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    Abstract-- Crandall et al. and Cummings & 
Mitchell introduced fan-out as a measure of 
the maximum number of robots a single 
human operator can supervise in a given 
single-human-multiple-robot system, based 
on the time constraints imposed by 
limitations of the robots and of the 
supervisor, e.g., limitations in attention.  
Adapting their work, we introduced a 
dynamic model of operator overload that 
predicts failures in supervisory control in real 
time, based on fluctuations in time 
constraints and in the supervisor’s allocation 
of attention, assessed by eye fixations.  
Operator overload was assessed by damage 
incurred by vehicles when they traversed 
hazard areas. The model generalized well to 
different tasks. We then incorporated the 
model into the system where it predicted in 
real-time when an operator would fail to 
prevent vehicle damage and alerted the 
operator to the threat at those times. These 
model-based adaptive cues reduced the 
damage rate by one half relative to a control 
condition.   

I. INTRODUCTION 

As robots become cheaper and more 
autonomous, there is an opportunity to enable 
one human supervisor to control multiple robots 
simultaneously. Yet increasing the number of 
robots that are controlled can hinder operator 
performance in time-critical supervisory control 
tasks by increasing operator workload, thereby 
impacting the operator’s attentional resources.   
Understanding the factors that determine the 
effectiveness of the overall human-robot system, 
including factors that affect the cognitive state of 
the operator, can contribute to the development 
of adaptive automation that can improve 
operator performance 

   One measure of the number of robots a single  
operator can supervise at one time is Crandall et 
al.’s fan-out equation [1] .  Fan-out predicts the 
maximum number of robots that can be 
monitored by taking into account how much 
time can pass before a robot needs to be acted on 
(“neglect time”) in comparison to the length of 
time required for an operator  to interact with a 
robot needing attention until it no longer 
requires attention (“interaction time”) [1].  More 
precisely, neglect time (NT) is the amount of 
time a robot can be ignored by the operator 
before its performance drops below some 
predetermined level, and interaction time (IT) is 
the amount of time required for the operator to 
interact with the robot in order to restore the 
robot’s performance to the predetermined 
acceptable level.  The more autonomous the 
robot or UAV, the longer its NT and 
consequently, the higher the fan-out, i.e., the 
number of robots a single operator can control.  
Similarly, the less the interaction time (IT), the 
higher the fan-out. 

Cummings and Mitchell [2] extended this 
work on fan-out  by adding  a stronger emphasis 
on the perceptual and cognitive processes of the  
operator. Specifically, they included in their fan-
out computation wait time variables, including 
delays in allocating attention to a vehicle 
requiring help (WTAA) and delays due to task 
queuing (WTQ), when  there are delays due to 
allocating time among several vehicles that 
require attention at the same time.  These wait 
times constitute time demands in addition to IT 
that limit fan-out. 

Fan-out is a useful global assessment of a 
particular task reflecting the demands the task 
places upon the operator, thereby facilitating 
cognitive engineering design and improving 
training.  We will explore whether the dynamic 
variability of performance during the course of a 
particular task can be predicted by the same, or 
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similar, factors that predict fan-out for a task, or 
human-robot system, as a whole.   Presumably, 
even where the operator is supervising no more  
robots  than  prescribed by the fan-out equation, 
there will be moments when events converge to 
make him/her vulnerable to temporary 
overloading and, therefore, to error. We shall 
refer to transitory overload of this sort as 
dynamic operator overload. 

We hypothesize that measures of fan-out can 
be adapted for predicting dynamic operator 
overload and so provide a basis for preventing 
operator errors of commission or omission.  
When the predicted likelihood of error due to 
overloading rises, adaptive cues can be 
introduced to reduce wait time and prevent 
errors.    

 
II. FROM FAN-OUT TO DYNAMIC OPERATOR 

OVERLOAD 

A. Limits of Supervisory Control: Fan-Out 

Crandall et al. [1]  proposed that the 
maximum number of robots that could be 
controlled by a single human operator, or fan-
out (FO),  could be computed as: 

 FO =    NT/IT + 1                                (1) 
 

This equation defines fan-out as the maximum 
number of vehicles an operator can interact with 
(i.e., the number of IT intervals) during the NT 
of another vehicle that does not currently require 
interaction.  The “+1” in the equation accounts 
for the latter, neglected vehicle. 

Cummings and Mitchell [2] extended this 
fan-out equation to include the human factor 
wait times WTAA and WTQ.   These are 
combined with IT in the denominator of the 
ratio: 

 
FO = (NT / (IT + WTAA + WTQ)) + 1    (2) 

 
where each of the terms (i.e. NT, IT, WTAA and 
WTQ) are sums over the course of a session.  As 
these sums enter into a ratio, the result is similar 
to the computation based on mean values.   
While fan-out is a global measure of operator 
capacity on a task, the amount of operator 
overload within arbitrary time intervals during 
the course of a task can be expected to fluctuate 

as the fan-out variables drift from their 
respective mean values.  Such fluctuations alter 
the probability of overload-induced errors over 
the course of a supervisory control task.  Our 
goal is to instantiate these fan-out variables in a 
model designed to predict when operator load 
increases enough to cause operators to become 
overloaded and as a consequence make errors.  
   In subsequent work, Crandall and Cummings 
implemented stochastic models of operator-
vehicle interactions based on traces of 
interaction sessions [3, 4].  These models predict 
the operator’s selection of a vehicle to handle 
and predict vehicle state, based on observed 
sequences of vehicle states and selections.  
While this approach was successful in predicting 
operator performance across task variations, it 
did not analyze cognitive factors or within-task 
performance variation, the main foci of the work 
to be reported here.   
 

B. Predicting operator overload in a 
supervisory control task 

 In the current research, we attempted to 
predict when an operator supervising multiple 
UAVs (unmanned aerial vehicles) will become 
overloaded.   The simulated control system we 
used automatically assigned each UAV to a 
target and determined its initial trajectory 
towards that target.  In addition, there were 
threats, or hazard areas, that would cause a UAV 
to be damaged if not avoided.  Participants could 
add waypoints to the trajectory or re-assign a 
UAV to a different target, in an effort to prevent 
damage to a vehicle. Once a UAV arrived at its 
target, the operator directed it in delivering its 
payload on the target.  

The episodes of interest were path-intersects 
threat (PIT) events, which start from the moment 
a vehicle enters on a collision course with a 
threat and ends either at the point in time when 
the vehicle traverses the threat area, incurring 
damage, or else at the point the vehicle changes 
course away from the threat due to the 
operator’s evasive actions.  It is clear when a 
UAV will traverse a threat area, as a vehicle’s 
trajectory to its target is displayed by a line, 
which intersects the threat in these cases. 
However, participants are not specifically 
alerted to the threat. We assumed that an 
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operator was overloaded when he/she allowed a 
UAV to incur damage by traversing a threat.  
We attempted to predict when an operator will 
fail to prevent a vehicle from taking damage by 
incorporating variables similar to those in the 
fan-out equation within a model designed to 
predict dynamic operator overload. 

As a matter of terminology we will define the 
focal vehicle of a PIT event to be the vehicle that 
is on a threat trajectory during that event.  
Likewise, the threat and target towards which 
the focal vehicle is heading will be referred to as 
the focal threat and focal target, respectively, of 
the PIT event, and collectively, together with the 
focal vehicle, as the focal objects.   Vehicles, 
targets, and hazards other than the focal objects 
will be referred to as non-focal objects.  Multiple 
PIT events may overlap in time, producing one 
of the main challenges of multiple-vehicle 
supervision. WTQ represents the amount of time 
devoted to subtasks related to non-focal 
vehicles. 

The requirements of the particular problem 
under investigation motivated a minor change in 
the fan-out equation, in which the fan-out 
variable neglect time (NT) was replaced by the 
variable available time (AT).  AT is the time 
interval from the start of the PIT event to the 
expected time of impact with the threat.  During 
the AT interval, the operator needs to take care 
of the focal vehicle that is on the threat 
trajectory, as well as other vehicles requiring 
attention during that interval, if possible. The 
number of vehicles that an operator can handle 
during the AT intervals, including the focal 
vehicle, is the fan-out.  Thus, for the purposes of 
the present research, we modified fan-out 
Equation 2 to 

 
FO =   AT/ (IT + WTAA + WTQ)       (3) 

 
where neglect time (NT) is replaced by available 
time (AT). Also, the result is not incremented by 
1 as it was in Equation 2 because the 1-
increment represented a vehicle that can be 
neglected and there is no vehicle that can 
necessarily be neglected during a PIT event.  

Dynamic operator overload was assessed 
within each PIT event as the occurrence of 
damage to the focal vehicle. The variables 

considered for our model predicting damage in a 
PIT event were operationalized as follows: 

 
1. Wait Time Attention Allocation (WTAA):  the 

amount of time it took to recognize that the 
focal UAV requires attention. This was 
operationalized as the duration from the start 
of a PIT event until the relevant threat was 
first looked at.. 
 

2. Task Queuing: represents the allocation of 
attention to non-focal vehicles. Two 
alternative variables were considered: 

a. Wait Time Queue (WTQ): As in the 
fan-out model, WTQ represents the 
amount of time spent on manual 
actions on non-focal objects. 
 

b. Wait Queue Fixations (WQF): the 
number of eye fixations on non-focal 
objects.  
 

3. Available Time (AT): the interval from when 
a vehicle enters on a collision course with a 
threat (i.e., the start of a PIT event) until it 
will make contact with the threat if 
successful evasive action is not taken.  This 
is the amount of time available to the 
operator to recognize and remedy the threat 
problem, and often includes excess time 
during which other vehicles can be 
maintained or monitored. 

 
   Note that the fan-out variable IT is not 
included in our dynamic model of operator 
overload.   In the present context, IT is the time 
spent on actions resulting in the successful 
avoidance of damage during a PIT event. Since 
we are trying to predict the occurrence of 
damage on a per-event basis, IT is trivially 
related to damage.  Thus, IT does not contribute 
to our understanding of the processes involved 
in the occurrence or prevention of damage.  
   The predictor WQF replaced WTQ, in our 
model, in part, because it was based on eye 
fixations, rather than manual actions. Similarly, 
the predictor WTAA is measured by eye 
fixations.   Eye fixations are a more 
comprehensive measure of cognitive focus than 
manual actions, since eye fixations accompany 
cognitive processes, such as attention allocation, 



 4 

situation assessment, and planning, which can 
occur with or without concurrent manual 
actions. In addition, as we shall see, the 
predictive model based on the eye fixation 
variable, WQF, was somewhat superior to the 
model based on manual actions, WTQ. 

An eye-tracker was used in this research to 
record operator’s fixations on a computer screen.  
Eye-trackers are able to measure where an 
operator is looking (called a fixation) and how 
long they look at something (called the fixation 
duration)[5, 6].  Several eye movement 
measures have been shown to be indicators of 
cognitive processing [5-7]. We used eye 
fixations as a measure of operator attention 
allocation.  While it is possible to look at a 
stimulus without attending to it [8], eye 
movements have been found to correlate with 
attentional shifts  [9-11].  As a covert shift of 
attention seemingly precedes an eye movement 
to the target of a saccade, eye movements can 
serve as a direct measure of attention [10]. In 
addition, the examination of eye movements has 
been used to predict procedural errors in a 
manner similar to the present research [12, 13]. 

    Our predictive model of damage in PIT events 
was computed using logistic regression analysis.  
Logistic regression computes a multiple linear 
regression model with a dichotomous outcome 
variable; a more detailed description can be 
found in [14]. The dichotomous outcome variable 
in our analysis of PIT events was the 
occurrence/avoidance of damage to the focal 
vehicle. Unlike other classifiers, logistic 
regression allows one to determine whether or 
not each of the predictor variables had a 
statistically significant impact on the overall 
success of the model, in addition to assessing the 
model as a whole.   Logistic regression has been 
used in predictive models of procedural errors in 
previous research [12, 13]. 

 
C. Overview of the Paper 
Our predictive model was created and 

evaluated over five experiments.   In Experiment 
1, we generated the model.  Experiment 2 was 
used to replicate and validate the model by 
assessing its application to an experimental 
condition identical to that in Experiment 1.  
Experiments 3 and 4 assessed the 
generalizability of the model to different task 

conditions that were, respectively, relatively 
easier or more difficult than Experiment 1.  
Experiment 5 assessed whether the model could 
predict operator overload in real time by 
generating cues to warn participants of threats. 
Specifically, we incorporated the model into the 
supervisory control simulation to provide real-
time cues of upcoming threats that the model 
predicted would cause damage and compared 
performance on this system to performance on 
the system without cues. 

 

III. EXPERIMENT 1. BASELINE FOR MODEL 
GENERATION 

To examine the cognitive processes 
underlying operator attention and time allocation 
in a supervisory control task, data were collected 
from a complex dynamic supervisory control 
simulation. In the simulation, the participant 
controlled five semi-autonomous, homogenous 
(UAVs. The high-level goal of the simulation 
was to direct UAVs to specific targets on a map 
and visually identify key items at the target site 
in order to deliver the payload on those items.  
As participants performed the simulation, eye 
movement and mouse data were collected. 

A critical component to successfully 
completing the simulation was to prevent UAVs 
from passing over threat areas, which 
periodically changed position on the map in an 
unpredictable manner.  If a UAV “hit” (i.e., 
traversed) a threat area, the UAV took damage 
and could become incapacitated.  Each time a 
UAV’s path intersected a threat area, the 
operator had to take an explicit action to divert 
the UAV and prevent damage. 

   
A. Method  
1) Participants  
Thirty-five George Mason University 

undergraduate students, 14 male and 21 female, 
participated for extra credit in a psychology 
course.  All participants had normal or 
corrected-to-normal vision. Participants were 
asked to rate how often they played video games 
on a scale of one (never), two (sometimes), or 
three (a lot).  The average amount of video game 
play was 1.9 (SD=.6). 
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Figure 1. The RESCHU supervisory control simulation, consisting of 3 panels:  A. payload panel, B. 
map panel, C. status panel. 

 2) Simulation Description  
The supervisory control task, originally 

designed as the Research  Environment for 
Supervisory Control of Heterogeneous 
Unmanned Vehicles (RESCHU) [15, 16], was 
modified to only include homogenous UAVs 
moving at a constant speed of 5.2 pixels per 
second.  The interface of the supervisory control 
simulation, shown in Figure 1, has three main 
sections: the map panel, the status panel, and the 
payload panel. The map panel (Figure 1, panel 
B) displays UAVs (blue half ovals), targets (red 
diamonds) towards which UAVs are moving, 
and threats (yellow circles) which should be 
avoided by UAVs. The status panel (Figure 1, 
panel C) shows the status of the UAVs and 
includes information on vehicle damage, time 
until the vehicle reaches a waypoint or target, 
and time remaining in the simulation. The 
payload panel (Figure 1, panel A) is used for 
acquiring a payload target through a visual 
acquisition task (described below) which is 
performed after a UAV reaches a target and the 
target is engaged by the operator. 

The operator’s high level goal in the 
simulation is to monitor UAVs as they proceed 
to specific target areas in the map panel, to 
engage the targets, and to perform a payload 

visual acquisition task once the UAV has 
engaged the target.  The payload visual 
acquisition task requires the participant to search 
for an object (i.e. the target) in the randomly 
selected image within the payload panel and to 
mouse-click the target, thereby causing the 
payload to be delivered to the target.  During the 
visual acquisition payload task, the operator 
cannot make any actions on the map panel of the 
interface, even though the vehicles continued to 
progress towards their targets on the map panel 
and new PIT events could begin during this 
interval. 

Throughout the session, five UAVs moved 
along straight-line trajectories towards an 
automatically-assigned target.  There were also 
eighteen threat areas.  Every four seconds, one 
of the eighteen threats was randomly selected to 
change its position, with the constraint that the 
threats could not appear closer than 3° of visual 
angle (about 50 pixels) away from any UAV.  If 
the UAV passed through a threat, it incurred 
damage.  Damage was indicated as a bar in the 
status panel. The appearance of targets and 
threats on the simulation map was randomized 
with the constraint that targets and threats could 
be no closer than 3° of visual angle from each 
other. 
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If a UAV passed through a threat area, the 
UAV incurred damage.  A UAV eventually 
became incapacitated (“dead”) if it incurred 
enough damage.  To avoid a threat area, the 
operator could perform two possible actions. 
First, the operator could direct the UAV to a 
different target, thereby changing the path of the 
UAV and avoiding the threat area. Second, the 
operator could add, delete or move waypoints on 
the UAV’s trajectory to divert the UAV from the 
path to the threat, without changing the final 
destination target. 

There were always 7 targets present on the 
map. At the start of the simulation the UAVs 
were randomly assigned to different targets; 
thus, the UAVs might not be directed towards 
the optimal target. After a target was engaged 
and the visual acquisition payload task was 
complete, the UAV was randomly assigned to a 
new currently-unassigned target which again 
might not be optimal. The simulation was a 
complex task with multiple events happening in 
parallel.  More than one UAV could be waiting 
at their respective targets for engagement at the 
same time and more than one UAV could be on 
a path intersecting a threat area at a time. 

When performing the simulation, participants 
were scored on their performance, both the 
number of targets that were engaged correctly 
and the amount of damage incurred by vehicles.  
However, no overall score was presented.  
Participants were instructed to engage as many 
targets as possible and to prevent damage to 
vehicles as much as possible.  In the version of 
RESCHU we implemented the damage to a 
UAV inflicted by a threat was severe and could 
permanently incapacitate the UAV.  Participants 
were provided ongoing feedback in the status 
panel on the amount of damage incurred by 
vehicles and on the number of incapacitated 
vehicles.     

 
3) Design and Procedure 
Prior to the start of the experiment, 

participants completed an interactive tutorial that 
explained all aspects of the simulation. During 
the tutorial, participants learned the objective of 
the simulation, how to control the UAVs 
(assigning targets, changing targets, assigning 
waypoints), and how to engage a target and 
complete the visual acquisition task in the 

payload panel.  Participants were also warned of 
the dangers of threats and were instructed on 
how to avoid threats. The tutorial lasted 
approximately ten minutes. After completing the 
tutorial, the experimenter went over all of the 
controls with the participant to ensure that the 
participant understood the task. 

After completing the practice session, 
participants were seated approximately 66 cm 
from the computer monitor and were calibrated 
on the eye tracker. Participants were again 
instructed to engage as many targets as possible 
and prevent as much damage as possible.  
Participants then began the simulation session, 
which lasted for 10 minutes. When the 
simulation session ended, participants received 
feedback on how many vehicles they engaged 
and total vehicle damage. Then, participants 
were re-calibrated and were run in a second 10-
minute session with identical procedures to the 
first session.  The data from both sessions were 
combined in the analyses to be presented. 

 
4) Measures  
The data from the supervisory control task 

were segmented into PIT events.  Keystroke and 
mouse data were collected for each participant. 
Eye tracking data were collected using an SMI 
RED eye tracker operating at 250 Hz.  A 
fixation was defined using the dispersion 
method based on a minimum of 15 eye samples 
within 60 ms and within 50 pixels 
(approximately 3º of visual angle) of each other, 
calculated in Euclidian distance. Three areas of 
interest were defined: UAVs, threats, and 
targets.  Other fixations on the map panel and 
fixations on the payload panel were not 
analyzed.  The eye tracker and the RESCHU 
simulation were synchronized, such that the 
simulation sent the eye tracker an update of its 
state each time its state was updated, i.e., every 
500 ms. 

We calibrated a participant on the eye tracker 
until each eye had a visual angle of less than one 
degree.  After 10 unsuccessful attempts to 
calibrate a participant, the participant was not 
included in the data analysis.  Calibration took 
less than 5 minutes.  
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B. Results 
For the 35 participants in the experiment, 

there were a total of 1,999 PIT events, 216 
(10.8%) of which ended in damage to UAVs.  
Mean duration of PIT events was 14,916.2 ms 
(SD=16.33). The other main action performed 
by participants, payload delivery (visual 
acquisition), had a mean duration of 4,800 ms 
(SD=400).   

 
1) Developing a Logistic Regression Model 
To create a logistic regression model of the 

PIT events, the outcomes of damage and no 
damage were coded as a binary outcome 
variable for each PIT event.  The four predictor 
variables of interest (WTAA, WQF, AT) were 
recorded for each of the PIT events.  WTAA and  
AT were recorded in ms. WQF was an integer 
representing the quantity of non-focal fixations 
during a PIT event.  Equation (4) represents our 
dynamic overload model as a logistic regression 
equation predicting damage outcomes of PIT 
events: 

 
Predicted Logit of Damage = 2.17 + (.00007 *   

WTAA) + (.11 * WQF) - (.00027 * AT)         (4) 
   

The output of a logistic regression model is 
called a logit; its use in prediction will be 
explained later. This model was computed based 
on the final values for each PIT event.  Thus, the 
model is dynamic across PIT events, but not 
within PIT events.  In the final experiment, we 
will examine whether the model is useful for 
dynamic prediction within PIT events.  

The overall logistic regression model was 
significant, Χ2 (3) = 240.68, p<.0001.  The log 
odds of damage was significantly related to each 
of the three predictors (p<.0001).   The results of 
the logistic regression model analysis are 
summarized in Table 1.  The signs of the β 
values, representing the coefficients and the 
constant in the equation, indicate the direction of 
each predictor’s relationship to a damage 
outcome; thus, all the predictors, other than AT, 
were positively related to damage. Χ2 Wald is 
related to the strength of each predictor.  WQF 
and AT were the strongest predictors.   

 
 
 

 
 
Table 1. Logistic Regression Table, 

Experiment 1.  β values are the coefficients and 
constant of the model equation. SE β is the 
standard error of β.  Wald Χ2 is a metric of the 
strength of each predictor.  p< is the significance 
level of each predictor.   

Pre-
dictor β SE β Wald Χ2 p< 

Con-
stant 2.17 .31 6.96 .0001 

WTAA .00007 .000009 7.32 .0001 

WQF .11 .007 14.65 .0001 

AT -.00027 .00002 -14.07 .0001 

 
The model fit the data quite well.  One 

measure of fit is the C statistic, which assesses 
the proportion of all pairs of PIT events with 
different observed outcomes which the model 
predicts correctly.  The C value of the model 
was .96, which is considered excellent as values 
greater than .80 are considered strong [17].   
Thus, for 96% of all relevant pairs of events, the 
model correctly assigned a higher probability of 
damage to PIT events that resulted in damage 
than to events that did not result in damage. 

 
2) Receiver-Operating Characteristic 

Analysis 
   Receiver-operating characteristic (ROC) 
analysis predicts how many damage events from 
the data were actually predicted by the logistic 
regression model [18].  Thus, each of the 1,999 
PIT events was classified using the model and 
the results were then compared to the actual 
outcome for that event.  In order to classify 
model outputs according to a binary outcome, 
such as damage vs. no-damage, a threshold 
value must be determined, with model outputs 
falling above that value classified as damage and 
those falling below the threshold classified as 
no-damage predictions.  A ROC analysis 
determines the optimal threshold value for 
maximizing true positive classification and 
minimizing false positives.  Figure 2 plots the 
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proportion of true positive and false positive 
classifications for each threshold.  The optimal 
threshold is the one that maximizes true positive 
classifications and minimizes false positive 
classifications and thus corresponds to the upper 
left-hand point on the curve.   The threshold for 
our model was determined to be .26. To classify 
a PIT event instance, the logit value output by 
the model equation is converted to a probability 
and then compared to the threshold; probabilities 
greater than the threshold predict an outcome of 
damage, while probabilities less than the 
threshold predict no damage.  
   ROC analysis also provides metrics to evaluate 
the classifications provided by the model. The 
area under the ROC curve (AUC) represents the 
probability that the model will rank a randomly 
selected positive instance (i.e., damage event) 
higher than a randomly selected negative 
instance (i.e., no damage event), and is thus 
similar to C  [18].  Both AUC and C were equal 
to .96.  Finally, ROC analysis provides an 
overall measure of fit, d´, which was equal to 
2.65 for the current model.  These results are 
indicative of a highly precise discrimination 
[19].  The rate of true positive classifications 
was high (87%), the rate of false positive 
classifications was low (6%).  The results of the 

ROC analyses, as well as the C score, are 
displayed in the first row of Table 2.  

 Figure 2. ROC curve for logistic 
regression model. 

We chose to focus on a predictive model that 
concentrates on eye fixations rather than an 
alternate predictive model which more closely 
follows Cummings and Mitchell’s fan-out 
model, using the variable WTQ in place of 
WQF.  As can be seen in the second row of 
Table 2, the results of the WTQ model were not 
quite as good as the model using WQF, 
especially with regard to the true positive rate.   
For this reason, in addition to the benefits of the 
study eye movement described earlier, we 
explored the model described in Equation 4, 
which relied on the eye movement predictors 
WQF and WTAA, in the experiments that 
follow.  

Table 2. Evaluation of Logistic Regressions 
Models using WQF  and WTQ, Experiment 1 

Model 
predictors C AUC d´ 

True 
Positive 
(%) 

False 
Positive 
(%) 

WQF, 
WTAA, 
AT .96 .96 2.65 87 6 

WTQ, 
WTAA, 
AT .94 .94 2.43 71 3 

 
 
C. Discussion 
The logistic regression model in Equation 4 

was generated on the basis of the data in 
Experiment 1.  The model, based on the fan-out 
model of supervisory control capacity of a 
human-multiple-robot control system, modeled 
operator overload on a per-event basis within an 
operator session.   Operator overload was 
indicated by the occurrence of damage to a 
vehicle.  The predictive value of the model’s 
predictor variables may be understood in a 
comparable way to that of the corresponding 
fan-out variables.  AT represents a task-
constraint on the time available to solve a 
problem, in this case, the threat of damage to a 
vehicle.  WQF assesses the operator’s 
preoccupation with non-focal vehicles, which 
would clearly further constrain the time 
available to attending to the focal vehicle and 
possibly reduce the operator’s visual attention to 
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the focal vehicle’s status.  Finally, WTAA is a 
measure of the operator’s awareness of the focal 
vehicle’s status, i.e., its need for attention.  If an 
operator has noted the focal vehicle’s status 
prior to attending to a non-focal vehicle, he/she 
is more likely to return to the focal vehicle after 
attending to the non-focal vehicle, thereby 
avoiding damage.  
   Multiple regression analytic methods, such as 
logistic regression, assume that the data points 
are independent, and this assumption is violated 
in the present model. Each participant 
contributes on average 57.1 PIT events to the 
data.  As a practical matter, it would be difficult 
to gather data on 1,999 PIT events from that 
same number of participants. It would be 
possible in this case to use a mixed-model 
logistic regression model, but because those 
models separate fixed and random effects, they 
can be very difficult to use for prediction 
because random effects cannot be computed 
ahead of time for novel participants [20, 21].  
The primary concern with not having 
independent data is that inferences may be 
incorrect and may not result in accurate 
generalizations to future datasets.  We suspect 
that the data we collected has exchangeable 
random variables (future data will behave like 
past data, regardless of whether it is independent 
[22]), and the model we construct will 
generalize to future data sets.  The strongest test 
of this model will occur throughout the rest of 
the paper where we show that the model does, in 
fact, generalize to other datasets and can even 
improve operator performance in real-time. 
   From a practical perspective, it would be 
desirable to have a predictive model that did not 
require the use of eye tracking equipment.  We 
have shown that the predictor WTQ, which is 
not based on eye movements, is only moderately 
inferior to the eye-fixation predictor WQF.  
However we have been unable to find a 
satisfactory substitute for the eye-fixation 
predictor WTAA. 
   We developed a dynamic operator overload 
model from the data of Experiment 1 that was 
effective in predicting events in which UAVs 
incurred damage.  Next, we will assess the 
robustness of the model, first, in Experiment 2, a 
replication of Experiment 1.  Then we will 
assess the generalizability of the model to 

variants of the simulation task used in 
Experiments 1 and 2.  People’s strategies are 
often sensitive to small changes in task.  Thus, 
assessments of the model’s generalization to 
task variants will provide an assessment of the 
model’s robustness. 

 
IV. EXPERIMENT 2. REPLICATION FOR MODEL 

VALIDATION 
 

In Experiment 2, we sought to determine 
how well the model generated from Experiment 
1 data would generalize to the data obtained 
from an exact replication of Experiment 1. In 
this and all subsequent experiments to be 
reported here, the model being evaluated is 
defined by Equation 4 and is tested with the 
same threshold value, .26, determined by the 
ROC analysis of Experiment 1 data. 

 
A. Method  
The method in Experiment 2 was identical 

that in Experiment 1. 
 
1) Participants  
Forty-seven George Mason University 

undergraduate students participated for extra 
credit in a psychology course. No participant in 
any of the experiments reported here 
participated in more than one experiment.  Six 
participants’ data were not analyzed, because of 
a bug in the experimental software (4 cases) and 
running errors (2 cases).   Thus, data from 41 
participants, 13 male and 28 female, were 
analyzed.  The mean video gaming experience 
of the participants was 1.8 (SD=.6). 

 
B. Results and Discussion 
Among the 41 participants in Experiment 2, 

there was a total of 2,679 PIT events, 273 
(10.2%) of which ended in damage to the UAV.   

The results of the ROC analysis are shown in 
Table 3, in row “2. Replication”.  As the table 
shows, the fit of the model to the data was 
excellent in Experiment 2 as it was in 
Experiment 1. The true positive rate was 81%, 
the false positive rate was 7%, d´=2.41, and 
AUC=.93.  Thus, the model generalized well to 
the identical procedure to Experiment 1, 
providing evidence for the validity of the model.  
In the next two experiments, we assessed the 
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model’s ability to predict errors under somewhat 
different procedures in order to further evaluate 
its robustness.  Specifically, in Experiments 3 
and 4, we evaluated the model under conditions 
expected to make it easier or harder, 
respectively, for the supervisor to prevent 
vehicle damage. 

 
Table 3.  Model evaluation across 

experiments. 

Experiment C AUC d´ 

True 
Pos. 
(%) 

False  
Pos. 
(%) 

1.Baseline .96 .96 2.65 87 6 

2.Repli-
cation  .93 2.41 81 7 

3. Easier  .95 2.56 86 7 

4. Harder  .92 2.16 79 9 

. 

 
V. EXPERIMENT 3. MODEL GENERALIZATION TO 

AN EASIER TASK 
 

Experiment 3 was designed to determine 
whether the model would generalize to an easier 
task, in which the vehicles had a higher level of 
autonomy.  Specifically, in Experiment 3, 
participants were not required to deliver the 
payload using the payload panel.  Instead, the 
system handled payload delivery automatically.  
As a result, engagement did not result in a task 
interruption as it did in the previous 
experiments, allowing the user to devote more 
cognitive resources to the problem of avoiding 
threats that cause vehicle damage. 

 
A. Method  
The method in Experiment 3 was identical to 

that in Experiments 1 and 2, except that the 
means of engagement did not involve an 
interruption involving the payload panel. 

 
1) Participants 
Thirty-three George Mason University 

undergraduate students,  8 male and 25 female, 

participated for extra credit in a psychology 
course.  The mean video gaming experience of 
the participants was 1.7 (SD=.6). 

 
2) Design and Procedure 
The design and procedures in Experiment 1 

were identical to those used in the previous 
experiments, except for the means of 
engagement.  Engagement was complete when 
the participant right-clicked on a vehicle that had 
reached its target and selected the appropriate, 
engagement, menu item, as in the previous 
experiments.  Unlike the previous experiments, 
there was no need to then deliver the payload by 
performing a visual identification subtask using 
the payload panel, and therefore no interruption 
of the main, map panel task.  Following 
engagement, the vehicle was automatically re-
assigned to a new target, as in the previous 
experiments. 

 
B. Results and Discussion 
 There were 2,351 PIT events, of which 161 

(7%) ended in damage.  This contrasts with 
damage rates of 10.8% and 10.2% in 
Experiments 1 and 2, respectively.  The damage 
rates in the experiments are summarized in 
Table 4.   The higher incidence of damage in the 
previous experiments is likely attributable to the 
interruptions of the threat evasion task by the 
payload subtask, interfering with attention 
allocation[23, 24].  
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Table 4. Damage rate and payloads delivered 
in experiments. 

Experiment 
Damage 
rate (%) 

Payloads 
delivered 
(mean) 

1. Baseline 10.8 25.4 

2. Replication 10.2 28.4 

3. Easier 7.0 NA 

4. Harder 13.9 27.0 

5.a.No Cue 
condition 7.5 28.5 

5.b.Cue 
condition 3.7 27.8 

 
 
Despite displaying a lower damage rate, 

generalization of the logistic regression model to 
Experiment 3 was excellent.  The results of the 
ROC analysis are given in Table 3, row “3. 
Easier.” The true positive rate was 86%, the 
false positive rate was 7%, d´=2.56, and 
AUC=.95, all quite comparable to Experiments 
1 and 2.   

Thus, the model generalized well to an easier 
task.  We next examined how well it generalized 
to a version of the task where it was more 
difficult to prevent damage. 

 
VI. EXPERIMENT 4. MODEL GENERALIZATION 

TO A HARDER TASK 
 

The task in Experiment 4 was made harder 
than in Experiment 1 by imposing a time 
constraint on engaging targets.   Specifically, 
target engagement was only possible for 12 
seconds following the arrival of a UAV on a 
target, after which the vehicle was automatically 
reassigned to a new target without delivering its 
payload.  Thus, an added time constraint was 
imposed on participants in this condition, in 
addition to the time constraint for evading 
threats.   In contrast to Experiment 3, where 
participants needed to pay less attention to target 
engagement than in the first two experiments, in 
the present experiment, participants needed to 
pay more attention to engagement.  This demand 

was expected to divert cognitive resources from 
the task of avoiding threats so as to prevent 
vehicle damage, resulting in an increase in 
damage. 

 
A. Method  
Simulation and procedures were similar to 

Experiment 1, except for the time constraint on 
engagement.  

  
1) Participants  
Forty-seven George Mason University 

undergraduate students participated for extra 
credit in a psychology course.  Six participants’ 
data were eliminated, 5 due to an experimental 
bug and 1 due to an error in running the 
experiment.  Thus, data from 41 participants, 14 
male and 27 female, were analyzed. The mean 
video gaming experience of the participants was 
1.9 (SD=.6). 

 
2) Design and procedures 
Procedures were identical to those used in 

Experiment 1.  The simulation was identical to 
Experiment 1, except that if the participant 
failed to initiate payload delivery within 12 
seconds after the UAV reached it, the UAV was 
reassigned to a new target without delivering its 
payload.  As in Experiment 1, payload delivery 
was accomplished using the payload panel. 

 
B. Results 
Of the 2,676 PIT events in Experiment 4, 371 

(13.9%) ended in damage (see Table 4).  The 
higher rate of damage in comparison to 
Experiment 1 (10.6%) is consistent with 
Experiment 4 being a more difficult task. In 
contrast, the increased time constraint had little 
impact on performance of the other major 
subtask, payload delivery (see Table 4).  

Despite the increase in damage, 
generalization of the damage prediction model 
based on Experiment 1 was very good, as the 
results in Table 3, row “4. Harder,” show. The 
true positive rate was 79%, the false positive rate 
was 9%, d´=2.16, and AUC=.92.  While very 
good, these results are not as strong as those for 
the easier task in Experiment 3.  

In sum, Experiments 3 and 4 provided 
evidence for the robustness of the logistic 
regression dynamic operator overload model in 
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predicting  damage under task variants resulting 
in either less or more damage than in 
Experiment 1, from which the model was 
derived.  We next assessed whether the model’s 
predictions could serve to help predict and 
prevent vehicle damage in real time. 

 
VII. EXPERIMENT 5. MODEL-BASED CUES 

 
While the demonstration of the performance 

of the dynamic operator overload model under 
various conditions argues for its robustness, it is 
not strictly a demonstration of the model’s 
predictive power, since the model was generated 
and evaluated on data analyzed after the 
experiments were conducted.  In an effort to 
support the claim that the model is truly 
predictive, we applied the model in real-time as 
a means to alert the operator to predicted 
damage.  If providing cues alerting operators to 
impending damage results in a decreased rate of 
vehicle damage, it will provide evidence of the 
predictiveness of the model.  This is what we 
attempted in the next experiment. 

 
A. Method  
Simulation and measures were identical to 

those used in Experiment 1 in the control, No 
Cue, condition and in the Cue condition; the 
method was identical to Experiment 1 except for 
the provision of adaptive cues.  In the Cue 
condition, the logistic regression model was 
used in real time to predict whether a vehicle 
was likely to hit a threat area and, if it was, to 
alert the participant of the danger by flashing the 
relevant threat.  The model re-assessed the status 
of each PIT every 500 ms, when the simulation 
updated itself. 

 
1) Participants  
Forty-three George Mason University 

undergraduate students participated for extra 
credit in a psychology course.  Participants were 
assigned randomly to the No Cue control 
condition or to the Cue condition.  Twenty-two 
participants, 10 male and 12 female, were in the 
No Cue condition and 21 participants, 9 male 
and 12 female, were in the Cue condition.  The 
mean video gaming experience of the 
participants was 1.9 (SD=.6) in the No Cue 
condition and 1.9 (SD=.6) in the Cue condition. 

2) Design and procedures 
Procedures were identical to those used in 

Experiment 1, except that in the Cue condition 
the dynamic operator overload model (see 
Equation 4)   was used as a basis for alerting the 
participant of an impending UAV encounter 
with a threat.    The damage likelihood of each 
UAV on a path intersect threat course was 
computed every 500 ms using the dynamic 
operator overload model, and when the 
likelihood exceeded the threshold  value derived 
from the ROC analysis in Experiment 1, the 
relevant threat was highlighted by turning blue 
(from yellow) and blinking to alert the user of 
the approaching threat.  The blinking threat thus 
served as a predictive cue, alerting the user to 
the threat to which they needed to divert their 
attention when the system determined the 
operator was overloaded.  

 
B. Results 
Of the 1,448 PIT events in the No Cue 

condition, 108 (7.5%) ended in damage.  In 
contrast to this, of the 1,396 PIT events in the 
Cue condition, only 52 (3.7%) of them ended in 
damage (See Table 4).  Curiously, the No Cue 
condition witnessed less damage relative to 
Experiments 1 and 2, which had comparable 
procedures.  We attribute this anomaly to 
random variation.  In any case, the comparison 
of the two conditions in Experiment 5 showed 
that alerting the user to predicted damage via 
cues reduced the rate of damage by more than 
half.  In addition, in all PIT events ending in 
damage in the Cue condition the cue appeared.  
That is, there were no cases of damage on PIT 
events where the cue failed to appear, i.e., no 
false negative errors.  Thus, the cue was a strong 
predictor of damage and the cue was effective in 
preventing damage, as predicted by the dynamic 
operator overload model.  

This suggests that the damage instances that 
occurred despite the cue’s appearance had a 
different cause from damage instances predicted 
by the model.  Indeed, as Table 3 shows, the 
model predicted damage very well in the No 
Cue condition, but not in the Cue condition of 
Experiment 5.   We believe the remaining 
instances of damage, not prevented by the cue, 
were due to concurrent urgent PIT events, i.e. 
non-focal PIT events  that triggered cues on the 
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basis of the damage prediction model (i.e., 
urgent) and that overlapped in time with the 
focal event (i.e., concurrent).  In the Cue 
condition, there was a mean of .84 (SD=1.09) 
concurrent urgent PIT events.  For urgent PIT 
focal events not ending in damage, the rate of 
concurrent urgent PIT events was similar to this 
baseline (M=.96, SD=1.13).  However, for 
urgent PIT focal events ending in damage, there 
were about twice as many concurrent urgent PIT 
events as the baseline (M=1.98, SD=1.33).  
Thus, damage incurred despite the cue was 
associated with competition between multiple 
concurrent urgent PIT events.  In such situations, 
damage could be avoided only if the focal event 
was the one first selected by the operator to 
handle.  If not given priority by the operator, 
such urgent PIT events ended in damage.  Thus, 
damage that occurred despite the model-
generated cue was likely due to task overload 
that exceeded the operator’s capacity.  

We believe the cue served primarily to 
encourage attention to the threat, rather than to 
support cognition of the threat.  The RESCHU 
user interface clearly represents the UAVs’ 
trajectories towards their respective targets 
graphically by lines.  Thus an upcoming threat 
could be recognized on a perceptual basis by the 
visible trajectory’s traversal of a threat area.  
The cue likely drew the users’ attention to 
threats they had not noticed or had forgotten.    

In sum, the results of Experiment 5 provided 
further support for the dynamic operator 
overload model.  The model served as a basis for 
real-time cues to alert the operator to impending 
vehicle damage.  The cues reduced the damage 
rate by about half and never were presented in 
events where there was no damage.  Cases 
where damage occurred despite the cue were 
characterized by simultaneous cues for more 
than one threat, indicating that the overloading 
was too great for damage from all co-occurring 
threats to be avoided.   Thus, the dynamic 
operator overload model appears to be a good 
predictor of supervisor overload. 

 
VIII. FAN-OUT AND PERFORMANCE PREDICTION 

 
Fan-out values for each experiment are 

displayed in Table 5, computed using Equation 
3, which we will refer to as “AT fan-out”, based 

either on all PIT events and based only on PIT 
events where no damage occurred.   Note that 
since fan-out here is computed only based on 
PIT events, not on payload events, it does not 
provide a complete assessment of the demands 
of the respective tasks.    The fan-out values 
displayed in Table 5 suggest that operators in 
our experiments were often required to supervise 
somewhat more vehicles (i.e. five vehicles) than 
recommended by the fan-out model.  The main 
exception was the easier task in Experiment 3.  
In that experiment, the absence of a competing 
task, payload delivery, reduced the amount of 
time devoted to competing tasks (i.e., WTQ) 
during PIT events.   
 

 
Table 5. Fan-out values for all experiments.  

Operators controlled 5 UAVs in all experiments. 

Experi-
ment 

AT 
Fan-
out 
(all) 

AT Fan-
out (no 

damage) 

NT Fan-
out (no 

damage) 

1. Baseline 3.8 4.6 4.8 

2. 
Replication 4.4 5.3 4.9 

3. Easier 5.9 6.7 5.1 

4. Harder 3.5 4.1 3.9 

5.a No Cue 
condition 4.5 5.3 5.1 

5.b Cue 
condition 4.0 4.2 4.1 

 
We wished to determine whether AT fan-out 

based on available time, as in Equation 3, is 
similar to fan-out based on neglect time, as in 
Cummings and Mitchell, Equation 2.  We 
computed NT fan-out as follows: 

 
NT fan-out = (NT/PIT.duration) + 1   (5) 

 
where NT is time outside of PIT and of payload 
delivery events and PIT.duration is the duration 
of PIT events.  PIT.duration served as a 
substitute for the expression in the denominator 
of Equation 2, involving WTAA, WTQ, and IT, 
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since the entire PIT event consists of some 
combination of these.  During a PIT event, there 
is always an object that needs attention, namely 
the focal object. Thus every moment in the 
event, the participant is either working 
on/attending to the focal object or not working 
on it.  In the former case, the time represents 
interaction time (IT), in the latter case it 
represents wait time (WT).  Wait time is either 
WTQ or WTAA depending on whether the 
participant is attending to non-focal objects or 
not, respectively.   Thus, the entire PIT event 
represents some combination of the denominator 
variables in Equation 2.  Further, no time outside 
of the PIT event contributes to those variables, 
with the exception of time spent on the focal 
vehicle’s payload delivery, but that interval is 
not included in NT. 

As Table 5 shows, fan-out values computed 
based on NT were similar to those based on AT.  
The principal exception was in Experiment 3 
again, where NT fan-out was lower than AT fan-
out.  The similarity between the two measures of 
fan-out supports our interpretation of our logistic 
regression model as a dynamic version of the 
Cummings and Mitchell fan-out model.  

A comparison among the first 4 experiments 
demonstrates that relative task difficulty was 
reflected similarly in fan-out and damage rate.  
However, the intervention of providing cues in 
Experiment 5 did not improve fan-out, even 
though it radically reduced the damage rate.   
This suggests an important difference between 
fan-out and performance prediction.  Fan-out is 
concerned with having enough time to perform a 
task, whereas prediction is primarily concerned 
with what users do with the available time.  The 
cue does not change the amount of time required 
to perform subtasks but does alert users to direct 
their efforts to a particular subtask requiring 
immediate attention.   Time intervals where the 
operator lacked attentional awareness of one 
problem were not moments of idleness, as the 
current task is a highly dynamic, time-pressured 
task in which the operator is continually active.  
In moments in which the operator has lost 
awareness of one problem, they are likely 
engaged on another problem.  As a result, lost 
awareness may result in poorer performance 
without increasing the overall time required for 
the task.    

Another important difference between 
damage prediction and fan-out is suggested by a 
predictive model based on a single variable, i.e. 
the time remaining to work on the focal threat 
problem after consuming time on WTAA delay 
and on working on other, non-focal objects.  
This duration thus represents potential 
interaction time: 

 
potential-IT = AT – (WTAA + WTQ1)   (6) 

 
where WTQ1 includes both time spent acting on 
non-focal objects and time spent fixating such 
objects and where both of those durations are 
calculated so as not to overlap with the WTAA 
interval, i.e. the initial duration of the PIT before 
the focal threat is first fixated.   As Table 6 
shows, the single-variable model performs as 
well as the dynamic operator overload model, 
defined by Equation 4.  Further, the single-
variable model adheres more closely to the 
principle underlying the fan-out equation, as it is 
based solely on an estimate of the time 
remaining to work on the focal problem after 
deducting all wait times from the available time.     

Table 6. Comparison of the dynamic operator 
overload model and a model based on Potential-

IT, Experiment 1 data 

Model C AUC d´ 

True 
Posit-

ive 

False 
Posit
ive 

Dynamic 
Operator 
overload 
Model .96 .96 2.65 87% 6% 

Potential-
IT Model .97 .97 2.83 82% 3% 

 
However, this model can be shown to be 

much less predictive than the original model in 
terms of the delay between prediction and event 
predicted.   In the Cue experiment (Experiment 
5), the dynamic operator overload model 
produced a warning signal after only 20% of the 
available time (AT) had elapsed, on average.  In 
contrast, solving the single-variable model’s 
logistic regression equation for the value 
required to exceed the model’s threshold shows 
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the model would not produce a warning signal 
until 90% of the available time had elapsed.  
That is too late to be useful to the operator.  Fan-
outs based on Equation 3 under procedures 
similar to the Experiment 5 control condition 
(i.e., Experiments 1 and 2) are generally 
between 4 and 5 (see Table 5).   Thus, 
approximately 20-25% of available time is 
required to take care of each vehicle.  Warnings 
provided by the potential-IT model, when only 
10% of available time remains, are clearly 
insufficient, while the warnings provided by the 
dynamic operator overload model are more than 
adequate, allowing 80% of the available time to 
take care of the vehicle needing attention.  

These observations highlight one key 
difference between fan-out and predictive 
models.  Fan-out models analyze performance 
on a task globally and so are not aimed at 
within-task prediction, beyond a global 
prediction of how many vehicles an operator 
will be able to supervise in a given task. The 
dynamic operator overload model, in contrast, is 
useful for prediction of performance of events 
within a task session.  

However, the comparison of the two logistic 
regression models demonstrates that even 
logistic regression does not always provide 
useful predictions of real-time performance.  
Logistic regression makes no distinction among 
the relative position of data points in a time 
sequence and so requires theory-based   
selection of possible predictors by the researcher 
in order to contribute to prediction.    Obviously, 
the sooner a prediction can be made the better; 
indeed, it would appear almost a tautology to say 
that a more timely prediction is more predictive 
than a delayed prediction, assuming both are 
equally accurate. The variable potential-IT 
diminishes progressively from the start to the 
end of the PIT event.  In contrast, in the dynamic 
operator overload model, the value of one 
predictor, Available Time, is known at the start 
of the PIT event.  A second predictor, WTAA is 
an interval that begins at the start of the event 
and that usually ends well before the event is 
finished.    Only the third predictor, WQF (or 
WTQ), grows progressively throughout the 
course of the event.  As a result, the dynamic 
operator overload model provides a better basis 

for an alert system than the potential-IT 
(Equation 6) model. 

In addition, a predictor to be useful must be 
theoretically meaningful.  This is illustrated by 
the potential-IT model, which is based only on 
time remaining to perform a task.  It’s trivial that 
a participant who never performs an action will 
run out of sufficient time to do so shortly before 
the deadline.  To paraphrase a well-known 
saying, it’s always darkest before nightfall.   It is 
more useful from a theoretical and practical 
perspective to know that the operator’s failure to 
notice a problem and the operator’s 
preoccupation with other objects and activities 
predict the failure to correct the problem.  More 
generally, high scores on typical criteria to 
assess logistic regression models (C, d´, etc.)  
are not sufficient to guarantee that a model is 
theoretically or practically useful.   

  
IX. CONCLUSION 

 
Dynamic operator overload was introduced 

as an assessment of the overall human-robot 
system in supervisory control applications.  The 
fan-out model of Cummings et al., for instance, 
was designed to estimate the number of UAVs a 
single operator can supervise.   Its estimate is 
based on time intervals, including the length of 
time a vehicle may be ignored before its 
performance degrades below a specified 
threshold (NT), the time required to bring a 
vehicle’s performance back up above the 
threshold (IT), and delays between those two 
intervals due to loss of attentional awareness 
(WTAA) and due to time spent on higher-
priority tasks (WTQ).   

We explored the relationship between 
system-focused fan-out, on which Cummings et 
al. and others have focused, and dynamic 
operator overload, which varies over the course 
of operator-system interaction.  Even when an 
operator is required to supervise no more 
vehicles than dictated by the system-focused 
fan-out model, there may be moments when 
dynamic task demands converge to overload the 
operator, resulting in error.  It is the goal of a 
dynamic operator overload model to predict 
such situations of transitory overload.  

In the current research, the dynamic operator 
overload model was developed to predict the 
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quality of ongoing performance of novice 
operators engaged in a simulation task in which 
they supervised five UAVs, attempting to keep 
them from incurring damage by traversing threat 
areas while directing the vehicles to deliver 
payloads on assigned targets.  We developed 
logistic regression models to predict vehicle 
damage based on ongoing operator behaviors 
and attention as assessed by operator eye 
movements.  Our models took the variables that 
figure in system-focused fan-out models as their 
starting point.  

The fan-out variables WTAA and WTQ, 
together with the variable available time (AT) 
(substituted for NT for task-specific reasons), 
yielded a model that was highly predictive of 
damage occurrences in path-intersect threat 
(PIT) events.  The time required to perform an 
action to avoid a threat (i.e., IT) offered 
insufficient variability to figure within the model 
for our task, but might contribute to models in 
situations where it exhibits greater variability.   

More predictive still was a model that 
substituted number of fixations on non-focal 
objects (WFQ) in place of time spent acting on 
non-focal objects (WTQ). This model’s 
parameters were generated from the data in 
Experiment 1. The model was then replicated in 
Experiment 2, generalized to an easier task and a 
harder task in Experiments 3 and 4, respectively, 
demonstrating the model’s robustness.  The 
model was then applied in Experiment 5 where 
the model initiated cues that alerted the user to 
impending damage.  The superiority of this 
model, with the WFQ variable, over the model 
using WTQ may be due to the fact that fixations 
are a more comprehensive measure than manual 
actions and are more sensitive to individual 
differences in visual and/or core processing 
speed.  Fixations on objects occur during manual 
actions on those objects (i.e., as in WTQ) as well 
as during cognitive activity in the absence of 
overt action, such as scanning and decision 
making.     

The research also pointed to the importance 
of attention in predicting performance.  Two of 
the three variables in the dynamic operator 
overload model, WTAA and WFQ, were based 
on eye fixation data.  WTAA, the time it took 
for the operator to first fixate on the relevant 
threat of a path-intersects threat event, is clearly 

related to attention.  WFQ, the number of 
fixations on non-focal objects may reflect 
attention in part.  The success of the alert cue in 
Experiment 5 in greatly reducing damage rate 
likewise suggests the importance of attention to 
task performance.  

The success of the model-based cues in 
Experiment 5 also provided evidence of the 
ability of the dynamic operator overload model 
to predict damage in real-time.  The cues 
reduced the rate of damage by about half.  What 
is more, no damage occurred in the absence of a 
cue.  The success of the cues also points to the 
potential practical application of the dynamic 
operator overload model. 

The research also shed light on 
considerations involved in developing a model 
that provides timely feedback, as far in advance 
as possible.  We demonstrated that a model that 
is a highly discriminating classifier may not be 
able to make a decision until late in an event, at 
which point a warning may come too late to be 
useful.  In contrast, our model, when used as the 
basis for user cues, was able to alert the user of a 
threat after only 23% of the event had passed.  
We argued that the timeliness of the cue was due 
to the model’s reliance on factors most of which 
were available at, or soon after, the start of the 
event. 

The main conclusion of this research is that a 
system-focused fan-out model may be adapted 
to produce a dynamic operator overload model.  
Both models rely on the operator’s allocation of 
available time to competing subtasks.  Whereas 
system-focused fan-out is a global assessment of 
a task, the dynamic operator overload model 
allows for variations in both available time and 
the number of competing time demands during 
the course of a task, the focus of dynamic 
operator overload.  Some of this variation is 
imposed by the environment, outside of the 
operator’s control, whereas other variations in 
time allocation are due to the operator’s 
attentional awareness and the operator’s decision 
and planning skills.  Both types of variation 
contributed to the dynamic operator overload 
model presented here. 
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List of Figures 

 

Figure 1. The RESCHU supervisory control simulation, consisting of 3 panels:  A. payload panel, B. 
map panel, C. status panel. 

 

Figure 2. ROC curve for logistic regression model. 
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