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Abstract 
In this paper, we investigate the hypothesis that plan recog-
nition can significantly improve the performance of a case-
based reinforcement learner in an adversarial action selec-
tion task. Our environment is a simplification of an Ameri-
can football game. The performance task is to control the 
behavior of a quarterback in a pass play, where the goal is to 
maximize yardage gained. Plan recognition focuses on pre-
dicting the play of the defensive team. We modeled plan 
recognition as an unsupervised learning task, and conducted 
a lesion study. We found that plan recognition was accurate, 
and that it significantly improved performance. More gener-
ally, our studies show that plan recognition reduced the di-
mensionality of the state space, which allowed learning to be 
conducted more effectively. We describe the algorithms, ex-
plain the reasons for performance improvement, and also de-
scribe a further empirical comparison that highlights the util-
ity of plan recognition for this task.  

1. Motivation and Contributions 
Large state spaces pose a challenge for reinforcement 
learning (RL) algorithms due to the amount of data re-
quired to develop accurate action-selection policies. For 
example, when using the observed state variables, the per-
formance task that we analyze in this paper has a large 
state space (4.3*109), which is common for adversarial 
multiagent environments. Due to this and other characteris-
tics of our task, if we used a simple Q-learning algorithm, 
then learning an accurate policy would require an inordi-
nately large (and practically infeasible) number of trials. 

Case-based reasoning (CBR) methods are an attractive 
approach for solving this problem because they assume 
that the same (or similar) actions are best performed 
among a given set of similar states. When this assumption 
holds, then generalizing from previous experiences can 
greatly reduce the number of states that need to be visited, 
during trials, to learn an accurate policy. Also, CBR meth-
ods are comparatively simple to encode, intuitive, and have 
a good performance record for assisting with reinforcement 
learning (e.g., Ram & Santamaria, 1997; Sharma et al., 
2007; Molineaux et al., 2008). 
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Unfortunately, CBR methods are not a panacea; they 
provide only one part of a solution to this problem. For 
example, like reinforcement learning algorithms (Barto & 
Mahadevan, 2003) they learn slowly when state descrip-
tions have high dimensionality because this complicates 
the task of identifying similar cases. Thus, they can benefit 
from techniques that reformulate the state space to address 
this problem (e.g., Aha, 1991; Fox & Leake, 2001). 

One method for reformulating the state space involves 
using plan recognition (Sukthankar, 2007) to reveal hidden 
variables (e.g., concerning opponent intent), which can 
then be incorporated into the state space used by learning 
algorithms. This has the potential to transform a partially 
observable environment into a fully observable environ-
ment (Russell & Norvig, 2003). 

We investigate the utility of a plan recognition method 
for reformulating the state space of a case-based rein-
forcement learning algorithm so as to improve its perform-
ance on a complex simulation task. We claim that plan 
recognition can significantly increase long-term rewards on 
this task, describe an algorithm and its empirical study that 
supports this conclusion, hypothesize a reason for its good 
performance, and report on its subsequent investigation.  

Section 2 describes our task environment, which is a 
limited American football game simulation. We then de-
scribe related work in Section 3 before introducing our 
case-base reinforcement learner, and its plan recognition 
extensions, in Section 4. Our empirical study, results anal-
ysis, and subsequent investigation are described in Section 
5. We discuss these in Section 6 and conclude in Section 7. 

2. Domain and Performance Task 
American football1 is a game of skill played by two teams 
on a rectangular field. RUSH 20052 is an open-source 
American football simulator whose teams have only 8 
players and whose field is 100x63 yards. We use a variant 
of Rush that we created (RUSH 20083) for our investigation.   
                                                
1 http://en.wikipedia.org/wiki/American_Football 
2 http://rush2005.sourceforge.net/ 
3 http://www.knexusresearch.com/projects/rush 



Our investigation involved learning to control the quar-
terback’s actions on repeated executions of the same offen-
sive play (a pass). In this context, the offensive team’s 
players are instructed to perform the following actions: 
Quarterback (QB): Given the ball at the start of play 

while standing 3 yards behind the center of the line of 
scrimmage (LOS), our QB agent decides whether and 
when he runs, stands, or throws (and to which receiver).  

Running Back (RB): Starts 3 yards behind the QB, runs a 
pass route 7 yards left and 4 yards downfield. 

Wide Receiver #1 (WR1): Starts 16 yards to the left of the 
QB on the LOS, runs 5 yards downfield and turns right.  

Wide Receiver #2 (WR2): Starts 16 yards to the right of 
the QB a few yards behind the LOS, runs 5 yards down-
field, and waits. 

Tight End (TE): Starts 8 yards to the right of the QB on 
the LOS and pass-blocks.  

Offensive Linemen (OL): These 3 players begin on the 
LOS in front of the QB and pass-block (for the QB).  

In our investigation, the defense always used plays start-
ing from the same formation, and acts as follows: 
Defensive lineman (DL): These 2 players line up across 

the LOS from the OL and try to tackle the ball handler. 
Linebacker (LB): These 2 players start behind the DL, 

and will blitz the QB, guard a particular zone of the 
field, or guard an eligible receiver (i.e., the RB, WR1, 
or WR2), depending on the play. 

Cornerback (CB): These 2 players line up across the LOS 
from the WRs and guard a player or a zone on the field. 

Safety (S): These 2 players begin 10 yards behind the LOS 
and assist with pass coverage or chase offense players. 

Figure 1 displays the starting formation we used for both 
teams in each play. All players pursue a set play based on 
their specific instructions (i.e., for the offense, a location to 
run to followed by a behavior to execute), except for the 
QB, whose actions are controlled by our learning agent. 
However, due to the stochastic nature of the simulator, the 
play does not unfold the same way each time. Each player 
possesses unique skills (specified using a 10-point scale) 
including power, speed, and skill; these affect his ability to 
handle the ball, block, run, and tackle other players. The 
probability that a passed ball is caught is a function of the 

number of defenders near the intended ball receiver, the 
skills of the ball receiver and the nearby defenders (if any), 
and the distance in which the ball was thrown.  

The physics of the simulator are simplified. When a 
player or the ball starts to move, it takes on a constant ve-
locity, with the exception that the ball will accelerate 
downwards due to gravity. All objects are represented as 
rectangles that interact when they overlap (resulting in a 
catch, block, or tackle). 

Within RUSH, we examine the task of learning how to 
control the quarterback’s actions so as to optimize yardage 
gained on a single (repeated) play. At the start of each 
play, the defense secretly and randomly chooses one of 
five plays/strategies that begin from the same known for-
mation. These plays are named “Half-and-Half”, “Soft 
Covers”, “Pass Blanket”, “Hard Blitz”, and “Pressure RB”. 
The offensive team always uses the same passing play, as 
detailed above. Only the QB is controlled. The other play-
er’s actions are slightly variable, and they may not run the 
same path every time, even though they will follow the 
same general directions. This task is stochastic because the 
other players’ actions are random within certain bounds. It 
is also partially hidden: while each player’s positions and 
movements are visible, one of the determinants of those 
movements (i.e., the defensive strategy) is not observable. 

The QB can perform one of eight actions (see Figure 2) 
at each time step during the offensive play. The first four, 
Forward, Back, Left, and Right cause the QB to move in 
a certain direction for one time step. Three more cause the 
QB to pass to a receiver (who is running a pre-determined 
pass route): Throw RB, Throw WR1, Throw WR2. Fi-
nally, one action causes the quarterback to stand still for a 
time step: Noop. The QB may decide to run the football 
himself. The quarterback must choose actions until either 
he throws the ball, crosses into the end zone (i.e., scores a 
touchdown by gaining 50 yards from the LOS), or is tack-
led. If the QB passes, no more actions are taken, and the 
play finishes as soon as an incompletion occurs, an inter-
ception occurs, or the successful receiver has been tackled 
or scores a touchdown.  

At the start of each play, the ball is placed at the center 
of the line of scrimmage (LOS) along the 50 yard line. The 
agent’s reward is 1000 for a touchdown (i.e., a gain of at 
least 50 yards), -1000 for an interception or fumble, or is 
otherwise ten times the number of yards gained (e.g., 0 for 
an incomplete pass) when the play ends. A reward of 0 is 
received for all actions before the end of the play. Touch-



downs, interceptions, and fumbles are relatively rare. 
Touchdowns occur between 0.01% of the time (for a low 
performer) and 0.2% of the time (for a high performer). 
Interceptions and fumbles combined occur between 1% 
and 3% of the time. 

3. Related Work 
Plan recognition concerns the task of inferring the goals of 
an agent and their plan for achieving them (Carberry, 
2001). Ours is a simple instantiation of this in which we 
know the opponents’ goals (i.e., minimize yardage gained 
and gain possession if possible), and few plans are used. 

Plan recognition has a long history in CBR research 
(e.g., Kass, 1991), particularly in the context of adversarial, 
real-time multiagent games. For example, Fagan and Cun-
ningham (2003) acquire cases (state-action planning se-
quences) for predicting a human’s next action while play-
ing SPACE INVADERS. We instead focus on predicting the 
actions of a team of coordinating players. Cheng and Tha-
wonmas (2004) propose a case-based plan recognition ap-
proach for assisting players with low-level management 
tasks in WARGUS. However, they do not observe the adver-
sary’s tactical movements, which is our focus. Finally, Lee 
et al. (2008) use Kerkez and Cox’s (2003) technique to 
create an abstract state, which counts the number of in-
stances of each type-generalized state predicate. On a sim-
plified WARGUS task, their integration of CBR with a sim-
ple reinforcement learner performs much better when using 
the abstract state representation to predict opponent ac-
tions. While our approach also performs state abstraction, 
our states are not described by relational predicates, and 
this technique cannot be applied to our task. 

Several additional CBR researchers have recently inves-
tigated planning techniques in the context of real-time si-
mulation games (e.g., Aha et al., 2005; Ontañón et al., 
2007; Sugandh et al., 2008). While some employed rein-
forcement learning algorithms (e.g., Sharma et al., 2007; 
Molineaux et al., 2008; Auslander et al., 2008), none lev-
eraged plan recognition techniques. 

CBR is frequently used in team simulation games such 
as ROBOCUP SOCCER (e.g., Karol et al., 2003; Srinivasan et 
al., 2006; Ros et al., 2007). Unlike our own, these efforts 
have not focused on plan recognition or on alternative ap-
proaches for learning a state representation to enhance re-
inforcement learning behavior. Among more closely-
related work, Wendler and Bach (2003) report excellent 
results for a CBR algorithm that predicts agent behaviors 
from a pre-defined set. We instead use plan recognition to 
assist reinforcement learning, and our opponent’s behav-
iors are instead learned via clustering. Finally, Steffens 
(2005) examines the utility of adding virtual features that 
model the opponent’s team and showed that, when 
weighted appropriately, can significantly increase player 
prediction accuracies. However, these features were hand-
coded rather than learned via a plan recognition method. 

There has been limited use of clustering to assist with 
plan recognition in related tasks. For example, Riley et al. 
(2002) use a clustering technique based on fitting minimal 

rectangles to player logs of Robocup simulator league data 
to identify player home areas. A player's home area is de-
fined as the segment of the field where the player spends 
90% of the game time. However, knowing a player's home 
area is insufficient to perform state-space reduction. In 
general, our use of an EM clustering approach for plan 
recognition is fairly unique; most related research focuses 
on determining which plan is being executed rather than 
the plan’s cluster/category. 

Finally, we recently reported successful results when us-
ing a supervised plan recognition approach to predict the 
offensive team’s play (Shore et al., submitted), but we did 
not use it as leverage in a subsequent learning task, which 
is the focus of this paper. 

4. Algorithm 
Our algorithm is based on the Q(λ) algorithm (Sutton & 
Barto, 1998); it uses a set of case bases to approximate the 
Q function and an EM clustering algorithm to add oppo-
nent plan information to the state. We call it Case-Based 
Q-Lambda with Plan Recognition (CBQL-PR). 

4.1 Plan Recognition Task 
In CBQL-PR, plan recognition is an online learning task 
that clusters the observable movements of all the defensive 
players into groups. The perceived movement m∈M for 
each defensive player is the direction that player is moving 
during a time step, which has nine possible values: 

M = {None, Forward, Left, Right, Back, Forward-
Right, Forward-Left, Back-Right, Back-Left} 

Directions are geocentric; Forward is always in the 
direction of play (downfield), and all other directions are 
equally spaced at 45-degree angles. Clustering is per-
formed after the third time step of each play, so three 
“snapshots” of the defensive players’ movements are 
used. Thus, 24 features are used to represent defensive 
plays (i.e., the directions on each of three steps for each 
of eight defensive players). For the first 1000 trials, ex-
amples were added to the batch to be clustered, but the 
predicted cluster (i.e., the recognized plan) was not used 
in action selected. 

We used the Expectation-Maximization (EM) algorithm 
from the Weka1 suite of machine learning software for 
clustering. EM iteratively chooses cluster centers and 
builds new clusters until the centers move only marginally 
between iterations. Membership of an example in a cluster 
is calculated as the product of the within-cluster frequen-
cies of each value in the feature vector. EM also increases 
the number of clusters to discover until successive steps 
decrease the average log-likelihood of instances in a final 
clustering. We selected EM after reviewing several algo-
rithms; the clusters it found matched the defensive plays 
over 99% of the time in less than 1000 examples. 
                                                
1 http://www.cs.waikato.ac.nz/ml/weka/ 



4.2 Action Selection Task 
CBQL-PR periodically selects an action that either maxi-
mizes the expected return (exploiting learned knowledge), 
or improves its knowledge of the value space (exploring 
the environment) so as to maximize the long-term reward. 

CBQL-PR uses a set of case bases to approximate the 
standard RL Q function, which maps state-action pairs to 
an estimate of the long-term reward for taking an action a 
in a state s. There is one Qa case base in this set for each 
action a∈A, where A is the set of actions defined by the 
environment. These case bases support a case-based prob-
lem solving process consisting of a cycle of case retrieval, 
reuse, revision, and retention (Aamodt & Plaza, 1994). For 
faster retrieval, we use kd-trees to index cases. At the start 
of each experiment, each Qa case base is initialized to the 
empty set; cases are added and modified as new experi-
ences are gathered, which provide new local estimates of 
the Q function. Cases in Qa are of the form <s, v>, where s 
is a feature vector describing the state (it contains a combi-
nation of integer, real, and symbolic values) and v is a real-
valued estimate of the reward obtained by taking action a 
in state s and then pursuing the current approximation of 
the optimal policy until the task terminates.  

At each time step, a state is observed by the agent, and 
an action is selected. With probability ε, a random action 
will be chosen (exploration). With probability 1-ε, the al-
gorithm will predict the best action to take (exploitation). 
To do this, it reuses each Qa case base by performing a 
locally-weighted regression using a Gaussian kernel on the 
retrieved k nearest neighbors of the current observed state 
s. Similarity is computed using a normalized Euclidean 
distance function. This produces an estimate of the value of 
taking action a in the current observed state s. CBQL-PR 
selects the action with the highest estimate, or a random 
action if any case base has fewer than 7 nearest neighbors. 

Once that action is executed, a reward r and a successor 
state s’ are obtained from the RUSH 2008 environment. 
This reward is used to improve the estimate of the Q func-
tion. If the case is sufficiently novel (more than a distance 
τ from its nearest neighbor) a new case is retained in Qa 
with state s and v = r + γ maxa∈A Qa’(s’) , where Qa’() de-
notes the current estimate for a state in Qa and 0≤γ<1 is the 
discount factor. This update stores an estimate of the value 
of taking action a in state s based on the known value of 
the best successor state and action. If the case is not suffi-
ciently novel, the 7 nearest neighbors are revised according 
to the current learning rate α and their contribution β to the 
estimate of the state’s value (determined by a normaliza-
tion over the Gaussian kernel function, summing to 1). The 
solution of each case is updated using:  

v = v + αβ [r + γ maxa∈A Qa’(s’) – Qa(s)]. 
Finally, the solutions (values) of all cases updated earlier in 
the current trial are updated according to their λ-eligibility: 

v = v + (γλ)tαβ [r + γ maxa∈A Qa’(s’) – Qa(s)], 
where t is the number of steps between the earlier use and 
the current update, and 0≤λ<1 is the trace decay parameter. 

4.3 State Definitions 
In addition to CBQL-PR, we investigate two non-
clustering variants of the algorithm which do not perform 
plan recognition, CBQLbase and CBQLopt; they differ only 
in their representation of the state. CBQLbase uses the time 
step and eight features from the set M described in Section 
4.1 (i.e., the directional movements of the eight defensive 
players for the most recent time step), In contrast, CBQL-
PR instead uses only the predicted cluster and the time 
step.  Before its third turn, CBQL-PR’s second feature 
takes on a distinct value indicating no prediction. We com-
pared CBQL-PR with CBQLbase to examine whether clus-
tering improves CBQL-PR’s performance over RL alone.  

CBQLopt uses an optimized 5-dimensional state descrip-
tion which includes four real-valued features that are intui-
tively helpful in the QB’s decisions of when and where to 
throw. It uses three features to indicate each eligible re-
ceiver’s distance from the nearest defensive player (indi-
cating how well each is covered). A fourth feature denotes 
the QB’s distance from the closest defensive player (indi-
cating the likelihood that he will be tackled imminently). 
The final feature is the current time step. This state repre-
sentation more closely resembles a conventional RL state, 
containing features selected for easy disambiguation of the 
right action to use, rather than capturing opponent plans. 
See Table 1 for more details. 

5. Evaluation 
Our empirical study focuses on analyzing how the state 
representation affects the performance of a case-based Q(λ) 
algorithm on a task in RUSH 2008. We hypothesized that 
clustering via plan recognition would yield a state repre-
sentation that significantly improves performance. We 
used the experimentation platform LIET, the Lightweight 
Integration and Evaluation Testbed. LIET is a free tool we 
developed that can be used to evaluate the performance of 
agents on tasks in integrated simulation environments. 
LIET managed communication between RUSH 2008 and 
CBQL, ran the experiment protocol, and collected results. 

We assessed performance in terms of two metrics: as-
ymptotic advantage and regret. Aysmptotic advantage is 
defined as the difference between the asymptotic perform-
ances of two algorithms, which we compute by averaging 
the performance achieved during the final 10 testing peri-
ods. The second metric, regret (Kaelbling et al., 1996), is 
the integral difference between the performance curves of 
two algorithms. To normalize, the regret is divided by a 
bounding box defined by the most extreme values in each 



dimension from both curves. The domain metric measured 
is the total reward, as defined in Section 2. 

We compared three variants of the learning algorithm, 
each using one of the different state representations defined 
in Section 4.3. In particular, only CBQL-PR employs a 
plan recognition method. For each algorithm, we used the 
following values for the constants to update the case base: 
learning rate α=0.2, discount factor γ=0.999, exploration 
parameter ε=0.2, trace decay λ=0.9, neighbor count k=7, 
and distance threshold τ=0.001. Both α and ε were de-
creased asymptotically to 0 over time.  

Each algorithm variant was tested against the same set 
of five defensive plays. Each of these plays denotes a dif-
ferent set of behaviors for the defensive team, and for each 
play, there is a distinct optimal offensive strategy. As the 
environment is stochastic, a series of actions may produce 
different rewards if attempted on successive trials. 

We ran ten replications of our experiment for each 
agent. Experiments lasted for 100,000 training trials, with a 
random defensive strategy selected at the beginning of 
each training trial. After every 250 training trials, we 
tested the algorithm ten times against each defensive strat-
egy. Each point in Figure 3 is the average performance 
over one testing period. On average, CBQL-PR found 
more clusters than actual plays; the mean was 6.6. How-
ever, no cluster corresponded to more than one play; 
rather, multiple clusters sometimes were found correspond-
ing to the same play. Also, predictions were found to be 
accurate 100% of the time in the limit; each time a particu-
lar cluster was predicted, the defense was using the same 
play. 

The results confirm our hypothesis that pattern recogni-
tion can significantly improve the performance of case-
based RL on this task. That is, CBQL-PR significantly 
outperformed CBQLbase and CBQLopt in k-step regret (vs. 
CBQLbase=.578, p <.0001 and vs. CBQLopt= .271, p<.0001) 
and asymptotic advantage (vs. CBQLbase=82.9, p<.0001 
and vs. CBQLopt=39.0, p<.0001).  

A key distinguishing characteristic between CBQL-PR 
and its variants is its smaller state dimensionality (i.e., two 
rather than five or nine). To test the hypothesis that this is 
not the sole reason for its improved performance, we also 
evaluated CBQLrandom, a variant whose first feature is ran-

domly chosen from the interval [1, # defensive plays], and 
whose second feature is the time step (results in Figure 4). 
CBQL-PR statistically outperforms this version also (re-
gret vs. CBQLrandom=.272, p<.0001; asymptotic advantage 
vs. CBQLrandom=46.5, p<.0001), confirming our hypothesis. 

6. Discussion 
We showed that using recognized plans in the state repre-
sentation improves the performance of our case-based rein-
forcement learning algorithm on a simulated American 
football task. We compared the performance of our algo-
rithm using multiple representations, and the version using 
plan recognition achieves the highest asymptotic perform-
ance. It also learns more quickly, achieving the highest 
performance found by the runner-up in 10% of the time. 
 This performance improvement is primarily due to two 
advantages of CBQL-PR’s state space formulation. The 
first is its lower dimensionality, while the second is that the 
opponent’s plans, which are important in explaining varia-
tions in performance, are identified.  

While useful, this algorithm does not dominate in all sit-
uations. Other experiments (not discussed in this paper), 
showed that CBQL-PR does not outperform CBQLopt 
against all possible defenses. In particular, when a single 
series of actions performs well against all defenses, 
CBQLopt performs as well as or better than CBQL-PR. 
However, CBQL-PR may perform well in other domains 
where broader opponent strategies can be grouped into sets 
to be understood better. In future work, we will test CBQL-
PR against a larger range of opponent strategies. We will 
also extend our work to cover the full game of American 
football, including choice of offensive play with different 
starting conditions (e.g., distance from goal). Also, we will 
investigate learning a more detailed representation of 
plays, which will allow us to generalize over similar plays. 

7. Conclusions 
Plan recognition methods can be a powerful ally for ma-
chine learning techniques. We investigated the utility of a 
clustering algorithm for distinguishing opponent plans in a 
multi-agent simulation of plays from an American football 



game. By replacing a low-level feature representation with 
a learned, accurate prediction of the opponent’s plan, this 
type of plan recognition can significantly increase the per-
formance of a case-based reinforcement learner on an 
agent control task. We conjecture that similar approaches 
can improve the performance of learning algorithms on a 
large variety of tasks, and in particular for tasks that can 
benefit from the predictions of other agents’ actions.  
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