point
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Algorithm 1 Physics-Inspired Target Search and Detection
Algorithm
Require: N, ε, σ , kP , kV
1: Initialize log-likelihood ratio P0(θ |z)
2: for k = 1 till end of task do
3: for j = 1, . . . , N do
4: Get measurement z jk
5: Calculate likelihood ratio logL(z jk |θk) using (8)

6: Update: Pk(θ |z) = Pk−1 + logL(z jk |θk)
7: end for
8: Normalize likelihood ratio: Pk(θ |z) = Pk(θ |z)−sum((Pk(θ |z)))
9: Get rk for every vehicle
10: for j = 1 . . . N do
11: Compute ∇V j

k (rk) and ∇P(θk |zk)
12: Calculate desired velocity ṙ j

k

13: Apply control input to platform to achieve ṙ j
k

14: end for
15: end for

where the vehicle is pushed away from its location. While
this does not guarantee convergence to a global minimum,
it does ensure that vehicles do not remain in areas of high
target probability when a target has moved out of the region.
Note, this behavior is completely emergent and is provided
inherently by connecting the detection scheme to the vehicle
control. In addition to informatively handling local minima,
we have the following theorem.

Theorem 1 The mutual information between sensor mea-
surement zk and target location θk using the sensor model
given by (6)–(7) is locally maximized when the vehicle moves
along the gradient of the prior target distribution p(θk).

Proof Let ξk = (xk, yk) be the position of the kth quadrotor.
For readability we drop the temporal subscript on all the
variables in this proof. The mutual information between z
and θ is

I (z, θ) =
∫

z+,z−

∫

Ω

p(θ, z|ξ) log(p(z|θ, ξ)dθdz

−
∫

z+,z−
p(z|ξ) log p(z|ξ)dz, (11)

where p(z|ξ) is the marginal probability density function of
the observation in observation space. Since the sensor model
is Gaussian, the logarithm in the first term on the right hand
side of (11) evaluates to a constant.Hence, the double integral
is independent of ξ . Thus, the mutual information is maxi-
mized by maximizing the second term, which is the entropy
of the observation, H(z|ξ), given the vehicle location. The
marginal probability p(z|ξ) can be written as

p(z|ξ) =
∫

θ∈D
p(z|θ, ξ)p(θ)dθ. (12)

Therefore, H(z|ξ) can be expressed as

H(z|ξ) = −
∫

z+,z−

∫

θ∈D
p(z|θ, ξ)p(θ)dθ

× log

⎛
⎝

∫

θ∈D
p(z|θ, ξ)p(θ)dθ

⎞
⎠ dz. (13)

Evaluating the integral over z yields

H(z|ξ) = −
∫

θ∈D
p(z+|θ, ξ)p(θ)dθ

× log

⎛
⎝

∫

θ∈D
p(z+|θ, ξ)p(θ)dθ

⎞
⎠

−
∫

θ∈D
p(z−|θ, ξ)p(θ)dθ

log

⎛
⎝

∫

θ∈D
p(z−|θ, ξ)p(θ)dθ

⎞
⎠ . (14)

Both terms on the right hand side of (14) have the form
f (x) = x log(1/x), which is an increasing function of x as
long as x ≤ 1/e ≈ 0.36. In (14), the argument is the integral
of p(θ) scaled by either p(z+|θ, ξ)or p(z−|θ, ξ). Since these
are both less than 1/e (see (6)–(7)) and the integral of p(θ)

is less than one in domain D, H(z|ξ) is guaranteed to be an
increasing function of the integral of p(θ).

Because the mutual information is an increasing function
of the integral of p(θ), moving along the gradient of the
integral will maximize the mutual information at the next
time step. As a first-order approximation, assume that p(θ)

is given by the first-order Taylor expansion

p(θ) ≈ a0 + ax x + ay y, (15)

where it is assumed that coordinates in D are given by the
pair (x, y). Then we have

∫

θ∈D
p(θ)dθ ≈

xk+ s
2∫

xk− s
2

yk+ s
2∫

yk− s
2

(a0 + ax x + ay y)dydx, (16)

where we have assumed that D is a square region with side
length s for simplicity. The gradient of (16) yields

∇
⎛
⎝

∫

θ∈D
p(θ)dθ

⎞
⎠ ≈ axs

2êx + ays
2êy, (17)
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where êx and êy are unit vectors in the x and y directions
respectively. Taking the gradient of p(θ) directly shows that

∇ p(θ) ≈ ax êx + ayêy (18)

= 1

s2
∇

⎛
⎝

∫

θ∈D
p(θ)dθ

⎞
⎠ . (19)

Thus, moving along the gradient of p(θ) is locally the same
as moving along the gradient of its integral, which completes
the proof. �	

Theorem 1 shows that the sensor model coupled with a
gradient control allows each vehicle to greedily maximize
the expected gain in information without explicitly having to
calculate it. This property has significant benefit on the abil-
ity of the search strategy to scale with numbers of vehicles
and targets, as compared to the calculationofmutual informa-
tion, which generally scales exponentially. (Note, Theorem 1
only holds locally.) Since the Lennard-Jones potential drops
off dramatically with distance, each vehicle need only con-
sider the position of other nearby agents. The first term in
(10) scales with the calculation of the temperature surface,
which scales linearly with the number of vehicles. The sec-
ond term, the Lennard-Jones potential, also scales linearly
with the number of vehicles. Therefore, since the two terms
add in the controller, the algorithm scales linearly with the
number of vehicles. Note that if the algorithm was distrib-
uted, the complexity would be fixed by local vehicle density
under a distance-based communication topology.

Algorithm performance is evaluated via simulation in the
operating domain Ω = [−5 5] × [−5 5] m. Agents and
targets are constrained to remain inΩ at all times. Parameter
definitions and values used in the simulation are provided
in Table 1. The local temperatures of the agents and targets
are obtained via linear interpolation between the grid points.
The overall temperature surface is normalized by subtract-
ing its mean every time step. To avoid overheating in the
temperature surface, the individual sensor updates are scaled
by N , i.e., the number of agents. This scaling has the effect
of making the collective detection performance in terms of
the cumulative number of targets detected over time roughly
independent of N .

Figure 3 shows the results of the simulation. Figure 3a and
b depict snapshots of the vehicles, targets, and temperature
(inverse log-likelihood) surface at time steps k = 125 and
425 respectively. Vehicles are shown as red circles, undiscov-
ered targets as white crosses, and discovered targets as red
crosses. At any moment, there are only three undiscovered
targets in the domain. Once a target is detected, it turns red
and another target appears with uniform probability some-
where in the domain. The heat map, which describes the

Table 1 Parameter values and definitions

Parameter Value Definition

N 10 Number of agents

M 3 Instantaneous number of targets

α 0.5 Target diffusivity

σ 1.5 m Repulsive threshold

ε 0.2 Lennard-Jones potential depth

T0 −15 ◦ Target detection threshold

KP 5 Gradient-following gain

KV 0.05 Lennard-Jones gain

vmax 0.3 m/s Maximum agent speed

Pd 0.95 Probability of detection

Pf 0.10 Probability of false alarm

ρtarget α Sensor detection range

n 50 Number of grid points

in each dimension

�x 2/n Grid spacing

�t 0.03 s Time step

temperature, is blue in areas of low temperature (high likeli-
hood) and red in areas of high temperature (low likelihood).

In Fig. 3a, one target has been detected. There are several
vehicles scanning the warmer regions like gas molecules,
while others are clustering around potential targets in a semi-
solid configuration. Figure 3c shows the cumulative number
of targets captured during the simulation (solid line) and the
amount of time it takes for the vehicles to fully cover the
domain once (dashed line). The vertical red lines indicate
the times the snapshots were taken. This algorithm follows
a typical coverage curve, with approximately linear growth
in coverage early on, followed by slower asymptotic conver-
gence to full coverage. Also note the target capture rate is
approximately linear.

4 Experimental results

As a demonstration of the proposed technique we imple-
mented the algorithm in hardware using a quadrotor testbed
in the Laboratory for Autonomous Systems Research located
at the Naval Research Laboratory. Note that the experiments
conducted in this paper are for proof-of-concept and not
intended to serve as a rigorous verification of the algorithm.
The testbed is composed of Ascending Technologies Peli-
can quadrotors operated in a facility with 115 Vicon motion
capture cameras. Figure 4 shows the prototyping high bay
where the experiments were conducted. The quadrotors are
equipped with active LED motion capture markers in order
to be seen by the Vicon cameras.
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Fig. 3 a, b Snapshot of the simulation; c The number of targets cap-
tured throughout the simulation and the amount of time taken to cover
the entire domain once. Vehicles cluster like solid molecules in cold

regions near the target and explore randomly like gas particles in hot
regions, while flowing down the temperature gradient from hot to cold

Fig. 4 Prototyping high bay in the Laboratory for Autonomous Sys-
tems Research at the Naval Research Laboratory

The quadrotors each have a downward facing Point Grey
Chameleon 1.3 megapixel camera with a resolution of 1296
× 964 pixels. The camera is equipped with a Tamron CCTV
manual lens to adjust zoom and focus. The camera has a
global shutter to minimize motion blur and adjustable white
balance and shutter speed. The quadrotors have an onboard
Linux computer that processes camera frames at 15 Hz,
which is limited by how fast images can be captured by the
camera. A binary measurement signal sent to the LRT repre-
sents whether or not a blob of a predetermined color is in the
image. For the experiments, the targets were Sphero robots,
a spherical rolling toy with an orange cover. Figure 5 shows
an example of the blob-tracking software used to detect two
Spheros in the field of view of the Point Grey camera.

Pose and target information from each vehicle is sent to a
laptop that uses the Robot operating system (ROS) (Quigley
et al. (2009)) to process the data and compute control com-
mands in a control node. ROS is an open-source software

Fig. 5 Processed camera image showing twoorangeSpheros identified
using a color blob detector

architecture that contains software libraries and tools to build
robotic applications. The binary signal is generated by using
a standard blob segmentation algorithm (Nán 2015) in a cam-
era processing ROS node onboard the vehicle. The vehicle
also has a ROS node to handle passing measurements to the
control node running on a laptop as well as receiving position
and control commands from the external laptop and motion
capture system. Control commands are sent to the vehicle
through a WiFi connection to the message processing node
at approximately 30 Hz. The full architecture for the experi-
ment is shown in Fig. 6.

4.1 Single-vehicle, single-target experiment

To verify the algorithm using the hardware testbed, experi-
ments were first conducted with a single vehicle and a single
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Fig. 6 Hardware architecture for the experiments. The quadrotors run
two ROS nodes to process camera data and handle incoming posi-
tion measurements and desired velocity. An offboard laptop receives
position and blob detection measurements to compute the temperature
surface and calculate the desired velocity

moving target. The Sphero served as an ideal target once
covered with a protective colored cover, since a color-blob
detection algorithm reliably located it within the image frame
of the camera. We commanded the Sphero speed but not its
direction, yielding a randomwalk behavior due to the cover’s
bumpiness.

Figure 7 shows a snapshot of an experiment. The tar-
gets are surveilled using the Point Grey camera; color blobs
(and false alarms) were found in each image frame. The
blob detections are fed into the LRT to calculate the inverse
log-likelihood surface, from which the desired control is cal-
culated. Once a target is detected, any blob within a 0.5 m

radius of the detected-target location is ignored by the LRT
tracker. The Sphero was commanded to move in a random
walk, so multiple detections of the same Sphero were possi-
ble.

In this experiment, the moving Sphero was detected three
times as it performed the random walk. The locations where
the target was detected are indicated by the red crosses. Fig-
ure 7a and 7b show snapshots of the experiment at time steps
k = 120 after the first detection and k = 220 after the third
detection. The number of detections over time is shown in
Fig. 7c, where the vertical red lines indicate the times of the
snapshot shown in Fig. 7a and 7b. In a real target-tracking
application, once the target is detected using Algorithm 1
the vehicle would switch to another controller to maintain
a line-of-sight track of the detected target such that mul-
tiple detections are unnecessary. For illustrative purposes,
the vehicle in this experiment continued using Algorithm 1
even after a detection was called. The single-vehicle experi-
ments used the same gains that were used in simulation; the
Lennard-Jones potential was omitted, as it is pertinent only
in the multi-vehicle experiment described next.

4.2 Multi-vehicle, multi-target experiment

Amulti-vehicle experiment was also conducted with station-
ary targets located at (−0.25,−0.35), (1.60, 0.40), and (1.90,
−1.00) meters. Figure 8a and b show snapshots of the inverse
log-likelihood surface at time steps k = 60 and 155 with the
position of the undetected targets shown as black crosses and
detected targets shown as red crosses. At the depicted time
step, there is one target that has been recently detected, one
that has yet to be discovered, and a third that in the process of
being detected. Figure 8c shows the number of targets cap-
tured and the area covered over time. With two vehicles, all
targets were captured within 200 time steps and the vehicles
covered the full domain in approximately 400 time steps,
which corresponds to 40 seconds.

Fig. 7 a, b Snapshot of the single-vehicle experiment; c The number of targets captured throughout the experimetn and the amount of time taken
to cover the entire domain once
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Fig. 8 a, b Snapshot of the multi-vehicle experiment; c The number of targets captured throughout the experiment and the amount of time taken
to cover the entire domain once

Comparing Fig. 3c to Fig. 8c, we see that the cover-
age rate in the experiment follows the same patterns as the
simulated experiments, i.e., initial linear growth followed
by asymptotic convergence. It was also determined that, in
general, the vehicles must have lower gains than in simu-
lation. As observed by comparing Fig. 3c to Fig. 8c, lower
gains result in a slower capture rate. With higher gains, the
vehicles tended to overshoot the targets before the tempera-
ture was cool enough to slow them down. The discrepancy
between simulation and experiment can be explained by
observing that the dynamics of the quadrotors are inher-
ently second-order, whereas the desired velocity stated in
(10) is for vehicles with first-order dynamics. The Pelicans
approximate this control by treating the output of (10) as a
desired velocity to be achieved by the onboard flight con-
troller.

5 Conclusion

We present a physics-inspired target search algorithm for
multiple agents and multiple moving targets. The agents
assimilate noisy measurements from onboard sensors to pro-
duce log-likelihood ratio estimates of target positions over the
operating domain. The inverse log-likelihood surface plays
the role of temperature so that agents speed up and slow down
along the temperature (information) gradient. Additionally,
vehicles are influenced by aLennard-Jones potential between
other local vehicles. The Lennard-Jones potential provides
collision avoidance as well as local collaboration with other
vehicles. The approach is amenable to heterogeneous agents
and to distributing the computation of the log-likelihood sur-
face over the agents. Multi-vehicle experiments verify the
vehicle routing algorithm. In ongoing work, we are conduct-
ing experiments with more quadrotors and moving targets.
We are alsomodifying the proposed algorithm for distributed
computation.
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