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Abstract—In this paper we describe a distributed, informa-

tion theoretic motion planning strategy for multi-agent target

detection. Agents assimilate measurements into a likelihood-ratio

tracker, which provides a probability distribution for potential

target locations. Information from other agents is fused with the

local agents’ probability density using an Information Weighted

Consensus Filter when in communication range. Each agent uses

a physics-inspired motion planning strategy to reactively cover

the domain and informatively gather measurements based on the

posterior of the likelihood ratio tracker. The proposed strategy

produces emergent behavior that optimally collects information

about the environment in a reactive and scalable manner that is

resilient to communication drop outs. The algorithm is tested in

simulation to verify the performance.

I. INTRODUCTION

With the advent of low cost autonomous vehicles, there has
been an increase in research devoted to algorithms for multi-
agent cooperation to accomplish coverage and mapping tasks.
One specific problem in this domain of research is the task
of cooperative target detection. In an ideal target detection
mission, all agents would communicate with each other to
coordinate their motion in an informative manner. However,
in practice, agents must deal with unavoidable environmental
factors such as communication loss, time delays, and sensor
noise. In this paper we design a distributed cooperative target
detection algorithm that is resilient to communication loss
between agents.

There are many approaches to multiple target tracking in
the literature. Probabilistic approaches such as [1]–[4] use
Bayesian inference combined with maximum likelihood or
multiple hypothesis trackers to track multiple (moving) targets.
Although the above approaches address how to combine sensor
measurements to track and detect targets, only a few techniques
( [5], [6]) effectively move the mobile platforms to find targets
and most of these techniques focus on the use of a single
sensor platform. Recently, several authors, e.g., [7], [8], have
used information-based approaches to design optimal sensor
placement/control, but it is difficult to scale these approaches to
a large number of vehicles due to the complexity in calculating
mutual information. Most similar to the work presented here
are physics-inspired swarm controllers ( [9]–[11]), where vehi-
cles switch behaviors based on their “temperature” to improve
the speed and quality of information gathering. However, one
thing that all of these approaches have in common is that they
are not distributed.

In this paper, we describe a potential-based motion-
planning strategy for multiple mobile sensor platforms to
collaboratively search for multiple mobile targets using visual
sensors with a finite field of view. The sensors give a binary
measurement of target presence, i.e., the measurement is one
if a target is within the field of view and zero otherwise.
Sensor measurement data from an agent are assimilated by
a Bayesian likelihood ratio tracker (LRT) that uses a recursive
formulation to produce a probability density function over
the set of possible target positions. The probability density
functions are distributively combined using an Information
Weighted Consensus Filter (ICF) [12] with other agents that
are in range. Since each agent has its own estimate of the
probability density, they can operate on their own, but can
also take advantage of information collected by other agents
when they are in communication range. The rest of the paper
is organized as follows. Section II reviews the Likelihood
Ratio Tracker and our sensor and motion models. Section
III discusses how the separate probability density functions
are fused using a consensus filter. Section IV describes a
physics inspired motion planner for distributed cooperative
target detection.

II. LIKELIHOOD RATIO TRACKER

This section reviews the likelihood ratio tracker [3] and
formulates sensor and motion models for the vehicles and
targets, respectively. A likelihood ratio tracker is used to esti-
mate the position of possibly multiple targets. This framework
is sometimes called “track-before-detect” [3], because it is
based on recursive Bayesian estimation. A Bayes filter is a
probabilistic approach for assimilating noisy measurements
into a probability density function over the target state space, in
this case two-dimensional position. The filter implementation
comprises the discrete steps of predicting and updating. Let
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The measurement update is proportional to the product of the
measurement likelihood p(z
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In a likelihood ratio tracker we replace the measurement
likelihood with the measurement likelihood ratio, i.e., the ratio
of two likelihood functions. The numerator of the likelihood
ratio represents the conditional probability of the measurement
given that the target is in state ✓+

k

, whereas the denominator
represents the conditional probability of the measurement
given that the target is not in state ✓�

k

. Thus, the log likelihood
ratio is
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Let P = log(p). The update step in the log likelihood ratio
tracker becomes
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When the target probability reaches a critical threshold, the
target is declared detected; otherwise, the sub-threshold target
probabilities are maintained as hypotheses. Note, the inverse
log likelihood ratio posterior represented by temperature is
�P (✓
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A. Predict step: Integrating the diffusion equation

The predict step (2) involves updating the target probability
density function in the absence of measurement information.
We allow targets to move randomly, though we do not esti-
mate their velocities. The target motion model is a random
walk which can be described mathematically by the diffusion
equation with constant diffusivity, also called the heat equation.

Consider the two-dimensional heat equation with diffusiv-
ity ↵,
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The alternating direction implicit (ADI) method [13] is a
fractional-step method for integrating the heat equation. ADI
employs the difference operators A

x

and A
y

representing
the spatial derivatives in x and y directions, respectively. To
ensure that no information crosses the boundary of the search
domain, we enforce Neumann boundary conditions around the
perimeter of ⌦ by specifying that the normal gradient is zero.

B. Update step: The sensor measurement model

Consider a measurement data model based on an imperfect
binary sensor. Suppose the criterion for a positive response is
chosen such that targets within range ⇢target are detected with
probability P

d

and false alarms occur with probability P
f

per
time step. The sensitivity m of each sensor is m = z(P

d

) �
z(P
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) [14], where z(·) represents the z-transformation into
standard deviation units given by the quantile function z(p) =p
2erf

�1
(2p�1). For example, P

d

= 0.95 and P
f

= 0.1 yields
m = 2.92. Let w

k

represent unit-normal measurement noise
in standard deviation units at time step k. When the target
is absent, the measurement data is z

k

= w
k

, whereas when
the target is present the measurement data is z

k

= m + w
k

.
Assuming a zero-mean Gaussian sensor model yields
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III. DISTRIBUTED INFORMATION GATHERING

In this section we use an Information-Weighted Consensus
Filter (ICF), developed in [12], to combine the likelihood-ratio
surface produced by each agent in a distributed manner. At
its core the ICF is a Kalman-like filter with an embedded
consensus filter. In its implementation the ICF discretizes the
field over which consensus is being performed, which in this
case is the LR surface.

Each agent fuses its own measurements into an LRT to
create P j
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), i.e., the likelihood ratio surface for agent j,
where j 2 {1, . . . , N}. When in communication range with
another agent, the agent transmits both its likelihood ratio
surface as well as a confidence surface Cj

(✓
k

). In the IFC
Cj

(✓
k

) is the inverse of the covariance matrix produced by a
Kalman filter that each agent runs to “estimate” the LR surface.

The ICF has three inputs. The first is Cj
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with M being the number of discretized grid points at which
the LR surface is evaluated. The diagonal elements are defined
as
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Furthermore, let yj(t
k

) = Hj

(t
k

) be a measurement of the
LR surface. Equation (6) simply picks out the values of the
LR surface that are within radius ⇢

target

of agent j.

The ICF is summarized in Algorithm 1 (from [12]). In
the algorithms, the parameters r and q are tuning parameters
that are used to adjust how fast the measurement (step 2) and
prediction (step 5) updates converge (respectively). The main
consensus step is step 3. In this step the agent communicates
and receives the information matrix and field estimate of
all agents within communication range N

j

. The difference
between this particular consensus filter and other similar filters
is that it weights the information content from each agent in
the estimation step (step 5).

Note that using (6) as the observation matrix is crucial. This
can be seen in step 2 of Algorithm 1; the observation matrix
will add to the information only in the area surrounding the
agent, where the parameter r is used to adjust the amount of
added information. In other areas the information decreases
through the prediction step (step 5). The parameter q in step
5 dictates how fast the information decreases.

IV. PHYSICS-INSPIRED MOTION PLANNING

The agent motion is driven by a combination of two artifi-
cial forces. The first force guides the vehicle down the gradient
of the inverse log likelihood surface, i.e., the temperature
surface, in a manner that resembles a flowing liquid. The
speed of movement down the gradient is determined by the
temperature at the vehicle location, where colder temperatures
correspond to slower speeds. The second force is the gradient
of a Lennard-Jones potential [15] between the agents. The
Lennard-Jones potential is a common approximation used in
physical chemistry to model molecular gas dynamics. Figure
1 shows the vehicles moving like gas molecules in areas
where there are no targets and gathering like solid molecules
with other agents where there are likely to be targets. In



Algorithm 1 ICF at grid point a at time step k
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3) Perform average consensus on W0 and w0 independently
for l = 1 to L do
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4) Compute a poteriori state estimate and information
matrix for time k

P j

(✓
k

, z
k

) = (W j

L

)

�1wj

L

Cj

(✓
k

) = NW
L

5) Predict for the next time step
Cj

(✓
k+1) = ((Cj

(✓
k+1)

�1
+ q)�1

this algorithm, as opposed to other physics-inspired swarm
controllers, the states-of-matter behavior is emergent.
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Fig. 1. Diagram depicting the three emergent behaviors of the proposed
algorithm. Vehicles in cold areas that are near a target will form a crystalline
formation with nearby agents. Vehicles that are in warm areas will flow on
the temperature surface like a liquid. Agents in hot areas will travel quickly
in a random, gas-like fashion.

Let rj
k

denote the position of agent j 2 {1, . . . , N} at time
step k. The Lennard-Jones potential is [15]
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where ✏ is the depth of the well and � is the distance at which
the potential between two agents is zero. Note that the strength
of the potential drops quickly to zero for large distances. Thus,
the interaction between two agents only happens when they are
close to one another.
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, j) in (4) be the temperature at vehicle
j at time k and V j
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be the Lennard-Jones potential (7) for the

jth vehicle. We prescribe the desired velocity for each vehicle
by prescribing a feedback controller. The desired velocity for
the jth vehicle is given by
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where k
P

and k
V

are control gains and v
max

is the maximum
speed of the agent (assumed to be the same for all agents).
The dependence on temperature causes the vehicles to slow
down when they are near a possible target in order to collect
more measurements in that area. This behavior, along with
the sensor aggregation caused by the Lennard-Jones potential,
seeks to increase the chances that a target will be detected.
The algorithm works well in simulations when the gain on the
Lennard-Jones potential is one order of magnitude smaller than
the gradient-following gain. Additionally, � is set to ensure that
the vehicles do not collide with each other, which depends on
the scale of the vehicle. Consequently, there are only three
parameters to tune: either k

P

or k
V

, ✏ (the well depth), and
T0 (the detection threshold).

As seen in equation (8), we multiply the gradient of the
temperature potential by a heuristic scaling factor. This scaling
factor, in combination with the Lennard-Jones potential, is
what causes the states-of-matter behavior to be emergent. In
the scaling factor, the speed of the vehicle is scaled by the
temperature such that the speed increases when the temperature
is high, and decreases when the temperature is slow. This
causes vehicles to “freeze” in place when they are near an area
of high probability and, conversely, to speed up when they are
in areas of low probability. The full architecture (in pseudocode
form) is shown in Algorithm 2. The architecture shown in
Algorithm 2 avoids local minima in an informative, non-
heuristic fashion. A vehicle can fall into a local minima if it is
surrounded by hills of low target probability. However, if there
is no target present underneath the vehicle, the temperature will
increase (from negative information) to the point where the
vehicle is pushed away from its location. Note, this behavior is
completely emergent and is provided inherently by connecting
the detection scheme to the vehicle control. In addition to
informatively handling local minima, we have the following
theorem.

Proposition 1: The mutual information between sensor
measurement z

k

and target location ✓
k

using the sensor model
given by (4)–(5) is locally maximized when the vehicle moves
along the gradient of the prior target distribution p(✓

k

).

Figure 2 shows three snapshots of a simulation of the full
system. The small white circles represent the agents, the white
X’s are undetected targets, and the red Xs are detected targets.
The large dashed circles indicate the communication range
of each agent. The white dashed circle is the agent whose
temperature surface is visible as the colormap (who we will
call agent 1). In Figure 2(a) we see that the three agents in the
lower left are all communicating with each other and therefore
the temperature surface for agent 1 has fused information from
both of those sources. However, it is not in range of the two
top right agents, and hence has no knowledge of their actions.
Figures 2(b) and 2(c) show how quickly information can be
propagated through the system. Between time steps 290 and
291, agent 1 comes into contact with an agent that is near a
target. In the course of one time step, agent 1 runs the ICF to



(a) Time step k = 20 (b) Time step k = 290 (c) Time step k = 291

Fig. 2. Snapshots of the simulation at time steps (a) 20, (b) 290, and (c) 291

Algorithm 2 Physics-Inspired Target Search and Detection
Algorithm
Require: N, ✏,�, k

P

, k
V

1: Initialize log likelihood ratio P0(✓|z)
2: for k = 1 till end of task do

3: for j . . . N do

4: Get measurement zj
k

5: Calculate likelihood ratio logL(zj
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6: Update: P
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7: end for

8: Normalize likelihood ratio: P
k
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9: Get r

k

for every vehicle
10: for j = 1 . . . N do

11: Compute rV j
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(r
k

) and rP (✓
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12: Calculate desired velocity ṙj
k

13: Apply control input to platform to achieve ṙj
k

14: end for

15: end for

update its temperature surface based on the agent that comes
within communication range.

V. CONCLUSION

In this paper, we discuss a physics-inspired, distributed
motion planning strategy for target detection using agents with
limited communication range. The proposed strategy collects
information in an optimal manner using a reactive planner
for which all behavior is emergent. We use a likelihood ratio
tracker to fuse binary measurements into an estimate of target
locations. Agents run an information consensus filter to fuse
their probability distributions together using and information
weighted consensus filter. Incorporating a range-based com-
munication architecture ensures that the proposed strategy is
resilient to communication drop outs. In ongoing work, we
are working towards experimentally testing the algorithm on
an aerial testbed.
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