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Abstract— Many aspects of decision making processes for 
autonomous systems involve human subjective information in 
some form. Methods for informing decision making processes 
with human information are needed to inform probabilistic 
information used in an autonomous system. This can provide 
better decisions and permit a UAV to more quickly and 
efficiently complete tasks. Specifically we use possibility theory to 
represent the subjective information and apply possibilistic 
conditioning of the probability distribution. A simulation 
platform was developed to evaluate approaches to using 
possibilistic inputs and showed that is was feasible to make 
effective usage of such information.  

Keywords— possibility distribution, possibilistic conditioning, 
Bayesian updating, autonomous systems  

I. INTRODUCTION  
Low-cost aerial vehicles equipped with on-board cameras may 
be used to autonomously track objects on the ground, and 
thereby provide a valuable capability for operations such as 
search-and-rescue [1] and aerial surveillance [2].  Tracking 
objects on the ground using multiple aerial vehicles requires 
that the vehicles be routed in such a way that information gain 
increases as the search continues.  Ideally, we want to find 
search paths that maximize information gain.  

This paper will focus specifically on path planning for 
autonomous systems, in particular deciding where to move in 
an environment in order to most quickly complete a task, given 
human sources of information. A prime example of such a task, 
where time is a factor and human information is often 
provided, is a search and rescue mission. Such a mission will 
require the missing individuals be found as quickly as possible, 
and sources of human information may include where they 
were last seen, local inhabitants' insights into the area and so 
forth. This information, provided by human sources, is called 
subjective or epistemic information.  
Here we will focus on use of a possibility approach to represent 
such information. Possibility measures vary from probability 
measures in that a possibility describes a degree of belief and 
makes it feasible to represent incomplete knowledge. that is 
generalized from Bayesian methods An approach for informing 
a Bayesian a priori probability distribution with possibilistic 
information will be used in this paper. We also include an 
outline of the approach taken to experimentally test these 
methods, a description of the simulation and planner developed 
and discussion of results.   

II. BACKGROUND 

A. Autonomous Vehicle Search and Tracking  
Recent literature on tracking multiple targets suggests 
approaches to addressing the planning problem through use of 
Bayesian inference and information theory.  In [3]–[7] 
Bayesian inference and maximum likelihood methods are 
combined for multi-target tracking, while [8]–[10] describe 
methods for moving the mobile platforms.  In fact, most of 
these methods utilize only a single mobile sensor platform.    
Optimal sensor selection and placement is explored from the 
perspective of design optimization in [11]-[13], but these 
methods do not scale well as the number of sensors/platforms 
increases due to the complexity of calculating mutual 
information amongst the sensors and targets. This planning 
process must also be robust to limitations in the autonomous 
vehicles’ ability to communicate due to bandwidth limitations 
or interference. 
Physics-inspired swarm-based control is proposed in [14]-
[15].  In this control paradigm a heat-map is imposed over the 
search space, and the heat is adjusted such that the vehicles 
follow a gradient along the heat map.  The “temperature” of 
the surface is adjusted such that the vehicles are driven to 
gather new information, thereby increasing information gain.   
Achieving the appropriate behaviors, however, requires 
careful tuning of multiple parameters, resulting in a heuristic 
method that may not guarantee convergence to a near-optimal 
search policy. 
In [16], Sydney implements a distributed motion planner for 
multiple vehicles tracking multiple moving targets through use 
of a Bayesian Likelihood Ratio Tracker (B-LRT).  The 
algorithm implements the Dynamic Data-Driven Application 
Systems (DDDAS) [17] paradigm in which sensor 
measurements are used to guide subsequent data collection. 
Each mobile platform is assumed to cover a finite area, and its 
on-board sensors provide a binary “yes” or “no” reading of 
whether (or not) a target is present within its search area. The 
B-LRT assimilates the data from all of the platforms into a 
map, which represents a probability density function (PDF) of 
the likelihood that targets are present over each particular 
point within the search domain. Mutual information between 
the sensor and target states is maximized by having the 
vehicles following the gradient of the information surface.   



The behaviors approximate the motions of molecules in one of 
three states of matter: solid, liquid, or gas.  As compared with 
the methods described in [14]-[15] which required parameter 
tuning to produce the desired behaviors, in this method the 
behaviors are emergent and require fewer tuning parameters.  

B. Possibilistic Conditioning 
To formalize the problem, let V be a discrete variable taking 
values in a space X that has both aleatory and epistemic 
sources of uncertainty [18]. Let there be a probability 

distribution P:  X → [0, 1] such that pi ∈ [0,1], : 
!i=1
n
∑ pi = 1 

that models the aleatory uncertainty. Then the epistemic 
uncertainty can be modeled by a possibility distribution [19] 
such that Π : X→ [0, 1], where π(xi) gives the possibility that 
xi is the value of V, i = 1,2,...n.  A usual requirement here is 
the normality condition, 

!
Max
x

 [π (x)] = 1, that is at least one 

element in X must be fully possible.  Abbreviating our 
notation so that pi = p(xi), etc. and πi = π(xi), etc., we have P = 
{p1, p2, .....pn} and Π = {π1 , π2 ,...., πn}.   

In possibilistic conditioning, a function f dependent on 
both P and Π is used to find a new conditioned probability 
distribution such that [20] 

  f ( P,Π ) ⇒ new !P̂   
where  !P̂  = { !p̂ 1, !p̂ 2, ..., !p̂ n}  with!p̂   

 
!
p̂i !=!

pi !πi
K

         where 
!
K!=!! pi !πii=1

n
∑ !                       (1) 

A strength of  this approach using conditioned probability 
is that it also captures Zadeh’s concept of consistency between 
the possibility and the original probability distribution. 
Consistency provides an intuition of concurrence between the 
possibility and probability distributions being aggregated. In 
Eq (1), K is identical to Zadeh's possibility-probability 
consistency measure [19], CZ (P,Π); i.e. CZ (P, Π) = K. 
For the purposes of this paper, this conditioning was done at 
some time step t during the experiment. An example of the use 
of this method would be if, during a search and rescue 
mission, some new information was discovered by a human 
source who believed the missing person who more likely to be 
farther North and less likely to be in the East. This information 
would be represented by a possibility distribution, where the 
North would be assigned a value of 1 in the distribution and 
the East would be assigned values of or close to 0. Then the  
prior distribution over the area being covered in the search 
would be conditioned with this new possibility information.  
Because of the subjective and potentially less reliable nature of 
the possibility information distribution more weight can be 
given to the probability distribution than the possibility 
distribution in the simulation. Another point of importance is 
how to utilize Zadeh consistency, as the greater the 
consistency, or the lower the conflict, between the possibility 
and probability distribution, the more informative the newly 
conditioned posterior will be; and the lower the consistency, or 

higher the conflict, between the possibility and probability 
distributions, the less informative the posterior will be. 

C. Weighted Aggregation 
The simplest method used in this paper, the weighted 
aggregation method, allows one to combine multiple sources 
of information with varying levels of reliability or credibility. 
So if a problem required combining information, for example,  
from multiple sensors of different types, where each sensor 
had a different accuracy, this could be done easily using this 
method; higher weights given to the more accurate or reliable 
sensors.  
For the present, it is assumed only two sensors are used and 
each sensor is equally reliable. That is, here we used an equi-
weighted approach, essentially taking the average of two 
sensor values.    

 !!p̂!=!w1p1k !+!w2p2k !=!1/2(p1k !+!p2k )   
 

III. SIMULATION 

A. Experimental Design 
In this section we describe how these methods were 
implemented, what was being tested, and  potential results. 
Specifically we describe the  simulation platform and  planner, 
which determined where the simulated UAV would move, and 
the method used to update the a priori information as the UAV 
continuously sensed the space searching for the target. 
Our basic evaluative criterion for these simulations was that 
using these methods for informing the  prior would assist a 
UAV in detecting the target more rapidly. The specific 
criterion was represented by the number of iterations, i.e. how 
many times the UAV (or UAVs in the case of a multi agent 
simulation) moved. Iterations are a more accurate 
representation of success than real time because the simulation 
will run more quickly or slowly depending on the number of 
UAVs in simulation, size of the grid, or, to a lesser extent, the 
method being used to inform the prior; the number of 
iterations moves at a constant pace regardless of these or any 
other factors, and is therefore a better method for accurately 
comparing results. Note that if the probability and possibility 
distributions are in conflict, the UAV should in general take 
more iterations than the control to detect the target, but if they 
are not in conflict then there may be less time than the control 
to detect the target. 
We begin with a previous simulation developed for  persistent 
coverage [21] extended to target detection, moving from a 
risked based to certainty based planner. This approach adapts 
how the UAV senses the environment, adding methods for 
updating the grid based on new sensor information, and 
adding functions for defining or informing the prior with 
additional information. Included are variables such as which 
method is used, how large and how many grid cells there are, 
number of UAVs, and number of targets. 



B. Planner 
The planner used is a reactive planner, meaning it does not 
matter where in the environment the UAV is, but what 
immediately surrounds the UAV. The main benefit of a 
reactive planner is that it is highly scalable. Regardless of the 
size of the environment, obstacles placed within the 
environment, how much or little the UAV knows about its 
surroundings, the planner will be able to direct the UAV 
throughout the space. 
The main algorithm for the planner involves cycling through 4 

steps: evaluate, move, sense and update. First, the planner 
looks to see in which direction certainty is highest by 
evaluating the certainty at discretized segments along the 
sensor footprint. The sensor footprint is elliptical and 
positioned in line with but in front of the UAV. Once the 
direction of highest certainty is determined the UAV moves in 
this direction. The UAV then takes a sensor measurement in its 
new location. Because this is a simulated experiment, we will 
know in which grid cell the target is located. So, if the target is 
present the sensor will return a value of 0.9 and if no target is 
present it will return a value of 0.1, the 0.9 and 0.1 representing 
an imperfect sensor. These values may be changed depending 
on the quality of the sensor in use. Given this new sensor 
measurement, the prior certainty values in the grid are updated 
using a Bayesian update. Once this is done, the process will 
repeat until the cell where the target is located reaches a 
threshold value for detection, or the simulation goes on for too 
long and reaches a maximum number of iterations. 

C. Update Method 
The update method is a Bayesian Filter. Some common 
examples of Bayesian filters include a Kalman Filter, Particle 
Filter, and Multiple hypothesis tracking, however here a 
simplified filter was used [22]. The initial sensor measurement 
z at cell k is 0 or 1:  
  zk  ∈{0,1}  
The probability of detecting a target given prior knowledge of 
the current grid cell is between 0 and 1 exclusive and depends 
on quality of the sensor. In this case 
  p ( zk | Θk )  ∈{0.1, 0.9} 
The prior is updated by multiplying  the new probability of 
detection with the prior at cell k and then normalizes this  
value. 
 
 
 
 
 
 
At the cell k where the most recent sensor measurement 
occurred: 
   Target was Detected:         Yes- p ( zk | Θk )  = 0.9 
      No - p ( zk | Θk )  = 0.1 
At all other locations k' > k 
   Target will be Detected:       Yes- p ( zk' | Θk' )  = 0.9 
         No - p ( zk' | Θk' )  = 0.1 

Benefits of this basic approach include that it is a simple way 
to represent an imperfect sensor and that it allows for the 
inclusion of multiple sensors in future work. However, the 
main drawback of this update method is that it is 
computationally inefficient, as grid size increases complexity 
grows exponentially. At the moment, the simulation will run 
relatively quickly for a grid of up to 12 by 12 cells, but beyond 
this the simulation becomes inoperable. For  the basic testing, 
we did not use a grid larger than 10 by 10. 

IV. SIMULATION RESULTS 
Four sets of simulations are compared against a 

benchmark simulation. Table I provides a description of these 
computations. In each simulation, possibilistic conditioning 
and update occur at time step t = 100. The benchmark has no 
possibilistic conditioning, using only Bayesian updates alone. 
All simulations are repeated 100 times.    

TABLE I.  DESCRIPTION OF SIMULATION 

Run # Description 

1 
"Random-1": The possibility of 1 is placed 
randomly at one location at t=100; possibility = 0 
everywhere else.  

2 
"Target-1": The possibility of 1 placed at the true 
target location at t=100; possibility = 0 everywhere 
else.  Possibilistic update at t=100. 

3 
"Random-1 & prior": Possibility of 1 placed 
randomly at t=100; every other location has 
possibility = prior probability.  

4 
"Target-1 & prior": Possibility of 1 at the true target 
location at t=100; every other location has 
possibility = prior probability.  

Benchmark "Uniform" The initial probability is set at uniform 
across the search space, and there is no possibilistic 
update during the simulation.  This run serves as 
the benchmark. 

 
 Once the simulations are complete, histograms of the 
number of steps needed to find the target are examined. Figure 
1 shows the histogram from Run #2 as an example. The 
simplest fit to each histogram from the simulations is an 
exponential probability density function, given by 

 
   p t( ) = µ−1 exp −t µ( ) .  (1) 

 
In Eq. (1), µ is mean. The mean and standard deviation, σ, are 
equivalent for an exponential probability distribution. 
(Numerically, µ  > σ of update steps needed to find the target, 
but were the same to within 12%, 9%, 8%, 3% and 4% of the 
mean for Run #1 to #4, respectively, and 9% for the 
Benchmark run). Column 1 of Table II provides statistics from 
each simulation. Also listed are the upper and lower bounds 
for a 90th percentile confidence interval of µ, given by 
{ },µ µ . The maximum likelihood estimation algorithm (as 
implemented in the Matlab Statistics Toolbox estimate) 
outputs { },µ µ .  

!!

update :
p θk |zk( ) = p zk |θk( )p θk |zk−1( )

p zk |zk−1( )
p zk |zk−1( ) = p zk |θk( )p θk |zk−1( )
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Fig. 1. Histogram of update steps for Run #1 in Tables I and II. The curve 
plots Eq. (1) using the computed mean. 

TABLE II.  MEAN, MEDIAN AND 90TH PRECENTILE TO FIND TARGET IN 
SIMULATIONS, LOWER AND UPPER BOUNDS ARE IN BRACKETS 

Run	  #	   Mean{ },µ µ 	   { }   50 5050 ,, t tt   { }    90 9090 ,, t tt  

1	   524,	  {520,	  533}	   365,	  {361,	  370}	   1209,	  {1197,	  1228}	  

2	   500,	  {495,	  508}	   347,	  {344,	  353}	   1152,	  {1141,	  1170}	  

3	   432,	  {428,	  438}	   300,	  {297,	  305}	   995,	  {985,	  1011}	  

4	   383,	  {380,	  389}	   267,	  {264,	  271}	   884,	  {876,	  898}	  

Benchmark	   512,	  {507,	  520}	   356,	  {352,	  361}	   1179,	  {1168,	  1198}	  

 
From Eq. (1) and the estimate for µ , the normalized CDF 

is computed over the time-steps vector of 1 to 2,001 seconds. 
From the CDF, the median, 50t ,  and 90th quantile, 90t , are 
found. Columns 2 and 3 in Table II provide these results. To 
obtain the lower and upper bounds for 50t  and 90t ; 

{ }  50 50,t t and { }  90 90,t t , respectively; the CDF and quantile 

calculations are repeated using{ },µ µ  in Eq. (1). These two 
curves are the upper and lower bounds for the CDF. The 
median and 90th quantiles from the lower bound CDF give 

  50t and   90t . Likewise, the upper bound CDF give 50t and 90t .  

A. Discussion 
It is expected that the better the possibilistic conditioning 
“helped” the target search, the lower the mean, median, and 
90th quantile. In the simulations, good inputs corresponded to 
a possibility of 1  set at the target. To get the best reduction in 
time, however, the possibility elsewhere at t = 100 also has to 
be set to the prior distribution. Maximum use of prior 
knowledge at that time seems to have the greatest impact to 
the targeting algorithm.  
 Use of possibility of 0 in conditioning for the non-target 
locations actually is detrimental. The conditioning operation 

sets these probabilities to zero, which is actually incorrect for 
the sensor used and the Bayesian targeting results at that time 
step of the simulation. Doing so takes the Bayesian algorithm 
further away or “offtrack” from a convergence state at t=100, 
resulting in longer search iterations.  
 Hence for this application, it is proposed that the 
possibilistic conditioning needs to be revised such that 
 

 
   
p

i
= max

p
i
π

i

K
, p

i

⎡
⎣⎢

⎤
⎦⎥

 . (2) 

 
A strength of the possibilistic conditioning is the 

relaxation in the normalization condition compared to 
probabilities. Although the possibility of 1 is set at the true 
target location, the end user has the freedom to set possibility 
> 0 at the other locations. If one were to use probability, then 
probability = 1 at the target would mean all other probabilities 
would be zero, which is not correct and throws the Bayesian 
update offtrack, creating longer convergence times.   

V. CONCLUSIONS AND FUTURE WORK 
The focus of this work was developing a simulation platform 
on which to test the effectiveness of methods for informing a 
priori information in a search and rescue scenario. This 
involved developing a reactive path planner which moved the 
UAV towards the area of highest certainty within the sensor 
footprint, taking sensor measurements along the way until a 
detection threshold is reached and the target is detected.  
Results so far show that some of the methods of informing a 
prior information are more effective than the uninformative 
prior of maximum entropy. 
Some planned experiments include using a static versus a 
dynamic target or a single target versus multiple targets. Other 
measures of how informative the prior is, such as the Shannon 
entropy or Gini index [23], can be used to evaluate whether a 
more informative a priori with regards to these methods 
results in quicker detection of the target. Also varying the 
method used to update the a priori with the newest sensor 
measurement and determining the effect of the updating 
method on the number of iterations can be considered.  Finally   
we are preparing  to run experimental tests using physical 
UAVs in the NRL Laboratory for Autonomous Systems 
Research (LASR)'s high bay, in order to compare results of a 
physical UAV to the simulated results. 
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