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INTRODUCTION

A designer of a data visualization needs to be 
guided by the tasks to which the visualization will 
be applied. For example, observational studies of 
professional and student meteorologists and sci-
entists have shown that they use visualizations 
to perform many identification tasks (e.g., deter-
mining the temperature at a specific location) 
and many comparison tasks (e.g., determining 
where the highest temperature or humidity is) 
(Trafton et al., 2000; Trafton, Marshall, Mintz, 
& Trickett, 2002; Trafton, Trickett, & Mintz, 
2005; Trickett & Trafton, 2007).

In the case of color-coded visualizations, 
experimental research has highlighted the rela-
tive strengths and weaknesses of unordered 

multicolored versus ordered brightness scales for 
different tasks. In particular, multicolored scales 
have been found to be well suited for identifi-
cation tasks, whereas ordered brightness scales 
have been found to be well suited for relative 
comparison tasks, but neither of these scale types 
is effective on the other’s forte (Breslow, Trafton, 
& Ratwani, 2009; Merwin & Wickens, 1993; 
Phillips, 1982).

In this article, we are concerned with the 
particular identification task of determining the 
absolute quantitative value of a color-coded 
item and the comparison task of determining 
the relative quantitative relation (greater or less) 
between two color-coded items in a visualiza-
tion. As an example, Figure 1 shows a color-
coded weather map. A possible identification 
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task might be to determine the temperature of 
New York City, whereas a possible compari-
son task might be to determine which city is 
warmer, New York or Washington, D.C. As this 
figure illustrates, many practical applications 
suffer from the respective weaknesses of both 
unordered multicolored and ordered brightness 
codes. Although the color scale coding this fig-
ure is partially ordered by some combination of 
the color attributes hue, saturation, and bright-
ness, the scale provides no overarching percep-
tual order. As a result, it is not always easy to 
compare two colors on the map to determine 
which location is warmer without referring to 
the legend. At the same time, matches to the leg-
end are impaired by similarities between certain 
adjacent colors on the legend, thus impeding 
identification. In what follows, we study fairly 
“pure” examples of unordered multicolored and 
ordered brightness scales to experimentally dif-
ferentiate the effects of these respective scale 
types.

In addition, a main focus is on the role of the 
legend in the use of visualizations. Whereas a 
great deal of attention has focused on the influ-
ence of color on the perception and understand-
ing of visualizations (Hoffman, Detweiler, 
Lipton, & Conway, 1993), much less attention 
has been devoted to the effects of color on the 
use of the legend, despite observational evidence 
that novice and expert users make extensive 
use of the legend in the performance of practi-
cal applications of visualizations (Carpenter & 
Shah, 1998; Peebles & Cheng, 2003; Trafton 
et al., 2002). To concentrate on legend use, we 
use simplified visualizations and experimental 

procedures that reduce the search demands on 
visualization processing.

Breslow et al. (2009) proposed a general pro-
cess model, summarized in Table 1, to account 
for the Color Scale × Task interaction discussed 
earlier, that is, the superiority of unordered 
multicolored scales on identification tasks and 
of ordered brightness scales on relative compar-
ison tasks. The model accounts for the findings 
primarily in terms of the nature and efficiency 
of the visual search of the legend that each task–
code combination supports. On the identifica-
tion task, people perform a visual search of the 
legend to locate the legend color matching the 
target item in the visualization, as evidenced by 
eye movement and other data (Breslow et al., 
2009). The efficiency of visual search for col-
ors is highly sensitive to the discriminability of 
the set of colors being searched (Carter, 1982; 
Smallman & Boynton, 1990). As multicolored 
scales are typically more discriminable than 
brightness scales, search is faster with multi-
colored than with brightness scales (Nagy & 
Sanchez, 1992).

In some cases, high discriminability enables 
people to perform a faster parallel search for col-
ors, as evidenced by relatively invariant search 
times across color scales of highly unequal 
sizes (Nagy, 1999; Nagy & Sanchez, 1992). In 
the context of color-coded visualizations, such 
findings suggest the use of parallel search in 
the comparison task, in contrast with the serial 
search used in the identification task (Breslow 
et al., 2009). Although less precise than serial 
search, parallel search is adequate to the task of 
determining relative quantity because that task 
does not require as precise a localization of each 
legend color as the identification task does; one 
must simply locate the two legend colors cor-
rectly enough to determine which is spatially 
higher or lower on the legend.

Finally, the model suggests that one performs 
the relative comparison task using a different 
process with brightness scales than with mul-
ticolored scales. With brightness scales, people 
often bypass the legend and instead make a 
direct comparison between items on the visu-
alization in terms of their relative brightness. 
Evidence for this hypothesis was provided by 
the analysis of people’s eye movements while 
performing the tasks in addition to patterns of 

Figure 1. Example of color-coded visualization: weather 
map displaying temperatures.
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accuracies and response times across conditions 
(Breslow et al., 2009).

In this article, we further evaluate and elabo-
rate on this general process model by embedding 
it in running cognitive models, whose predic-
tions are compared to experimental findings. 
Specifically, we model performance of the two 
tasks within the ACT-R (Adaptive Control Of 
Thought–Rational) Version 6.0 cognitive archi-
tecture (Anderson, 2007; Anderson, Bothell, 
Byrne, Lebiere, & Qin, 2004). A cognitive 
architecture is useful for evaluating the general 
model because its design is informed by a large 
body of research on perception, attention, and 
cognition. Thus, the ability of a running model, 
operating within the constraints of a psycholog-
ically based architecture, to accurately simulate 
the performance of human participants bolsters 
our confidence in the presuppositions of the 
model. At the same time, the great specific-
ity of the running model can suggest testable 
hypotheses that go beyond one’s initial presup-
positions, leading to further research that in turn 
may motivate refinements in the model. The 
specific features of ACT-R that make it suit-
able to model the tasks of concern to us will be 
discussed later.

In this article, we present empirical results 
replicating the Task × Scale interaction and 
evaluate the ability of the operational models 
we present to predict those results. In this con-
text, we also consider the question of whether 
it is possible to create a “dual-use” scale that is 
effective for both identification and comparison 
tasks.

IS A DUAL-USE SCALE POSSIBLE?

A further goal of the present research is to con-
sider whether it is possible for a hybrid scale that 
is both multicolored and ordered by brightness 
to incorporate the respective strengths of unor-
dered multicolored scales and ordered brightness 

scales on both identification and comparison 
tasks. Such a scale would enable visualization 
designers to bypass trade-offs they are typically 
compelled to make between accuracy and speed 
on one or another of the visualization tasks. 
For instance, studying methods of color coding 
absolute and relative altitudes in school maps, 
Phillips (1982) concluded that brightness codes 
should be preferred to multicolored codes. Even 
though he found that brightness codes afforded 
inferior accuracy on absolute value judgments, 
they afforded superior accuracy on relative 
comparison tasks, which Phillips considered of 
greater practical importance than absolute value 
judgments for children using maps. However, 
if accuracy is one’s primary concern, then mul-
ticolored scales are preferable, because they 
support high accuracy on both identification 
and comparison tasks—but at the cost of slower 
performance on comparisons (Breslow et al., 
2009). Certainly it would be desirable to pro-
vide a brightness-ordered multicolored scale 
that was effective for both comparison and 
identification tasks in hopes of mitigating, if not 
eliminating, such compromises.

The possibility of providing such scales is 
raised by the research of Spence and his col-
leagues (Spence, Kutlesa, & Rose, 1999), who 
proposed the principle of perceptual linear-
ity (PL) to characterize the requirements for a 
scale, whether monochrome or multicolored, 
that is useful for relative comparison tasks. It 
ensures that the colors in a scale lie along a 
curve in color space that is linear both in per-
ceived luminosity (i.e., brightness) and in hue. 
PL is possible only if the scale colors’ luminos-
ity coordinates in three-dimensional color space 
are more highly weighted than the two coordi-
nates defining their hues, because hues, unlike 
luminosity, maintain a circular ordering in color 
space. Thus, a monochrome brightness scale 
is perceptually linear, as it is represented by a 

TABLE 1: Process Explanation of the Task × Scale Type Interaction (processes in italics)

Task

Identification Task 

Comparison Task

Multicolored Scale

Easy: Highly discriminable;
fast serial search of legend
Hard: No/little perceived ordering; 

parallel search of legend

Brightness Scale

Hard: Less discriminable; slow serial search 
of legend

Easy: Clear perceived ordering; direct 
comparison of targets
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straight vertical line in perceptual color space (by 
convention, the vertical axis represents luminos-
ity and the horizontal axes represent hue and sat-
uration). However, a multihue brightness scale 
may also be perceptually linear if brightness is 
more highly weighted than the hue dimensions; 
such a scale is represented by a vertical spiral 
that does not complete a revolution in horizon-
tal space.

In this manner, Spence et al. (1999) con-
structed a multihue brightness scale called HSB 
(Hue-Saturation-Brightness). The HSB scale 
behaved as brightness scales typically do on a 
relative comparison task. Specifically, HSB and 
a monochrome brightness (green) scale were 
superior to an unordered multicolored scale 
in terms of both accuracy and response times. 
Although the multicolored HSB scale was com-
parable to the monochrome brightness scale in 
terms of the accuracy of responses, it afforded 
slower response times than the monochrome 
scale. Spence et al.’s HSB scale is tested in the 
current research.

Breslow, Trafton, McCurry, and Ratwani (in 
press) evaluated the PL hypothesis by compar-
ing PL-ordered scales, one monochrome and 
one multicolored (specifically HSB), to unor-
dered multicolored scales as well as to scales 
specified by their Motley algorithm. The Motley 
scales were ordered by brightness but otherwise 
maximally discriminable and unordered by hue 
and thus not perceptually linear. The finding 
that the Motley scales were as effective as the 
PL scales in supporting relative comparisons 
stands as evidence that PL is not a necessary 
condition for effective comparisons. However, 
PL may still be a sufficient condition, as the PL 
scales were as efficient as the Motley scales and 
both were faster than unordered multicolored 
scales.

Breslow et al. (in press) further considered 
whether PL might provide a guideline for creat-
ing dual-use scales effective for identification as 
well as for comparison tasks. Thus, they tested 
multicolored PL scales in the context of identi-
fication tasks, in essence testing the hypothesis 
that multicolored PL is a sufficient condition 
for effective identification. Unfortunately, their 
findings were generally negative, as the PL 
multicolored scale (again, HSB) was inferior to 
both the unordered multicolored scales and to 

the Motley scales for identification in terms of 
both accuracy and speed. One explanation for 
this may be that the hues of adjacent colors in 
the multicolored PL scale are too similar to pro-
vide the discriminability required to effectively 
match the visualization’s colors to the legend. 
By including both multicolored and mono-
chrome PL scales in the experiments and model 
simulations to be reported, we hope to deter-
mine whether similar principles apply to both 
and, more generally, to determine the require-
ments for a dual-use scale.

In the following two sections, we describe 
two experiments designed to assess the influ-
ence of color scale on performance of identifica-
tion and comparison tasks, extending previous 
work primarily by the addition of a perceptually 
linear multicolored scale. The experiments dif-
fer in whether a gray mask is displayed between 
trials. Then, in the subsequent two sections, we 
present the computational models hypothesized 
to account for users’ performance on each of the 
two tasks.

EXPERIMENT 1

The first experiment compared performance 
in four conditions, defined by two tasks with 
color-coded visualizations (identification vs. 
comparison) and by two scale types (brightness 
vs. multicolored) used to color those visualiza-
tions. The brightness scales included Spence 
et al.’s (1999) HSB scale, a multicolored bright-
ness scale designed according to their PL 
principle.

Method

Participants. Eighty-six undergraduate psy-
chology students from George Mason University 
participated in this study for partial course credit. 
Participants were determined to be color normal 
with the Pseudoisochromatic Plates Ishihara 
Compatible (PIPIC) 24-plate test (Good-Lite 
Co., Elgin, IL). All participants had normal or 
corrected-to-normal vision. The experiment 
lasted approximately 45 min. Participants were 
assigned randomly to one of four conditions 
defined by scale type (brightness or multicol-
ored) and task (identification or comparison), 
resulting in 21 participants in each condition, 
except the multicolored-comparison condition, 
which had 23 participants.
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Apparatus. Eye track data were collected 
using a Tobii 1750 operating at 60 Hz with spa-
tial resolution of 0.5° (1,024 × 768 resolution). 
The graphics card used was a Nvidia Quadro 
FX 1400. A fixation was defined as a minimum 
of five consecutive eye samples (approximately 
20 ms each) within 10 pixels (approximately 2° 
of visual angle), calculated in Euclidian dis-
tance. The target letters and the legend were 
defined as areas of interest.

Materials. A stimulus consisted of a 10 × 10 
grid and a legend (see Figure 2). Each cell on 
the color grid subtended 2.54° of visual angle. 
The colors on each stimulus were taken from a 
seven-color scale. Each color was represented 
approximately equally in the grid, with 14 ins
tances of five of the colors and 15 instances of 
the remaining two colors (which two was deter-
mined randomly). To the right of the grid was 
the legend, displaying the scale colors and their 
associated numbers, listed vertically downward 
from 1 to 7. Each color cell on the legend sub-
tended 1.27° of visual angle and each number 
subtended 1.69°.

Two scale types were used, multicolored and 
brightness, with three instances of each type. 

The multicolored scales—Rainbow, COAMPS 
(Coupled Ocean/Atmosphere Mesoscale Predic-
tion System; Hodur, 1997), and Weather—were 
not ordered by either brightness or hue. The 
brightness scales—Grayscale, Greenscale, and 
HSB—were ordered by brightness, and HSB 
was ordered by hue as well. The brightness 
scales all conformed to Spence et al.’s (1999) 
PL hypothesis. The Rainbow multicolored scale 
was constructed by using the built-in “rainbow” 
set of hues from R (R Development Core Team, 
2007). The COAMPS scale came directly from 
one of the displays of the COAMPS meteoro-
logical modeling system (Hodur, 1997). The 
Weather scale came from the Washington Post 
daily weather map for May 2003.

Turning to the brightness scales, the Gray
scale was created by varying luminance in equal 
steps from white to black. Both the Greenscale 
and HSB scales came directly from Spence 
et al. (1999). The Greenscale (called Brightness 
by Spence et al., 1999) colors were sepa-
rated by approximately equal intervals on the 
Munsell value (brightness) dimension with hue 
and chroma held constant. HSB varied linearly 
in Munsell value (brightness), hue, and chroma 

Figure 2. Experimental stimuli. HSB = Hue-Saturation-Brightness; COAMPS = Coupled Ocean/Atmosphere 
Mesoscale Prediction System.
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(saturation), with brightness and saturation 
varying in opposite directions. 

Values for sRGB and CIELAB of the colors 
in each scale may be found at http://www.nrl 
.navy.mil/aic/iss/pubs/color.support/supplement 
.pdf. All stimuli were created with the use of R 
(R Development Core Team, 2007). The experi-
ment was presented with the use of E-Prime 
(Schneider, Eschman, & Zuccolotto, 2002).

Procedure for identification condition. On 
each identification task trial, an X appeared in 
one cell of the grid to mark the target color to 
be identified. Both the location of the target X 
and the arrangement of colors on the grid were 
determined randomly on each trial. Each of a 
scale’s seven colors was the target color on 6 tri-
als, resulting in 42 trials per scale, or a total 126 
test trials for the three scales in a condition.

Participants were tested individually and were 
seated approximately 43 cm from the computer 
monitor. To minimize the requirement for visual 
search of the grid, the location of the target (X) 
was presented on a blank screen prior to each 
trial. After the participant pressed the space bar, 
the colored test stimulus was presented. The 
participant’s task was to indicate the numerical 
value associated with the color that the X was 
on by entering the appropriate value (1 through 
7) on the keypad. Response time was recorded 
as the duration between the appearance of the 
colored test stimulus, which replaced the blank 
screen, and the participant’s response. After a 
response was made, the next trial started. Sti
muli were presented in block-randomized order, 
blocked by scale. The order of the three scale 
blocks was randomized.

Prior to the experiment, the participants were 
given brief training with only three colors and 
a 3 × 3 grid. Next, they were introduced to the 
legends for the three scales, followed by the 
test trials. They were instructed to respond as 
quickly and as accurately as possible.

Procedure for comparison condition. For each 
of the 21 possible pairwise comparisons among 
the seven colors in a scale, two stimuli were 
generated, each one having an X and an O in dif-
ferent colored cells on the grid. On one of these 
two stimuli, the X had the greater value, and on 
the other stimulus, the O had the greater value, 
as determined by the legend numbers. The loca-
tion of both targets was generated randomly, and 

each participant received a different random set 
of stimuli. Thus, a total of 42 (21 pairwise com-
parisons × 2) different stimuli were created for 
each of the three scales, for a total of 126 test 
trials.

Participants were tested individually and were 
seated approximately 43 cm from the computer 
monitor. They were instructed to respond as 
quickly and as accurately as possible. To mini-
mize the requirement for visual search of the grid, 
the locations of both targets (the X and the O) were 
presented on a blank screen prior to the colored 
stimulus, which was displayed after the partici-
pant hit the space bar. The participants’ task was to 
determine whether the numeric value associated 
with X or O was greater on the legend and then to 
respond by pressing the z or the slash key (labeled 
with an X or an O, respectively). Response time 
was recorded as the duration between the appear-
ance of the colored stimulus, which replaced the 
blank screen, and the participant’s response. After 
a response was made, the next trial started.

Block randomization and training were similar 
to those in the identification task, with necessary 
modifications appropriate to the comparison task.

Results

Accuracy and response time. Significant 
interactions between task (identification vs. 
comparison) and scale type (i.e., multicolored 
vs. brightness) were found for both accuracy, 
F(1, 82)  = 74.69, MSE  = .002, p  < .001, and 
response time, F(1, 82) = 34.71, MSE = 526,053, 
p  < .001. Similarly, when the six individual 
scales were analyzed separately, rather than 
by scale type, Task × Scale interactions were 
found for accuracy, F(1, 82) = 75.6, MSE = .01, 
p  < .001, and response time, F(1, 82)  = 35.6, 
MSE  = 1,572,575, p  < .001. In view of these 
interaction effects, the results for each task will 
be reported separately.

Identification task. Accuracy and response 
time data from the identification task are 
displayed in Figures 3 and 4, respectively. 
Performance on the multicolored scales was 
significantly more accurate, F(1, 40) = 145.4, 
MSE = .002, p < .001, and faster, F(1, 40) = 
24.4, MSE  = 489,603, p  < .001, compared 
with the brightness scales. Mean accuracies 
for multicolored scales and brightness scales 
were .98 and .83, respectively, and mean 
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response times were 1,785 ms and 2,851 ms, 
respectively. Analyses of the six individual 
scales also revealed significant effects for accu-
racy, F(1, 40)  = 145.9, MSE  = .01, p  < .001, 
and response time, F(1, 40)  = 25.5, MSE  = 
1,459,354, p < .001.

Post hoc comparisons, assessed by the Tukey 
honestly significant display (HSD) test, were 
conducted relative to the HSB brightness scale 
developed by Spence et al. (1999). The HSB 
scale afforded more accurate responses (M  = 
95%) than the other two brightness scales, 
Grayscale and Greenscale (M = 84% and M = 
71%, respectively; p  < .05) and comparable 
accuracy to the three multicolored scales (p  > 
.10), although this might be attributable to a 
ceiling effect, as accuracy levels were all high 
for the multicolored and HSB scales. In contrast, 
response time for HSB was similar to the other 
brightness scales (p > .10) and, like them, was 
slower than the multicolored scales (p < .05).

Comparison task. Accuracy and response time 
data from the comparison task are displayed in 
Figures 3 and 4, respectively. In contrast to the 
identification task, performance on the bright-
ness scales (M  = 2,206 ms) was significantly 
faster, F(1, 42)  = 11.9, MSE  = 560,768, p  < 
.01, than on the multicolored scales (M = 2,985 
ms); for individual scales, F(1, 42)  = 11.9, 
MSE = 1,680,405, p < .01. However, accuracies 
on the two scale types or individual scales were 
not significantly different (p > .10; M = .97 for 
brightness and M = .96 for multicolored). The 
absence of a significant effect of accuracy may 
be attributable to a ceiling effect, as accuracies 
were very high.

Tukey HSD comparisons involving the HSB 
scale were conducted on comparison response 
times. HSB supported response times interme-
diate between the other brightness scales, on 
one hand, and the multicolored scales, on the 
other hand, but did not differ significantly from 
any other scale (p > .10). In contrast, the other 
two brightness scales allowed faster responses 
than any of the multicolored scales (p  < .05). 
Post hoc comparisons were not conducted on 
the accuracy data because the main effect of 
scale was not significant.

Eye movements. Proportions of trials on 
which participants fixated the legend are shown 
in Figure 5. Analysis by scale type revealed that 
participants fixated the legend considerably 
less often on the comparison task when using 
brightness scales than on any of the other three 
task–scale type conditions. A significant Task × 
Scale Type interaction effect, F(1, 70)  = 48.7, 
MSE = .02, p < .001, characterized the propor-
tion of trials on which participants looked at the 
legend. Significant main effects of task, F(1, 
70) = 74.1, MSE = .02, p < .001, and scale type, 
F(1, 70) = 82.6, MSE = .02, p < .001, were also 
found. Proportion of trials with legend fixations 
averaged .31 in the brightness-comparison condi-
tion, .81 in the multicolored-comparison condition, 
.86 in the brightness-identification condition, and 
.89 in the multicolored-identification condition.

Analyses of the individual scales, rather than 
scale type, mirrored these trends, with a signifi-
cant Task × Scale interaction, F(1, 70) = 48.8, 
MSE = .06, p < .001, and significant effects of 
task, F(1, 70) = 74.2, MSE = .06, p < .001, and 
scale, F(1, 70)  = 82.6, MSE  = .06, p  < .001. 

Figure 3. Response accuracy in Experiment 1. Error 
bars represent 95% confidence intervals. Circles repre-
sent predictions by the Adaptive Control of Thought–
Rational model.

Figure 4. Response times in Experiment 1. Error bars 
represent 95% confidence intervals. Circles represent 
predictions by the Adaptive Control of Thought–
Rational model.
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Analyses of frequency, rather than proportions, 
of legend fixations revealed trends identical to 
these.

However, post hoc analyses revealed a more 
complicated picture, particularly with regard to 
the HSB scale on the comparison task, where it 
occupied an intermediate position between the 
other brightness scales and the multicolored 
scales. On that task, there was a significant effect 
of scale, F(1, 41) = 90.5, MSE = .09, p < .001, 
with participants referring to the legend with the 
HSB scale more often than with the other bright-
ness scales and less often than with the multicol-
ored scales (Tukey HSD comparisons, p < .05). 
In contrast, in the identification task, the effect 
of scale was not significant (p > .10).

Discussion

The results of Experiment 1 replicated pre-
vious research in demonstrating that multicol-
ored scales support superior accuracy and speed 
compared with brightness scales on identifica-
tion tasks, whereas brightness scales support 
generally superior performance to multicolored 
scales on comparison tasks. The sole exception 
was the absence of significant differences in 
accuracy on the comparison task. This may 
reflect a ceiling effect, as accuracies were high 
with both scale types in the comparison task. 
However, response time and legend fixation 
variables are less susceptible to ceiling or floor 
effects, and results for those variables con-
formed to predictions.

The eye movement analysis lent further sup-
port to the hypothesis that people usually solve 
the comparison task with brightness scales by 
performing a direct comparison between the 
targets, without reference to the legend.

The results lent mixed support to the PL 
hypothesis. The perceptually linear multicolored 
HSB scale generally displayed results interme-
diate between the other brightness scales and 
the multicolored scales in accuracy, response 
time, and legend fixations, although the differ-
ences were not always significant. On the iden-
tification task, HSB displayed accuracies higher 
than the inferior scale type, brightness, but 
slower response times than the superior, multi-
colored type. On the comparison task, the HSB 
results did not differ significantly in accuracy or 
response time from the other scales but did dif-
fer significantly from them in terms of legend 
fixations, being intermediate between the other 
brightness scales and the multicolored scales in 
this respect.

Many color researchers insert a gray or neu-
tral filler between color trials to prevent the 
impact of previous trials on the current trial, 
such as color carryover effects, color preview 
effects, and so on (Braithwaite, Humphreys, & 
Hodsoll, 2003). For this reason, we replicated 
Experiment 1, inserting a gray mask between 
trials.

EXPERIMENT 2

Experiment 2 was similar to Experiment 1 
except that a gray mask was displayed at the 
start of each trial to neutralize possible effects 
of the preceding trial on participants’ perception 
of the stimuli (Braithwaite et al., 2003).

Method

Participants. Participating in this study for par-
tial course credit were 49 undergraduate psychol-
ogy students from George Mason University. 
Participants were determined to be color nor-
mal with the PIPIC 24-plate test (Good-Lite 
Co., Elgin, IL). All participants had normal or 
corrected-to-normal vision. The experiment 
lasted approximately 45 min. Participants were 
assigned randomly to one of four conditions 
defined by scale type (brightness or multicol-
ored) and task (identification or comparison), 
resulting in 12 participants in each condition, 
except the multicolored-identification condition, 
which had 13 participants. Data from 1 participant 
in the brightness-identification condition were 
eliminated from the analysis, because response 
times were extremely high—approximately 3 

Figure 5. Proportion of trials on which the legend was 
fixated, Experiment 1. Error bars represent 95% con-
fidence intervals.
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times higher than the next slowest participant 
on one of the scales.

Procedure. The procedure was identical to 
that used in Experiment 1, except that a uniform 
gray screen was displayed for 1,000 ms at the 
start of each trial, followed by a stimulus of the 
same sort used in the previous experiment.

Results

Accuracy and response time. Significant 
interactions between task (identification vs. com-
parison) and scale type (multicolored vs. bright-
ness) were found for both accuracy, F(1, 43) = 
55.9, MSE = .001, p < .001, and response times, 
F(1, 43)  = 38.1, MSE  = 345,607, p  < .001. 
Similarly, interactions were found when analyz-
ing the six scales separately, rather than by scale 
type, for both accuracy, F(1, 43) = 55.9, MSE = 
.003, p < .001, and response time, F(1, 43) = 38.1, 
MSE = 1,036,822, p < .001. Thus, the results for 
each task will be reported separately.

Identification task. Accuracy and response 
time data from the identification task are dis-
played in Figures 6 and 7, respectively. Responses 
with the multicolored scales were more accurate, 
F(1, 22) = 48.7, MSE = .001, p < .001, and faster, 
F(1, 22) = 26.5, MSE = 253,039, p < .001, than 
those with the brightness scales. Mean accuracy 
for multicolored and brightness scale types was 
.97 and .86, respectively, and means response 
times were 1,760 ms and 2,821 ms, respectively. 
Analyses of the six individual scales revealed 
significant effects for accuracy, F(1, 22) = 48.7, 
MSE = .004, p < .001, and response time, F(1, 
22) = 26.5, MSE = 759,116, p < .001.

Post hoc comparisons, assessed by the Tukey 
HSD test, were conducted relative to the HSB 
brightness scale. As in Experiment 1, HSB 
afforded more accurate responses than the other 
two brightness scales, Grayscale and Greenscale 
(p < .05), and comparable accuracy to the three 
multicolored scales (p > .10). However, whereas 
in the first experiment, response time for HSB 
was no better than for the other brightness scales 
and slower than the multicolored scales, in 
Experiment 2, HSB was faster than the Greenscale 
brightness scale only (p < .05) and slower than the 
Weather multicolored scale only (p < .05).

Comparison task. Accuracy and response 
time on the comparison task are summarized 

in Figures 6 and 7, respectively. Responses 
with the brightness scales were more accurate, 
F(1, 22) = 11.4, MSE = .0002, p < .01, and faster, 
F(1, 22) = 14.4, MSE = 434,822, p < .01, than 
with multicolored scales. Mean accuracies for 
brightness and multicolored scales were .98 
and .96, respectively, whereas mean response 
times were 1,909 ms and 2,929 ms, respectively. 
Analyses of the six individual scales revealed 
significant effects for accuracy, F(1, 22)  = 
11.4, MSE  = .001, p  < .01, and response time, 
F(1, 22) = 14.4, MSE = 1,304,467, p < .01.

Tukey HSD comparisons involving the HSB 
scale were conducted on comparison response 
times. As in Experiment 1, HSB afforded response 
times intermediate between the other brightness 
scales and the multicolored scales but did not dif-
fer significantly from any other scales (p > .10). In 
contrast, the other two brightness scales allowed 
faster responses than any of the multicolored 

Figure 6. Accuracy in Experiment 2. Error bars repre-
sent 95% confidence intervals. Circles represent pre-
dictions by the Adaptive Control of Thought–Rational 
model.

Figure 7. Response times in Experiment 2. Error bars 
represent 95% confidence intervals. Circles represent 
predictions by the Adaptive Control of Thought–
Rational model.
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scales (p < .05). In terms of accuracy, HSB, like 
the other brightness scales, was significantly 
more accurate than the COAMPS multicolored 
scale only (p < .05).

Discussion

Experiment 2 replicated the general find-
ings of Experiment 1, revealing the Scale × 
Task interaction found by previous researchers 
(Breslow et al., 2009; Merwin & Wickens, 1993; 
Phillips, 1982). Most importantly, the Task × 
Scale interaction found in all of these experi-
ments was unaffected by the interposition of a 
gray mask between trials. Indeed, Experiment 2 
was more similar to previous research than was 
Experiment 1 in that significant accuracy differ-
ences were found between the two scale types 
on the comparison task in Experiment 2, in con-
trast with Experiment 1.

Again, the perceptually linear multicolored 
HSB scale generally displayed results intermedi-
ate between the other brightness scales and the 
multicolored scales in accuracy and response 
time, although the differences were not always 
significant. The HSB scales performed quite well 
on the identification task, in which it generally 
surpassed the inferior, brightness scales. In con-
trast, on the comparison task, it generally failed 
to surpass the inferior, multicolored scales.

We now describe the computational models 
hypothesized to predict the performance of par-
ticipants on the identification and comparison 
tasks in the two experiments. The discussion 
is divided into two parts: the description of the 
cognitive architecture, followed by the descrip-
tion of the models.

COGNITIVE ARCHITECTURE

We modeled task performance using the 
ACT-R 6.0 cognitive architecture (Anderson, 
2007; Anderson et al., 2004). ACT-R is a hybrid 
symbolic-subsymbolic production-based system 
consisting of a number of modules. It interfaces 
with the outside world through the visual, aural, 
motor, and vocal modules. Central processing 
is simulated by intentional, imaginal, temporal, 
and declarative modules.

ACT-R is well suited to model the visualization 
tasks of concern, as it represents both parallel and 
serial processing in visual search (Nagy, 1999; Nagy 
& Sanchez, 1992), specifically, parallel processing 

for preattentive visual localization of the next can-
didate object to consider and serial processing for 
reflective consideration of each candidate object 
located. However, like most other cognitive 
architectures, ACT-R lacks a means for repre-
senting colors precisely, for instance, by specific 
red, green, and blue values in RGB color space. 
Instead, ACT-R represents colors using a limited 
set of color constants (red, green, blue, etc.). What 
is more, ACT-R is unable to compare colors in a 
perceptually realistic manner. Rather, colors are 
compared in an all-or-none manner through the 
matching of color-constant symbols. However, 
this approach is not adequate when comparing 
colors that are represented more precisely. For 
instance, two colors with the RGB representa-
tions 255, 0, 0 and 254, 0, 0 are perceptually 
indistinguishable examples of red even though 
their representations are different.

To fill this gap, we modified the ACT-R 
architecture to enable it to represent colors more 
precisely and to compare colors both preatten-
tively and attentively in terms of either their 
overall similarity or their relative brightness. To 
do this, we modified ACT-R’s vision module to 
enable it to process precisely specified colors 
preattentively during visual search and added 
a new visual analysis module (VAM) to handle 
attentive, high-level color processing. Both 
modules used the same measures to determine 
both overall color similarity and the degree and 
direction of brightness difference between col-
ors. The two modules differed in the thresholds 
for similarity and difference: The vision mod-
ule’s preattentive visual location submodule (an 
ACT-R “buffer”) used more lenient criteria than 
the VAM’s attentive processor.

The VAM’s high-level visual processing of 
color is an example of what has been called “color 
cognition” (Derefeldt, Swartling, Berggrund, & 
Bodrogi, 2004). It represents an unusual case of 
high-level cognition for ACT-R. Whereas ACT-R 
generally represents higher-level cognition sym-
bolically, cognition of color may not always be 
symbolic. Indeed, the VAM computes color sim-
ilarity using the same formulas used in the sub-
symbolic visual localization submodule but with 
different thresholds. Similarly, visual search may be 
influenced by color categories, although it remains 
unclear whether these “categories” are symbolic 
or instead represent perceptual discontinuities in 
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color space (Smallman & Boynton, 1990; Yokoi 
& Uchikawa, 2005).

We will describe in turn the new capabilities 
we added to ACT-R to enable it to determine the 
overall similarity and the relative brightness of 
two colors.

Determining Color Similarity

When assessing color similarity, the VAM 
receives requests to compare two colors, speci-
fied either by two RGB colors in the format 
“COLOR-rrr-bbb-ggg” or by two visual objects 
whose colors are to be compared; in either case, 
one color-object is designated as the target and 
the other as the candidate. In the models to be 
described, visual objects, rather than colors, are 
input into the VAM. In ACT-R, visual objects 
are either objects displayed on a computer 
screen, such as shapes or letters, or simulations 
of such objects.

The measure for determining perceptual color 
similarity and difference is the recently created 
CIE-DE2000 (Commission Internationale de 
l’Eclairage Difference Equation 2000; CIE, 
2001), which is especially well suited to measur-
ing small color differences. VAM’s responses to 
color difference scores relative to its two thresh-
olds are outlined in Table 2. Strict and lenient 
thresholds are specified by user-modifiable 
parameters to ACT-R models; both thresholds 
are stricter than the threshold used by the vision 
module’s preattentive visual location submod-
ule, which is also a model parameter. As indi-
cated in Table 2, if the score is below the strict 
threshold, then the module responds with the 
symbol same; if not, it responds different. In 
the case where it has responded different, VAM 
behaves differently based on the loose thresh-
old: If the difference score is below the loose 
threshold, then the candidate colored object is 
added to the module’s candidates list; however, 

if the score exceeds this threshold, nothing fur-
ther is done. Also, a colored object passing the 
strict threshold is added to the candidates list. If 
colors, rather than colored objects, are input to 
the VAM, they are not added to the candidates 
list, because color memory span is very short 
(cf. later discussion of color memory). Colored 
objects are input into VAM in the models to 
be reported. The candidates list may be used 
later by the VAM to guess a matching color. 
For instance, when the preattentive color com-
parison mechanism fails to find a new match, a 
model may request that VAM guess a color. In 
response, VAM randomly selects one of the col-
ored objects on its candidates list to output; or 
if the list is empty, it outputs NULL to indicate 
that it cannot select a color. As the candidates 
are objects, the vision module is then able to 
return attention to the location of the selected 
object, as location is stored as a feature of visual 
objects. After VAM responds to a guess request, 
it clears its candidates list. Also an explicit 
request may be made to VAM to clear its can-
didates list.

Determining Brightness Difference

The assessment of brightness difference 
between two colors proceeds as follows. We 
adopted as our measure of perceived bright-
ness the L* value of the CIELAB (L*a*b*) rep-
resentation of color (Fairchild & Pirrotta, 1991). 
The measure of brightness difference used by 
VAM was the signed difference between the 
L* values of the two colors being compared. 
If the absolute value of the difference exceeds 
the more stringent criterion, the VAM outputs 
darker or lighter, depending on the sign of the 
difference. If the absolute difference exceeds 
only the more lenient criterion, the VAM out-
puts maybe-darker or maybe-lighter. If the abso-
lute difference does not exceed even the lenient 

TABLE 2: Responses of the Visual Analysis Module to CIE-DE2000 Color Differences

Color Difference	 Response	 Add to Candidates List?

< Strict threshold	     Same	 Yes
> Strict threshold < Loose threshold	 Different	 Yes
> Loose threshold	 Different	 No

Note. CIE-DE2000 = Commission Internationale de l’Eclairage Difference Equation 2000 (CIE, 2001).
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criterion, VAM outputs not-different. This capa-
bility is used only in our model of the color 
comparison task, which uses only the lenient 
criterion.

In sum, our extension to ACT-R introduces 
five new parameters: two each for the determi-
nation of color similarity and brightness differ-
ence by VAM and one for the visual location 
of colors. Four of these parameters are relevant 
to our models. The fit between our models and 
the data was sensitive to the settings of these 
four parameters, a situation that is typical of 
computational modeling research. The impor-
tant question is the generality of applicability 
of the parameters to tasks different from those 
reported here. As the body of research on com-
putational modeling with ACT-R has grown, 
certain parameters have been found to be highly 
stable, whereas others need to be adjusted often. 
Certainly, the discovery of stable parameters is 
one contribution to knowledge that the model-
ing effort makes over time. However, even some 
variable parameters (e.g., corresponding to the 
participant’s state of arousal) may be under-
stood in terms of bodies of research in cognitive 
psychology. Future research with VAM and the 
modified ACT-R vision model will shed light 
on the nature of the parameters used here.

COGNITIVE MODELS

We first discuss how we modeled color 
memory for purposes of visual search, fol-
lowed by descriptions of the models of the two 
tasks, and finally by a discussion of the success 
of the models in predicting the data from our 
experiments.

Color Memory

Whereas ACT-R assumes that items persist 
in visual short-term memory (VSTM) for sev-
eral seconds (default  = 3 s), the memory for 
colors decays more rapidly, beginning at about 
100 to 200 ms (Vandenbeld & Rensink, 2003). 
Because the modifications to ACT-R that would 
be required to add an additional memory mech-
anism specifically for color would be extensive, 
we chose instead to accommodate color mem-
ory within our cognitive models. We therefore 
proceeded on the assumption that color memory 
has a span of around 200 ms, similar to that of 
iconic memory (Sperling, 1960). This limitation 

was reflected in our modeling of visual search 
by the requirement that the target color be reen-
coded following each comparison to a candidate 
legend color. In contrast to this, object locations 
(i.e., target location, legend locations already 
examined during search, and legend locations 
on the VAM’s candidates list) are retained across 
several legend comparisons, a duration reflect-
ing the use of VSTM.

Identification Task Model

According to the model of the identification 
task, people conduct a serial search of the leg-
end to determine the legend color matching the 
target color in the visualization. Evidence of 
legend search is provided by eye tracking data in 
Experiment 1 and in Breslow et al. (2009). The 
hypothesis that legend search is serial in nature 
is supported by findings that response times 
increase with increased scale size (Breslow et 
al., 2009). Differences in predicted performance 
among the various color scales are determined 
by the relative discriminability of the colors 
in each scale, as assessed by the CIE-DE2000 
color difference metric that we incorporated in 
the modified ACT-R architecture. According to 
this metric, multicolored scales are more dis-
criminable than the HSB scale, which is more 
discriminable than the other, monochrome, 
brightness scales.

We now describe a run of the identifica-
tion task model. First, the X appears on a blank 
screen, and the model locates and encodes the 
letter’s location. Once the colored stimulus 
appears, the model encodes the background 
color of X in the encoded location on the grid.

Next, the model searches the legend for the 
color that matches the target color. In general 
terms, the preattentive visual location submod-
ule selects each new legend color to consider 
using a parallel search, but candidate colors are 
selected serially in this manner and then are 
compared by VAM to the target color retrieved 
from memory. More specifically, ACT-R’s 
visual location submodule selects a legend 
color whose similarity to the target color falls 
within its similarity threshold. It does not select 
the same legend color more than once. The 
selected legend color is then encoded, the target 
color is retrieved, and the model then calls on 
VAM to compare the two colors (really, colored 
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objects). If the measured difference between the 
colors is below the strict threshold, the VAM 
responds same (see Table 2). If VAM responds 
that the colors are the same and this is the first 
legend color examined, then the selected legend 
color is accepted as a match: The model pro-
ceeds to locate and encode the number associ-
ated with the legend color and then to press the 
corresponding number key.

However, if either the model responds dif-
ferent, or if it responds same and the exam-
ined legend color is not the first legend color 
examined, then the model continues the legend 
search process. This differential treatment of 
colors that closely match the target (i.e., those 
deemed same), depending on whether they are 
examined first or not, prevents the model from 
always choosing the correct match. This is 
necessary, as the correct color will always be 
examined at some point in the legend search 
and as there is often only a single color judged 
to be same. If search always terminated at this 
point, the model would predict perfect accuracy, 
which is not observed. On the other hand, when 
there are two or three legend colors judged to 
be same, the model would predict accuracies of 
50% or 67%, respectively, which are lower than 
the observed accuracies.

Serial search in the model recruits VAM’s 
candidates list, from which a “match” is finally 
selected. If VAM responds same when compar-
ing a legend color to the target, or if it responds 
different and the match score exceeds VAM’s 
lenient threshold, then VAM adds the legend 
color object to its candidates list; otherwise, 
it is not added. If the legend search process 
has not terminated, the model reexamines 
and reencodes the target’s color, because the 
color is quickly forgotten. It does not need to 
relocate the target’s location, because that is 
remembered.

The examination of legend colors iterates 
until the visual location submodule fails to find 
another legend color to compare to the target 
(i.e., a legend color that has not yet been exam-
ined and whose similarity to the target color 
falls below the submodule’s threshold). At that 
point, the model directs the VAM to guess a 
color. The VAM selects a colored object at ran-
dom from its candidates list. If the list is empty, 
VAM responds NULL and the model selects a 

legend color at random. In either case, the mod-
el’s attention is directed to the position of the 
selected colored object. The model then locates 
and encodes the number associated with the 
selected color. Finally, the model’s motor mod-
ule presses the corresponding number key.

Without the candidates list, it was difficult to 
model the serial search of the legend in a manner 
consistent with the empirical findings. One alter-
native to this approach would be to recruit the 
existing capability of ACT-R’s visual location 
module to randomly select a not-yet-examined 
object and to iteratively select objects in this way 
until a colored object satisfying a color similarity 
threshold was found. In this way, a single thresh-
old, rather than strict and lenient thresholds, 
would suffice. However, this approach failed 
to provide a good fit to both the response time 
and accuracy data, regardless of the threshold 
selected. Clearly, more research will be needed 
to elucidate the nature of legend search, which 
has received little attention to date.

Comparison Task Model

As the general model outlined in Table 1 
handles brightness scales and multicolored 
scales very differently, the process models of 
the two tasks are likewise distinct and so are 
be described separately.

According to the model for brightness scales, 
people first attempt to directly compare the tar-
get colors with regard to relative brightness and 
refer to the legend only when direct compari-
son fails. Support for this was provided by eye 
tracking data in Experiment 1 and in Breslow 
et al. (2009), which demonstrated that people 
referred to the legend much less frequently in 
this condition than in the other task–scale type 
conditions. What is more, the faster responses 
for comparisons made with brightness scales 
relative to multicolored scales would be dif-
ficult to explain on the basis of legend search, 
given that people have a harder time searching 
the legend with brightness scales than with mul-
ticolored scales, as evidenced by their relatively 
poor performance on identification tasks.

The model for brightness scales first locates 
the X and the O on the blank screen and stores 
the letters’ locations. Once the colored stimu-
lus appears, the model examines and encodes 
the background colors of the two letters at 
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their respective remembered locations. Next, 
the model directs the VAM to determine the 
relative brightness of the two colors. If the 
brightness difference of the colors surpasses 
the lenient threshold, the model executes the 
motor response of pushing the key of the letter 
with the higher value.

If the VAM is unable to determine the relative 
brightness difference of the colors (i.e., they are 
not sufficiently distinct in brightness), it searches 
for the legend colors matching X and O, in turn, 
much as in the identification task model, with 
iterations of the visual location submodule’s par-
allel search followed by similarity assessments by 
VAM. However, in contrast with the identifica-
tion model, the numbers associated with the two 
selected legend colors are not located. Instead, 
the model determines its response by determin-
ing the relative spatial position of the two colors 
in the legend; that is, the spatially lower color is 
determined to be “greater.” Finally, the motor 
module presses the appropriate key, X or O, indi-
cating the greater value.

The model for multicolored scales posits that 
participants make comparisons by searching for 
the target colors on the legend but that, in contrast 
with the identification task, the search is parallel 
rather than serial. Empirical support is provided 
by evidence that response times do not increase 
with increases in scale size (Breslow et al., 2009). 
Breslow et al. (2009) also note that response 
times on comparison tasks are far shorter than 
would be expected if people performed the same 
sort of search as they do in identification tasks, 
repeated twice in the comparison tasks.

The model for multicolored scales, like that 
for brightness scales, first locates the X and the 
O on the blank screen, storing the letters’ loca-
tions and, once the colored stimulus appears, 
examines the background colors of the two let-
ters. Then it departs from the brightness model 
by immediately searching the legend for each 
of the two target colors in turn. This visual 
search differs from the search used in the iden-
tification task model in that it employs only 
the initial parallel search of the visual location 
submodule, without the subsequent use of the 
VAM. Thus, there is a single iteration of visual 
location search for each of the two target colors. 
Even though such a search process may appear 
imprecise, it results in high accuracies that 

provide a good match to the data. Finally, the 
multicolored model terminates by compar-
ing the spatial locations of the two legend 
colors and responding on the basis of that 
comparison.

Model Fit

Experiment 1. Figures 3 and 4 show that the 
predictions of the identification and compari-
son models fit the data fairly well. Model data 
points were means of 10 runs of the model, and 
matches to the data were calculated on a per-
scale (rather than scale type) basis, considering 
the six scales separately. The identification task 
model’s predictions matched the data closely: 
Root mean square deviation (RMSD)/root 
mean square of successive difference (RMSSD) 
measures of fit (Schunn & Wallach, 2005) 
were .04/4.24 for accuracy and 292.20/2.31 for 
response times, and r2 was .96 for accuracy and 
.86 for response times. 

The comparison task model predictions also 
matched the data fairly closely: RMSD/RMSSD 
was .03/3.73 for accuracy and 211.9/1.23 for 
response times; the r2 for response times was 
.83. We did not assess r2 for accuracy predic-
tions, because there was no significant effect 
of accuracy in the comparison task data and 
because r2 is not a good measure of model 
fit when the data are in a very narrow range 
(Schunn & Wallach, 2005).

Experiment 2. Figures 6 and 7 also show 
that the predictions of the identification and 
comparison task models fit the data quite 
well. RMSD/RMSSD measures of fit (Schunn 
& Wallach, 2005) on the identification task 
were .05/3.11 for accuracy and 356.3/3.57 
for response times, with r2 of .98 for accuracy 
and .78 for response times. RMSD/RMSSD 
measures of fit on the comparison task were 
.04/8.49 for accuracy and 295.0/2.16 for res
ponse times, with r2 of .93 for response times. 
Again, we did not determine r2 for accuracy 
even though, unlike in Experiment 1, there 
was a significant effect of accuracy on the 
comparison task, because the data varied within 
a very narrow range (Schunn & Wallach, 2005). 
The appropriate measure of model fit in this 
situation, RMSSD, was very good.

Overall. A comparison of the model–data 
fits in Experiment 1, shown in Figures 3 and 4, 
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with those of Experiment 2, shown in Figures 6 
and 7, reveals that few deviations from model 
prediction were found in both experiments. The 
most striking consistent deviation in accuracy 
fit was observed for Greenscale, whereas the 
only consistent deviations in response time fit 
were observed for Greenscale and for Weather 
in the identification task only. These devia-
tions may reflect limitations in the color dif-
ference measures, which are continually being 
improved (Fairchild & Pirrotta, 1991; Sharma, 
Wu, & Dalal, 2005). In general, there were 
many more deviations, though usually small, 
from the accuracy predictions than from the 
response time predictions. The variable signifi-
cance of accuracy effects in Experiment 1 and 
the small range of variation in both experiments 
suggest that most of the deviations in accuracy 
predictions reflect measurement error.

Modeling the HSB scale. Turning to the HSB 
scale, an examination of Figures 3 and 4 and 
Figures 6 and 7 reveals that the models pre-
dicted the behavior of the HSB scale well, with 
the exception of small deviations in accuracy 
in Experiment 2. In the case of the comparison 
tasks in both experiments, the behavior of HSB 
is well predicted when it is treated as a bright-
ness scale but not when HSB is treated as a mul-
ticolored scale (not shown). Most notably, the 
predicted response time of HSB is much higher 
than observed when it is treated as a multicol-
ored scale. This provides some support for our 
classification of HSB as a brightness scale and 
the consequent application of the brightness 
scale comparison model, which attempts to 
compare the target colors directly on the visual-
ization before consulting the legend.

GENERAL DISCUSSION

The findings largely replicated previous 
evidence (Breslow et al., 2009; Merwin & 
Wickens, 1993; Phillips, 1982) concerning 
the Color Scale × Task interaction: Unordered 
multicolored scales are superior to brightness-
ordered scales for identification tasks, whereas 
the reverse is true for relative comparison tasks. 
The sole exception was the absence of a differ-
ence in accuracy between the two scale types on 
the comparison task in Experiment 1, presum-
ably because of a ceiling effect. The accuracies 
found by Breslow et al. (2009), using similar 

procedures, were already high for both condi-
tions. That both accuracy and response time 
were higher in Experiment 1 relative to their 
study suggests that the current participants traded 
speed for accuracy. In contrast, in Experiment 2, 
brightness scales afforded superior comparison 
accuracies to multicolored scales, although pair-
wise comparisons revealed that the effect was 
significant only relative to the COAMPS multi-
colored scale. Aside from this small difference, 
results were the same for both experiments. The 
use of a gray mask, then, appeared to be immate-
rial to the Scale × Task interaction.

Dual-Use Scales

The present experiment lent mixed support for 
Spence et al.’s (1999) PL hypothesis. Surprisingly, 
on the task most similar to ones those authors 
used, the relative comparison task, we found less 
support for the hypothesis. Whereas the percep-
tually linear HSB scale assumed an intermediate 
position between the other brightness scales and 
the multicolored scales in terms of both accuracy 
and response time, the HSB scale often did not 
differ significantly from any other scale on either 
measure. This is somewhat surprising, given that 
the HSB scale and one of the other two bright-
ness scales we used (Greenscale) were used 
by Spence et al. They found the HSB scale to 
be slower than but equally as accurate as the 
Greenscale as well as faster as and more accurate 
than a multicolored scale on a relative comparison 
task. The difference in findings may be attribut-
able to the greater complexity of the stimuli they 
used: Their stimuli were surfaces generated by 
mathematical functions and then distorted in one 
of several ways.

Although the PL principle was not intended 
for identification tasks, the HSB scale showed 
some promise in supporting those tasks, as it 
afforded the same benefits in terms of accu-
racy as the multicolored scales and, like them, 
was more accurate than the other brightness 
scales. Again, the HSB scale was intermediate 
in response times between the other brightness 
scales and the multicolored scales, with signifi-
cance of differences from these latter differing 
across the two experiments.

The evaluations of the HSB scale on identi-
fication and relative comparison tasks that have 
been conducted to date in the present research, 
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Breslow et al. (in press) and Spence et al. 
(1999), may be summarized as follows. First, 
HSB never afforded better performance in 
terms of accuracy or response time to the “supe-
rior” scale type for the respective tasks (i.e., 
brightness scales for relative comparison tasks 
or multicolored scales for identification tasks). 
However, on a maxima-minima task, Spence 
et al. (1999) found that the HSB scale enabled 
response times faster relative to the superior 
brightness scales and, as usual, relative to the 
inferior multicolored scales. HSB also afforded 
accuracy equivalent to the brightness scales and 
superior to the multicolored scales on this task.

Second, the HSB scale never afforded worse 
performance than the inferior scale type for 
either task. Third, HSB often enabled perfor-
mance equivalent to the superior scale type and 
better than the inferior scale type in terms of 
accuracy and response time, although there are 
exceptions to each of these generalizations on 
each task. Fourth, the HSB scale consistently 
supported high response accuracy.

On the basis of these findings, the follow-
ing recommendations may be offered to visu-
alization designers desiring a color scale useful 
for both identification and relative comparison 
tasks. When ensuring high accuracy on both 
tasks is a priority, either a PL multicolored scale 
or an unordered multicolored scale would be a 
good choice, as both support high accuracies 
on both tasks. Furthermore, if speed of relative 
comparisons is also a priority, then a PL mul-
ticolored scale should be preferred, whereas 
if rapid identification is a higher priority, then 
unordered multicolored scales should be pre-
ferred. Of course, these conclusions must nec-
essarily be tentative, pending replication with a 
greater diversity of scales, tasks, and visualiza-
tions. In particular, only one multicolored PL 
scale (HSB) and two monochrome PL scales 
(Greenscale and Grayscale) are included in the 
factorial experiments conducted to date.

Finally, the introduction of the Motley algo-
rithm by Breslow et al. (in press) places these 
conclusions in a different light. The scales 
whose specifications were generated by Motley 
were multicolored and ordered by brightness, 
like the PL HSB scale, but unlike HSB, the 
Motley scales were unordered by hue, as they 
were designed to be highly discriminable by 

hue. This discriminability was probably the 
source of their superior behavior on identifi-
cation tasks. At the same time, the monotonic 
exponential function defining the brightness 
of the Motley scale colors yielded compari-
son performance comparable to HSB and to 
a monochrome brightness-ordered scale. The 
success of the Motley scales, which violate 
the PL principle, constitutes evidence that PL 
is not a necessary property of scales supporting 
relative comparison tasks. Although the present 
research demonstrates that the PL principle is 
not a sufficient condition either, it nevertheless 
suggests that multicolored PL scales may be 
useful in certain applied contexts.

Computational Models

The ACT-R models of the two tasks repre-
sent a computational elaboration of the gen-
eral process model proposed by Breslow et al. 
(2009), outlined in Table 1. The experimental 
results matched the predictions of the ACT-R 
models quite closely, thus supporting the gen-
eral process model. On the identification task, 
the model predicts that people conduct a serial 
search of the legend, whose speed is largely a 
function of the discriminability of the colors in 
the scale. Because multicolored scales are typi-
cally more discriminable than brightness scales, 
the search for legend colors is faster with mul-
ticolored scales than with brightness scales 
(Nagy, 1999; Nagy & Sanchez, 1992).

The models’ handling of short-term memory 
is an example of how cognitive modeling can 
suggest hypotheses for further research. Our 
models assume that the target color(s) must be 
reencoded frequently. Although this assump-
tion is supported by findings that color memory 
decays rapidly (Vandenbeld & Rensink, 2003), 
it bears further empirical evaluation in the con-
text of visualization processing. In contrast to 
color memory, memory for spatial locations is 
assumed to persist across several legend com-
parisons, consistent with ACT-R modeling of 
VSTM, which is based on previous empirical 
findings (Ratwani & Trafton, 2008).

Turning to the color comparison task, very 
different solutions are adopted for multicol-
ored and brightness scales. For multicolored 
scales, the model demonstrates that a fast paral-
lel search of the legend is sufficient to produce 
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highly accurate responses even though parallel 
search is less precise than serial search. Whereas 
in the identification task, participants must attempt 
to locate the precisely matching legend color to 
identify its associated numerical value, in the 
comparison task, they need only locate the legend 
colors with sufficient precision to compare their 
relative spatial positions (Breslow et al., 2009).

Whereas previous research (Nagy, 1999; Nagy 
& Sanchez, 1992) has explained the use of 
serial versus parallel search for colors in terms of 
characteristics of the stimuli, the present research 
suggests that task demands can also play a role in 
determining the sort of visual search adopted.

Finally, the hypothesized strategy for bright-
ness scales of directly comparing the target 
colors with infrequent reference to the legend 
enabled the model to predict the experimen-
tal findings. Empirical support was provided 
by eye tracking data, which demonstrated that 
people refer to the legend much less frequently 
in this condition than in the other conditions, as 
well as by accuracy and response time patterns 
across the tasks (Breslow et al., 2009).

Finally, our modeling of these tasks high-
lighted needed improvements in the ACT-R 
architecture, some of which we implemented. 
Improvements that we implemented included 
the ability to represent the full gamut of colors 
that may be displayed on a display device and to 
make perceptually realistic color comparisons, 
including overall difference and brightness dif-
ference. Although we argued that ACT-R would 
benefit from a more psychologically realistic 
model of color memory, we did not modify 
the architecture for this purpose but instead 
designed our models to simulate color memory.

CONCLUSION

In sum, we have provided support for a process 
model of how and whether people use a legend 
when using color-coded visualizations for two 
types of task—namely, identification and rela-
tive comparison tasks. We have also explored the 
necessary and sufficient conditions for a color 
scale that is useful for both types of task. As the 
primary focus of the current research has been 
on the effect of color scale choice on the use 
of legends in visualizations, our experimental 
procedures minimized visual search and other 
demands on processing the visualization itself. 

Our conclusions should therefore be tested on 
real-world instances of color-coded visualiza-
tions, where those processing demands have not 
been reduced as they have in the experiments 
reported here.
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