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Abstract 
This manuscript conducts a comparison on modern object detection systems in their ability to detect 
multiple maritime vessel classes. Three highly scoring algorithms from the Pascal VOC Challenge, 
Histogram of Oriented Gradients by Dalal and Triggs, Exemplar-SVM by Malisiewicz, and Latent-SVM 
with Deformable Part Models by Felzenszwalb, were compared to determine performance of 
recognition within a specific category rather than the general classes from the original challenge.   In all 
cases, the histogram of oriented edges was used as the feature set and support vector machines were 
used for classification.  A summary and comparison of the learning algorithms is presented and a new 
image corpus of maritime vessels was collected.  Precision-recall results show improved recognition 
performance is achieved when accounting for vessel pose.  In particular, the deformable part model has 
the best performance when considering the various components of a maritime vessel.   

1. Introduction 
Detection and classification of objects within images is an actively pursued field in computer vision. To 
foster growth, PASCAL created the Visual Object Classes (VOC) Challenge to serve as a benchmark. 
Competing teams were tasked to detect or classify a number of object categories. This challenge took 
place annually during 2005-2012. For each competition, top researchers in the field of computer vision 
could submit their respective systems to classify objects, which led to the development of many state-
of-the-art algorithms. 

However, object placement in categories for the VOC can be considered to be generic; for example, all 
maritime vessels of varying sizes were under the category label ‘boat’. There has been no formal 
evaluation for the multiple categories within this broad category. Obtaining high classification accuracy 
of maritime vessels given images with low inter-class variation could prove extremely useful in maritime 
threat assessment. Accurate systems could be developed that rely on visual data rather than electronic 
data exchange between vessels or parameter based behavior analysis.  

In this survey, we selected three high-scoring algorithms that were submitted to VOC competitions to 
determine their relative performance when given more specific labels. They are Histogram of Oriented 
Gradients (HOG) [1], Exemplar-SVM (ESVM) [2][6], and Latent-SVM with Deformable Part Models (LSVM) 
[3][5]. These algorithms performed extremely well in their given submission years. The HOG/SIFT 
representation has several advantages. It captures edge or gradient structure that is very characteristic 



of local shape, and it does so in a local representation with an easily controllable degree of invariance to 
local geometric and photometric transformations [1].  E-SVM simplifies the HoG learning task by treating 
every instance as a separate object of fixed orientation.  L-SVM develops a flexible representation that 
learns subparts of an object to provide robustness to appearance change. 

In Section 2, we briefly review these algorithms. We then describe the maritime corpus we used to 
compare them in Section 3. In Section 4, we describe our empirical methodology, and report the results 
in Section 5. We end with a discussion in Section 6.  

Our main finding was that state-of-the-art object detection systems, especially Latent-SVM, were 
accurate in identifying boats within images. However, boat categories whose appearances are small and 
have little visual cues such as kayaks and canoe generally did worse than boats that were large and had 
unique visual features such as the water taxis (canopied tops) and sailboats (mast and sails). These visual 
features were most important in the case of L-SVM. The main strength of L-SVM is to extract latent 
features using deformable part models and use these part models to correctly detect an object. We 
believe this is why L-SVM achieved good results in vessels that have a unique visual feature.   

2. Description of Algorithms 
Here we briefly describe the selected object detection algorithms. 

2.1 Histogram of Oriented Gradients 
Dalal and Triggs (2005) introduced a feature descriptor they named Histogram of Oriented Gradients 
(HOG). Their empirical study showed that HOG can be used to derive feature sets that can be used to 
attain high precision and recall on some pedestrian detection tasks. HOG, when paired with a linear 
SVM, gave essentially perfect results for the MIT pedestrian test set, which prompted INRIA to create 
the more difficult INRIA pedestrian test set. 

The concept behind HOG is that local object appearances and shapes can be represented by the 
distribution of gradient intensities and orientation of edges. An image is divided into overlapping cells 
that create a histogram of gradients and edge directions of the pixels within the cell. Groups of cells are 
then grouped together into blocks, which are formally called Histogram of Oriented Gradients. Figure 1 
shows an example of a water taxi with its corresponding HOG. (Other HOG examples can be seen in 
Figures 3 and 4). 
 

 
 
Figure 1. In this image, the water taxi surrounded by the bounding box is taken as a positive instance for the 
water_taxi category (left). The confined area is extracted and converted to a HOG feature set for training (right). 



2.2 Exemplar SVM 
Object detection in Exemplar-SVM [2] relies on a conceptually simple but effective approach. Every 
positive instance of the object in the training set can be selected as an exemplar and trained individually. 
A single positive exemplar is trained against (potentially) millions of negative examples using HOG as a 
feature descriptor. This results in multiple, feature-specific SVM models. Detection is then performed 
with a nearest-neighbor approach to find the closest exemplar model that matches the current 
detection window.  

E-SVM eschews generality and instead focuses on specificity.  A single classifier no longer has to 
represent objects in general pose (all orientations and appearance variations), which may be quite 
difficult in complex cases.  Each E-SVM is able to accurately recognize an object at a specific pose, 
operating like an appearance-based nearest neighbor operation (see Figure 2).   

Exemplar-SVM can become computationally expensive due to the training of multiple models; each 
exemplar requires a separate model. This is expanded with the number of negative examples needed to 
fine-tune the deciding hyper plane for each exemplar’s model.  It is also unclear what is the optimal way 
to manage the exemplar database – to ensure all relevant poses and appearances are covered without 
requiring too many exemplars.   

 
Figure 2. This shows the main difference between a general SVM and Exemplar-SVM. In a general SVM, multiple 

instances of the object are trained together as positives while in E-SVM, only a single instance of the object (usually 
of a certain pose) is trained. The three positives shown in Exemplar-SVM represent different view profiles of the 
motorcycle.   

2.3 Latent SVM with Deformable Part Models 
Latent SVM is an extension of the HOG model put forth by Dalal and Trigg. A HOG feature descriptor is 
created of the object named the root filter. The object is then expanded to twice the spatial resolution 
to generate part models. A part model consists of a spatial model and a part filter. The spatial model is a 
set of possible placements of the part model relative to the position of the root filter along with a cost 
for displacement from the original position, as seen in Figure 3. The overall score of the detection 
window is the score of the root filter along with the sum of the part filters.  The star-structure of parts 
provides an enriched HOG model.  Object categories are also represented as mixtures of these star 
models in order to represent various object appearances (Figure 4a,b).   

The final classification score is a combination of the root filter along with optimal placement of the 
parts which provides robustness to noise and occlusion.  However, this does come at the cost of 
significantly more involved and time-consuming learning process.  



 
                      (a)                          (b)                (c)         (d)              

Figure 3. Example of Latent-SVM with Deformable Part Models being used on an image with a bicycle object (a). 
Image (b) shows the HOG representation of the root filter while (c) and (e) shows part models being generated at 
twice the spatial resolution of the root filter. 

    
(a) (b) (c) (d) 

 
Figure 4. The same object shown in Figure 3 but with a different pose with parts displaced to match various 
orientations.  (a) The part models deformed to match the "wheelie" being done by the bicycle. (b) HOG (c) (e) part 
models.   

3. Dataset 
To compare the performance of the selected algorithms, we needed a large image corpus of maritime 
vessels. We chose the Annapolis Harbor Dataset used by Morris et al. [4] in an earlier experiment for our 
training and testing data. Its images were obtained from a public streaming webcam hosted by the 
Annapolis Yacht Club. Images from the “Spa Creek” webcam were saved in one second intervals 
between the hours of 19:40 Friday August 13, 2010 through 03:00 Saturday, August 21, 2010; a total of 
58365 images were obtained from 180 hours of video.  

Marine vessels in the Annapolis dataset were divided based on visual distinctions, which resulted in 9 
classes. The classes are cabin_cruiser, canoe, kayak, motorboat, paddleboard, raft, rowboat, sailboat, 
and water_taxi. Classifications of vessels were left to the labeler’s discretion based on visible cues. For 
example, to be classified as a water taxi, a vessel must have a canopied top regardless of size or color 
while sailboats are vessels that are equipped with sails. There may be multiple boats within a single 
image, thus resulting in multiple annotations.  



4. Experiment Design 

We believe that object detection systems are still able to perform well given a more detailed set of 
categories. We also believe that objected detection systems that are more complex in their approach 
will generally perform better than systems that are less intensive in generating detection models.  

4.1 Annotations 
The Annapolis Harbor corpus was annotated with the following fields: 

• Vessel Type {cabin_cruiser, canoe, kayak, motorboat, paddleboard, raft, rowboat, sailboat, 
water_taxi} 

• Bounding Box [x, y, width, height] 
• Occlusion {none, masts, partial, full} 

The Occlusion field was included to gauge the difficulty in detecting the object. None indicates that 
there is no to little occlusion. Masts indicate that masts of other ships, usually docked at the foreground 
of the view, occlude our annotated vessel. Partial is when the vessel is 25%–60% occluded, while full 
occlusion means that the vessel is almost completely covered.  

4.2 Separating Training and Testing Data 
The Annapolis Harbor corpus consists of 180 folders representing the 180 hours of monitoring. Each 
folder contains all saved images within its respective hour. Due to time constraints, only hour sets 11-20, 
41, 46, 70, 94, 118, 142, and 166 were annotated. Hour sets 11-17 were set aside for training while the 
remaining hours were used for testing.  

4.3 Training 
Positive examples were selected based on the algorithm and only retrieved for hours 11-17. The 
statistics from the training data is presented in Table 1 [be sure to link properly].  In total, 10,000 frames 
were annotated with a vessel for a total of 12,157 labeled “boat” instances.  Of these examples, 7741 
were completely without occlusion.  

All positive instances of the vessel with occlusion type none were selected as positive examples for 
the L-SVM and HOG. E-SVM requires only a single positive instance for training each of its models. We 
manually selected multiple positive instances that best represent the different orientations of each 
marine vessel. Each exemplar was individually trained to generate an independent model, and 
combining these models can be used for vessel classification.  

Negative examples were obtained from the SUN Database and the Annapolis Harbor corpus (i.e., 
images from it that contained no boats). The full negative dataset consists of 17,425 images from the 
SUN database and 3,000 negative Annapolis images for a total of 20,425 negative images.  

 
 
 
 
 



Table 1: Training Data Statistics 
Class Frames Instances Occlusion 
   None Masts Partial Full 

Cabin_cruiser 876 907 466 95 340 6 
Canoe 229 229 121 36 49 23 
Kayak 1979 3028 1792 190 710 336 
Motorboat 3695 4274 2641 412 1163 58 
Paddleboard 292 346 278 12 28 28 
Raft 1198 1256 864 49 252 91 
Rowboat 202 210 143 15 43 9 
Sailboat 1534 1615 1265 65 281 4 
Water_taxi 285 292 171 29 92 0 
Total 10290 12157 7741 903 2958 555 

 

4.4 Testing 
The test set consisted of annotated Annapolis pictures of the hour sets 18-20, 41, 46, 70, 94, 118, 142, 
and 166. Every 10th frame of the test set was annotated for a total of 3455 images with 5048 labeled 
instances of vessels. Only images that contained a positive instance of the maritime vessel were 
retrieved for testing. Any vessels whose occlusion was considered full was withheld from testing due to 
inherent difficulty in these settings in accordance with the VOC testing procedure.  The test set contains 
examples from different days of capture and a range of weather and lighting conditions (between dusk 
and dawn and rain). 

Table 2: Testing Data Statistics 
Class Frames Instances Occlusion 
   None Masts Partial Full 

Cabin_cruiser 103 103 68 6 29 0 
Canoe 10 10 121 9 1 0 
Kayak 384 585 1792 408 110 38 
Motorboat 1340 1986 2641 1326 500 19 
Paddleboard 64 80 278 52 15 8 
Raft 213 227 864 169 28 18 
Rowboat 18 18 143 13 5 0 
Sailboat 1202 1702 1265 1165 427 19 
Water_taxi 334 337 171 221 89 1 
Total 3668 5048 7741 3431 1204 103 

 

5. Results 
This section presents the performance results of the of object detection algorithms.  



5.1 Evaluation Criteria 
The standard for the Pascal VOC Challenge to compare object detection systems was to compare their 
precision-recall curve. We will be using the same standard to compare the three algorithms. Precision is 
the fraction of retrieved instances that were relevant. Recall is the fraction of relevant instances that 
were retrieved. 

Precision =  tp
tp+fp

     Recall =  tp
tp+fn

   (1) 

The precision and recall are defined in equation (1). A true positive (tp) is a relevant instance correctly 
classified as relevant whereas a false positive (fp) is an irrelevant instance that was incorrectly classified 
as relevant. A false negative (fn) is a relevant instance incorrectly classified as irrelevant. The detection 
system relies on two bounding boxes to determine a hit on the image. The detection bounding box is the 
area of the image that was reported to contain an object. The ground truth bounding box is the area of 
the image where an object is located. The detection system will classify detection as positive if the 
intersection of the two boxes divided by the union of the two boxes is greater than 50%.  

     𝑎 = 𝑎𝑟𝑒𝑎(𝐵𝑝 ∩𝐵𝑔𝑡)
𝑎𝑟𝑒𝑎(𝐵𝑝∪𝐵𝑔𝑡)

      (2) 

where Bp is the detection bounding box and Bgt is the ground truth bounding box. 

 

5.2 Annapolis Harbor Performance 
The results of the performances for our algorithms are displayed in Table 3. The table displays the 
average precision for each vessel and type of occlusion. The final column displays the mean average 
precision of all maritime vessels for all rows. Figure 5 displays the graphical view of the data compiled in 
Table 3; due to the poor performance of HOG, its graph was not included in Figure 5.  

L-SVM was unable to generate models for the canoe, raft, and paddleboard categories and because of 
this, these categories were not included in our initial comparison. The reason that L-SVM was unable to 
generate models for these specific classes in still unknown and may be determined in future work to 
show a full comparison of all nine maritime vessel categories. One opinion we put forward is that due to 
the small size of the boats within the images, L-SVM was unable to properly create a model using 
deformable part models leading to the algorithm failing. This is purely speculation and due to time 
constraints, we decided to remove these three categories from comparison.  

As seen in both Table 3 and Figure 5, the best performing category of maritime vessel is water_taxi. In 
the case of E-SVM, it is the only category whose average precision is comparable to results achieved by 
Malisiewicz et al. [2]. However, we noticed that most results for L-SVM were on par with results 
achieved by Felzenszwalb et al. [5] in their submission of L-SVM for the VOC Challenge.  

To compare the three object detection algorithms, we plot the results of two categories that give high 
average precision within their respective algorithm (water_taxi and cabin_cruiser). L-SVM outperforms 
the other two as seen in Figure 5. In fact, we observed that the results of L-SVM across all maritime 
vessel categories and occlusion types were higher than either HOG and E-SVM. The only exception is the 



rowboat category with occlusion type masts, where L-SVM was unable to detect any boats within the 
set of 13 images of rowboats obstructed by masts. We concluded that given the results, L-SVM is the 
best performing object detection algorithm out of the three we selected.  

 
Table 3: Average Precision Results 
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HOG 

None 0.030 0.000 0.009 0.000 0.045 0.119 0.034 

Masts 0.000 0.000 0.005 0.000 0.091 0.109 0.034 

Partial 0.015 0.000 0.002 0.000 0.091 0.091 0.033 

E-SVM 

None 0.027 0.025 0.012 0.007 0.038 0.544 0.108 

Masts 0.023 0.023 0.011 0.007 0.038 0.489 0.099 

Partial 0.016 0.018 0.007 0.012 0.025 0.346 0.071 

L-SVM 

None 0.439 0.091 0.520 0.364 0.503 0.802 0.453 

Masts 0.182 0.045 0.421 0.000 0.496 0.709 0.309 

Partial 0.361 0.091 0.244 0.143 0.335 0.441 0.269 

 

 

Figure 5. Precision-Recall performance graphs for L-SVM and E-SVM. Category water_taxi is the best performing 
maritime vessel category for all three object detection algorithms. Smaller class vessels such as kayak performed 
poorly.  



 

Figure 6. Performance comparison of the three object detection algorithms of two maritime vessel categories 
(water_taxi and cabin_cruiser). L-SVM is the best performing algorithm with the highest average precision rating 
on all six categories.  
 

To view how occlusion factors in the detection rate, we plot the average precision of all three 
occlusion types in Figure 7. We plotted two categories (water_taxi and motorboat) using the results we 
received from L-SVM. This was because L-SVM provided the best results and variations between 
occlusions. This allowed us to easily see how occlusion affects the rate of detection. We correctly 
guessed that maritime vessels with little to no occlusion were more detectable than vessels that 
suffered from obstruction. Boats that were partially obstructed performed the poorest.  

 

 

Figure 7. As expected, maritime vessels with the least occlusion are more easily detectable than vessels that suffer 
from obstruction.   

6. Discussion 
The results from this comparison show that given a more specific labeling scheme within a general 
object category, the algorithms chosen were able to detect objects within the images. Objects that had a 



unique visual feature performed better than object categories that vary little in visual appearances. The 
category water_taxi is the most detected object from the image corpus with the highest average 
precision value throughout all three algorithms. We speculate this is due to the water taxi having a 
large, unique visual feature, specifically a canopied top. This allowed the object detection systems to 
better differentiate the water taxi from other boats.  

Categories that included small vessels such as kayak and rowboat generally performed worse than 
larger vessels. Given the small size of the vessels, HOG was not able to create a feature descriptor that 
allowed the detection algorithm to distinguish the vessel from other areas of the images. A common 
false positive we noticed were waves coming from the water. When the area containing the waves is 
converted into a HOG feature descriptor, the SVM classifier cannot properly differentiate the HOG 
descriptor of a small vessel and feature descriptor of water waves. This might be improved by adding 
more images of waves into the negative feature set to help improve the SVM classifier and will be 
looked into further in future works. 

Other attributes that increase object detection is the amount of occlusion on the maritime vessel. 
Boats that are easily visible (none to very little occlusion) are detected more often as seen in Figure 6. As 
mentioned in the testing section, boats that were mostly obstructed were excluded from testing. We 
believe that even though it was not tested, the occlusion field full would perform poorer than those 
tested.  

Furthermore, object detection systems that relied on more complex models generally performed 
better. Latent-SVM is by far the best performing algorithm out of the three, achieving higher average 
precision scores in all six categories. Histogram of Oriented Gradients, being the least complex, 
performed the poorest. We believe that relying on deformable part models allows a greater flexibility in 
detection compared to a strict HOG feature descriptor.  

Future work would include adding more negative images that contained only ocean waves. This could 
improve performance by reducing the amount of false positive detections on water. An expansion of the 
comparison could also be performed to include other state-of-the-art object detection systems that also 
performed well on the VOC Challenge. It will be important to compare other descriptors than those that 
use HOG to help determine how to best identify boats.  Since they are rigid bodies, edge-based 
descriptors may be helpful for removing internal “noise” and focus on the ship itself.  
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