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Abstract. In certain adversarial environments, reinforcement learning (RL) 

techniques require a prohibitively large number of episodes to learn a high-

performing strategy for action selection. For example, Q-learning is particularly 

slow to learn a policy to win complex strategy games. We propose GRL, the 

first GDA system capable of learning and reusing goal-specific policies. GRL is 

a case-based goal-driven autonomy (GDA) agent embedded in the RL cycle. 

GRL acquires and reuses cases that capture episodic knowledge about an 

agent’s (1) expectations, (2) goals to pursue when these expectations are not 

met, and (3) actions for achieving these goals in given states. Our hypothesis is 

that, unlike RL, GRL can rapidly fine-tune strategies by exploiting the episodic 

knowledge captured in its cases. We report performance gains versus a state-of-

the-art GDA agent and an RL agent for challenging tasks in two real-time video 

game domains.  
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1     Introduction 

Reinforcement learning (RL) algorithms attempt to optimize an agent’s behavior 
when interacting in an environment. The agent’s behavior is defined by a policy , 
which maps for every state s and action a the value (s,a) of selecting a in s. The 
optimization function is frequently defined as the summation of future rewards, which 
in our context of adversarial games can be defined as the difference in score between 
the agent and its opponents. Thus, an RL agent seeks to maximize this difference. 

A difficulty arises in situations where the adversaries frequently change their 
strategies or, equivalently, when each adversary has a fixed and unique strategy and 
adversaries are frequently changed without divulging their identity to the RL agent. In 
such situations, the RL agent will learn a “maximum common denominator” strategy 
that is optimal regardless of the opponent. Unfortunately, as evidenced in our 
empirical study (Section 6), either (1) this strategy performs poorly or (2) learning it 
requires a prohibitively large number of episodes.  

To address this difficulty, we propose to use case-based reasoning (CBR) 
techniques to augment RL’s cycle by acquiring and reusing cases that  capture 
episodic knowledge about an agent’s (1) expectations, (2) goals to pursue when 



discrepancies exist (i.e., where these expectations are not met), and (3) actions for 
achieving these goals in given states. Agents that reason with expectations, 
discrepancies, and goals are the focus of goal reasoning.  

In this paper, we introduce GRL (Goal Reasoning Learner), a case-based Goal-
Driven Autonomy agent. Goal-Driven Autonomy (GDA) is a reflective model of goal 
reasoning that controls the focus of an agent’s planning activities by dynamically 
resolving unexpected discrepancies in the world state (Molineaux et al., 2010).Unlike 
previous work integrating RL and CBR and work on GDA (see Section 2), GRL 
embeds GDA in an RL cycle by learning and reusing the three kinds of cases 
mentioned above. GRL is the first GDA agent capable of learning and reusing goal-
specific policies. Our hypothesis is that, as a result of this capability, GRL can fine-
tune strategies by exploiting the episodic knowledge captured in its cases. We report 
performance gains versus a state-of-the-art GDA agent and an RL agent for 
challenging tasks in two real-time gaming domains. 

Section 2 discusses related work. Sections 3 and 4 then describe GRL’s GDA 
instantiation and its detailed algorithm. Section 5 presents an example of GRL’s 
behavior. We present our empirical studies in Section 6 and conclude in Section 7. 

2   Related Work 

GDA agents use a four-step strategy to respond competently to unexpected situations 

in their environment: (1) detect any discrepancy between the observed state and the 

expected state(s), (2) explain this discrepancy, (3) formulate a goal to resolve it (if 

needed), and (4) manage this new goal along with its pending goals (Molineaux et al., 

2010; Muñoz-Avila et al., 2010). In step 3, these agents use a variety of models to 

formulate new goals. For example, Intro (Cox, 2007) uses explanation patterns 

represented as cause  effect rules such that, if a state is judged to be a discrepancy 

and it maps to the effects of a rule, then Intro will select the negation of that rule’s 

cause as its new goal. ARTUE (Molineaux et al., 2010) uses rule-based reasoning for 

goal formulation and ranking (i.e., pending goals are maintained in a priority list). Its 

rules encode expert knowledge in a manner similar to Intro’s rules, but ARTUE adds 

a more robust process by encoding planning dependencies in a truth-maintenance 

system. EISBot (Weber et al., 2010b) instead uses a case-based model to formulate 

goals, where a case ci=(ci,1,…,ci,n) is an expert-provided sequence of states for 

accomplishing a task, and states are represented as a vector of numeric values. Given 

current state c, EISBot retrieves a most similar state ci,j in its case base along with 

ci,j+w, where w is the length of its planning window. It computes the difference ci,j+w-

ci,j and adds this to c to define its new goal. In contrast to these GDA agents, GRL 

learns its goal formulation knowledge. 

T-ARTUE (Powell et al., 2011) is an extension of ARTUE that interactively learns 

goal formulation knowledge; it can query the user to ask for new goals or confirm 

their formulation, and the user can provide feedback on these decisions. In contrast, 

GRL automatically learns goal formulation knowledge and new goals. 

Most GDA agents (e.g., CB-gda (Jaidee et al., 2010)) are given knowledge about 

state expectations, discrepancies, goals to achieve, and the means to achieve the goals 

(e.g., the plans or the policies). While some prior work has focused on learning some 



of these, GRL is the first GDA agent to learn all of them simultaneously. Finally, in 

contrast to most prior GDA work, GRL learns and reasons with stochastic 

expectations, which we define in Section 3.  

Agents can compute state expectations using action models (i.e., their preconditions 

and effects) and the current state. Bouguerra et al. (2008) use description logics to 

model and infer expectations after executing a plan, which is particularly useful for 

partially observable environments. For example, an agent might observe John 

entering a vehicle at a location A and the vehicle later arriving at location B, where its 

occupants departed. Given this, it could infer that John arrived at B. GDA agents vary 

in how they compute expectations, including using a model of abstract explanation 

patterns (Cox, 2007), or by defining discrepancy detectors to trigger when state 

expectations fail (Weber et al., 2010a). Unlike these (and most other) GDA agents, 

GRL learns its action models for computing state expectations. The only related agent 

is LGDA (Jaidee et al., 2011a), which learns action models it uses to compute 

expectations but it assumes that the policies and goals are given as input. In contrast, 

GRL identifies new goals, and it learns and reuses goal-specific policies. 

There is substantial interest in integrating CBR and RL, as exemplified by Derek 

Bridge’s ICCBR-05 invited talk on potential synergies between CBR and RL (Bridge, 

2005), the SINS system that solves problems in continuous environments (Ram & 

Santamaria, 1997), and CBRetaliate, which stores and retrieves Q-tables (Auslander 

et al., 2008). Most previous contributions focused on improving the performance of 

an agent by exploiting synergies among CBR and RL or by enhancing the CBR 

process by using RL (e.g., to improve similarity metrics). More recently, researchers 

have studied ways in which CBR can improve reinforcement learning. This includes 

reducing the memory requirements of RL (Dilts & Munoz-Avila, 2010), using cases 

as a heuristic to speed up the RL process (Bianchi et al., 2009) and using cases to 

approximate state value functions in continuous spaces (Gabel & Riedmiller, 2005; 

2007). GRL falls in this latter category; it uses CBR to fine-tune strategies by 

exploiting the episodic knowledge captured in the cases while embedded in the RL 

cycle. In this context, GRL’s novelty is that it automatically identifies goals, learns 

policies specific to those goals, learn expectations about the action’s outcomes, and 

reasons when a discrepancy occurs. 

3  Case-Based Goal-Driven Autonomy with GRL 

Like other GDA agents, GRL conducts a meta-process for online planning (Nau, 

2007). Figure 1 illustrates GDA’s information flow, which naturally embeds the 

standard RL model (Sutton & Barto 1998), where the objective is to maximize the 

expected return. The return is a function of the rewards obtained. For example, the 

return can be defined as the summation of the future rewards. Like RL, GRL executes 

an action a in the environment and observes from the environment the next state s 
and a reward r. Unlike RL, which selects the next action based on the current policy 

(i.e., a mapping S  2
A[0,1]

 from states to a probability distribution over the actions), 

GRL selects an action based on the current goal g, the policy  for that goal, and the 

current state s. A crucial challenge is that, in many environments, there is no optimal 



policy for all situations. For example, in an adversarial game, a policy might be 

optimal versus one opponent but not others. This in part motivates why GDA agents 

reason with expectations, discrepancies, and goals. 

GRL learns and reasons with (1) an Expectation Case Base (ECB), which is a 

mapping S  A  2
S[0,1] 

from (state, action) pairs to a probability distribution over 

the expectations, (2) a Goal Formulation Case Base (GFCB), which is a mapping G 

 D  2
G[0,1]

 from (goal, discrepancy) pairs to a distribution over the expected 

values for formulated goals, and (3) a Policies Case Base (), which is a set of goal-

policy pairs (g, ). We discuss the relation between g and   below. 

GRL’s Discrepancy Detector compares state observations   with expectations  . If 

a discrepancy (i.e., an unexpected observation)     is found, then it is passed to the 

Goal Formulator. The discrepancy may warrant a change in the current goal. The 

Goal Formulator generates a goal     given a discrepancy   and next state s. The 

Goal Manager checks for opportunities to learn new goals that are not in G. In 

Section 4 we clarify how and when new goals are learned. Finally, Policy Learner 

learns policies for new goals and refines the policies of existing goals. 

 

Figure 1:  Information flow in GRL 

We now provide formal definitions for GDA elements. The expectations of an 

action a when executed in state s is a collection of states Sa,s  S. Each expectation 

xSa,s will occur with a non-zero conditional probability p(st+1=x | st=s, at=a) 

(assuming the Markov property). A discrepancy occurs whenever executing a yields 

state sSa,s. We assume that the explanation for a discrepancy reflects GRL’s 

incomplete domain knowledge. Hence, it revises its expectations knowledge 

whenever a discrepancy occurs, as explained in Section 4. 

The representation of a discrepancy depends on the state representation. Here we 

assume a state is represented as a vector s=(v1,…,vn), where vi is a value of a feature fi. 

We represent a discrepancy as a vector of Boolean values d=(b1,…,bn), where bi is 

true iff the values in position i of the actual and expected states are the same. 

Any state can be a goal. We are interested in particular goals that we call trajectory 

goals, which are defined as follows. First, when an agent follows a policy it generates 

a trajectory, which is the sequence of states that it visits. A trajectory goal relative to 



a policy  is any state along a trajectory produced by  from the start state to a 

terminal state. All pairs (g,) П are such that g is a trajectory goal relative to . Our 

policies behave like weak solutions (Ghallab et al., 2004) in that there is no guarantee 

that a particular goal will be reached because policies are learned incrementally (i.e., 

when executing the policy a trajectory might be generated that does not contain the 

goal). Hence, many iterations may be needed before strong solutions are obtained 

(which guarantee that certain goals are always reached).  

4    The GRL Algorithm 

We now present GRL, which incrementally learns expectations, goal formulation 

knowledge, and goal-specific policies. GRL uses Q-learning as its RL algorithm. Q-

learning is frequently used as the prototypical RL algorithm due to its bootstrapping 

capabilities, which enables it to estimate state-action values based on other state-

action values estimates. As a result, it tends to converge to optimal policies faster than 

other RL methods (Sutton & Barto, 1998).  

GRL receives as input the start state s0, a waiting time , the Policy Case Base , 

the Expectation Case Base (ECB), the Goal Formulation Case Base (GFCB), the 

actions A, and some parameters. The parameters  and  are the step-size and 

discount-rate parameters for Q-learning. Parameters 1 and 2 are for the -greedy 

selection of action and goals, respectively. Parameters ca and cb are used to learn new 

goals as will be explained later, and t is a threshold used to determine when two goals 

are similar to one another. GRL runs one episode of a game and returns updated 

values for , ECB, and GFCB.1  

GRL executes an iterative decision making cycle with the following steps: (1) 

identify discrepancies when they arise, (2) decide which goals to achieve to resolve 

any such discrepancies, and (3) perform actions to accomplish these goals. 

Simultaneously, GRL learns knowledge about state expectations, discrepancies, goals 

to achieve, and the actions to achieve these goals (e.g., goal-specific policies).  

GRL has three phases: In Phase 1, which occurs during an episode, GRL uses and 

updates ECB and GFCB. Phases 2 and 3 occur immediately after an episode ends. In 

Phase 2 new goals are identified and in Phase 3 goal-specific policies are updated. 

 

 

 

 

 

 

 

 

 

                                                           
1 We assume episodic tasks in which the instances eventually end. This is an effect of the 

underlying Q-learning. If the task did not terminate, then we would need to use mechanisms 

such as eligibility traces (Sutton & Barto, 1998). 



GRL(s0, , , ECB, GFCB, A,  , , 1, 2, ca, cb, t)  

// Phase 1: Online execution and updating  

1: s x s0; a  la lb ;  g g′ g0;  d d0;  GGetGoals() 

2: while episode continues  

3:  wait() 

4:      GetState()    // Periodically observe the state 

5:  r  U(  )  U( )    // Compute the reward 

6:  la  concat(la ,<s>); lb  concat(lb ,<s,a,s,r>) 

7:  ECB   Update(ECB, s, a, s) // Update ECB’s distribution 

8:  a′  Random(|A|)   // Random current action 

9:  if    

10:   q  Get(GFCB,g,d,g) // Fetch/update Q value 

11:    q  q+(r+ argmaxgiG(Get(GFCB,g,d,gi))q) 

12:    GFCB  Update(GFCB,g,d,g,q) 

13:    if r < 0     // Performing poorly? 

14:         CalculateDiscrepancy(  ,  ) 

15:     if Random(1)    // Formulate next goal 

16:      g′′ ArgmaxgiG(Get(GFCB,g,d,gi)) 

17:     else g′′ Random(|G|) 

18:     g  g ; g  g 

19:       (g′)   // Retrieve a new policy 

20:    if Random(1)  2 

21:     a′  ArgmaxaiA(Get(, , s, ai)) 

22:  x  Argmax xiX(Get(ECB,s,a,xi)) 

23:   Execute(a)     // Execute current action  

24:   a  a; s  s 

// Phase 2: Goal extraction 

25: G  TopFrequency(la,ca,cb) ; G   

26: for-each g  G     // Iterate over the most frequent goals 

27:   H   

28:   for-each (g, )     // Attempt to group g' with an existing goal 

29:    if Similarity(g, g)  t then H  H  {g} 

30:   if H =  then H  {g}  // g is a new goal  

31:   G  G  H 

// Phase 3: Policies revision 

32: for-each g  G 

33:   if    then   (g) else   nil 

34:   if    nil then   New(g);     {(g, )} 

35:   for-each <s,a,s,r>  lb 

36:    q  Get(,,s,a) 

37:    q  q +  (r +  argmaxaiA(Get(,,s,ai))  q) 

38:      Update(, s, a, q) 

39:     Update(, g, ) 

40: return , ECB, GFCB 

 



In Phase 1 (Lines 1-24), GRL applies and updates ECB and GFCB. It first 

initializes s and x to the initial state s0, action a to the null action, lists la and lb to 

empty, g and current goal g to the dummy goal g0, discrepancy d to dummy value d0, 

and G to the set of goals that can be accomplished by  (Line 1) (i.e., policies are 

annotated with the goals they accomplish). During an episode (Lines 2-24), GRL 

periodically waits (Line 3) and then observes the current state    (Line 4), calculates 

the reward r (line 5), and concatenates <s> to la and <s,a,s,r> to lb (Line 6) for use 

after the game episodes concludes. It then updates the distribution of expected states 

when taking action   in   (Line 7) and generates the current action a′ randomly (Line 

8). This guarantees that, if  is empty, then GRL still has an action to perform. 

Otherwise (Line 9), it retrieves GFCB’s estimated q value for formulating goal g 

given (g,d) (Line 10), updates the new q value using Q-learning (Line 11), and 

records it in the GFCB (Line 12). If the agent is performing poorly (Line 13), it then 

calculates the discrepancy between the current and expected states (Line 14) and 

retrieves a new goal g′′ from GFCB using -greedy exploration (Lines 15-17), and 

updates its previous and current goal (Line 18). GRL then retrieves a new policy from 

 using goal g′ as the index (Lines 19-21). It retrieves from the ECB the expected 

state x from executing a’, executes a′, and updates the previous action a, current 

action a′, and previous state s (Lines 22-24). 

After an episode completes, GRL’s Phase 2 extracts a set of goals to update their 

policies. It first identifies the set G of most frequent states that appear in the most 

recent ca% of visited states, where the frequency of these states must be at least a 

threshold value (ca×cb×|la|). For example, assume that la = {sa,sb,sc,sa,sa, sb,sa,sa,sa,sb}, 

|la|=10, ca = 50%, and cb = 0.25. Then the most recent 50% of la is {sb,sa,sa,sa,sb}, and 

state sa is the most frequent state among these (with frequency 3). The threshold value 

equals 1.75 (i.e., 0.5×0.25×10), which means GRL will also include state sb in G 

because its frequency is 2. However, if cb = 0.1, then G={sa} (Line 25). GRL then 

adds new goals from  that are at least as similar to goals in G as the threshold t 

(Line 29). Similarity between goals is computed using a linear combination of local 

similarity metrics, one for each of the state’s features (Lopez de Mántaras et al., 

2005). More precisely, we assume cases to be vectors of n-dimensional features 

X={x1,...,xn}. For computing similarity, we define a collection of local similarity 

metrics simi(), one per feature i, and a collection of weights i, which sum to 1. The 

aggregated similarity metric SIMagg is defined as: 

SIMagg(X,Y) = i=1,n i  simi(xi,yi) 

GRL groups goals by similarity to reduce the size of the Policies Case Base . 

However, if no similar goals exist, then GRL will interpret g as a new goal (line 30). 

In Phase 3, GRL refines or adds new policies. For each goal g in G (Line 32), if  

is not empty, then GRL will retrieve policy  for this goal (Line 33). If either  is 

empty or the policy associated with g is nil, a new policy  for g is created and  is 

added to  (Line 34). It will then apply Q-learning to update   using the recent state 

transitions and rewards (Line 35-38) and update the (goal, revised policy) in  (Line 

39). Finally, GRL returns all the revised case bases (Line 40). 



5    Example 

Suppose in the real-time strategy (RTS) game Wargus a GRL-controlled agent is 

competing against one opponent (Wargus, 2012). Wargus is a combat game where 

each player controls a variety of units. One of the most challenging aspects in RTS 

games is that there is no “best” unit type. For example, archers can quickly kill 

footmen but are particularly vulnerable to knights. In our experiments each player 

controlled mages, archers, knights, ballistae, and footmen. The objective of this game 

is to be the first to reach a predefined number of points, which are earned by killing 

the opponent’s units. Some units award more points than others (e.g., killing a knight 

earns more points than a footman). 

Assume each team begins with two footmen and two archers, and that the agent has 

already played many games. Thus, the case bases , ECB, and GFCB have recorded 

some results. For the Wargus state representation we use s = (u1,u2,…,un, e1,e2,…,em), 

where ui  and ej  denote the number of remaining units of type i on our team and 

ej denotes the same of type j for the opponent. Usually, n and m are equal (e.g., if the 

current state equals (2,1,0,2), then our team has 2 footmen and one archer remaining 

while the opponent has only two archers). Actions in Wargus, denoted as a = 

(b1,b2,…,bk), where each bi is a unit type of the opponent such as {Rarchers, 

Ffootmen}, means that units of type i on GRL’s team attacks opponent units of type 

bi. For example, the action (R,F,F,) means that a unit with id 1 attacks an opponent 

archer, units with id 2 and 3 attack opponent footmen, and units with id 4 do nothing. 

Suppose the current state s is s21 = (1,0,0,1) (i.e., GRL’s team has only one 

footman left and the opponent has only one archer) and r = -2 (Lines 4-5). In Phase 1, 

GRL adds {s21} to la and {(s20, a20, s21, -2)} to lb (Line 6). After updating the 

appropriate ECB distribution (Line 7), GRL will generate the random action a′ and 

then calculate and update the q value of GFCB (Lines 10-12). Because the reward is 

negative, GRL will change to a new goal (Line 13). After finding the discrepancy d21 

= (T,T,T,F) between current state s21 and expectation x21 = (1,0,0,0), it will choose a 

new goal g in an -greedy fashion (Lines 14-18). Using this new goal to retrieve a 

policy , suppose it retrieves (by chance) greedy action a′21 = (,R,,) (i.e., 

send the remaining footman to attack an enemy archer) from policy  (Lines 19-21). 

GRL then updates the previous state and action, computes expectation x, and executes 

action a (Lines 22-24). Suppose that this action eliminates the opponent’s units, 

which ends the game.   

Phases 2-3 update . First, GRL uses TopFrequency to compute a set of new goals 

G, and then searches for goals from  that are similar to any members in G to create 

a set G (Lines 25-31). Suppose G{(100,150,0,0)} (e.g., we have 100 footmen and 

150 archers while the enemy has 0 footmen and 0 archers), meaning that GRL won 

the episode because it destroyed all enemy units. Assume   {((96,96,0,0),1), 

((0,0,10,20),2), ((150,100,0,0),3), ((105,104,0,0),4)}. Then G=G’ assuming there 

are no (sufficiently) similar cases in . Lines 39-48 will learn a policy 5, and 

{((100,150,0,0),5)} will be added to . On the other hand, if G{(100,100,0,0)} and 

assuming it would be (above-threshold) similar to the first and fourth goals in , then 

G={(96,96,0,0), (105,104,0,0)} and Lines 39-48 will update the policies 1 and 4. 



6    Empirical Study 

We examined the task of winning two adversarial games to investigate the following 

hypothesis: GRL can significantly outperform a standard RL agent that learns only 

policies (i.e., Retaliate (Smith et al., 2007), which uses Q-learning) and an ablated 

GDA agent that does not learn policies (i.e., LGDA (Jaidee et al., 2011a), which is 

given policies representing an opponent’s strategies and their goals, and learns only 

expectations and goal formulation knowledge). In our study, all three learning agents 

use the same models for states, actions, and rewards.  

 

6.1 Domains and Scenarios 

 

The adversarial games we use are Wargus and DOM. Both are two-player real-time 

video games: players make asynchronous moves. They exhibit the characteristics that 

we want to explore in this paper: there doesn’t seem to be a universally good strategy 

for these games. Instead, they exhibit the “rock-paper-scissors” behavior whereby any 

strategy can be countered. LGDA have demonstrated good performance in DOM and 

Wargus (Jaidee et al., 2011a; 2011b) while Retaliate has demonstrated good 

performance in DOM (Smith et al., 2007), so they are good baselines for testing GRL. 

We used two maps in our Wargus experiments. The first is a medium-sized map 

with 64×64 cells and 8 units per player, while the second uses the largest feasible map 

(128×128 cells) and 32 units per player. We set the games’ score limits to be 200 and 

1000 points, respectively. In our experiments, we used five hand-coded opponents 

that order all units of the same type to attack a single type of the agent’s units. For 

example, they might assign knights to attack archers. These opponents differ in their 

attack order. In testing, no single opponent outperformed all the others. We used these 

built-in opponents to train the three agents (i.e., Retaliate, LGDA and GRL). 

The second domain, DOM, is a domination game in which two opponent players 

try to capture specified domination locations on a 2-D map. Teams are composed of k 

bots. The player’s actions are k-tuples (l1,..lk) indicating the domination location li to 

which each bot bi is assigned.  A player captures a location by simply moving a bot to 

it. A team receives one point for every five consecutive ticks it “owns” a location. The 

first team to earn a predefined number of points wins. Each bot starts with a max 

number of health points, which can be lost in combat, which occurs when two or more 

opposing bots are within a certain range of each other. When a bot’s health is zero, it 

respawns after a few ticks in a (randomly-selected) respawning location with max 

health points. Combat losses are determined using a biased random function that 

computes the health points lost by each competing bot (it favors bots on the team that 

has more bots within a certain range). In our experiment, we use a map with five 

domination locations and eight bots per team. 

We used the same six hand-coded opponents in DOM we previously used in 

(Jaidee et al., 2011a), where we used a variety of fixed strategies such as the “half 

plus one adversary”, which attempts to control a majority of locations by sending bots 

to them whenever they are owned by the competing agent. Another strategy, called 

“smart opportunistic”, sends a different bot to each domination location the team does 

not own. Among these six adversaries, there are two that are better than all the others, 

two that are middling performers, and the last two are defeated by all the others. 



 

6.2 Protocol and Results 

 

Agents played N episodes, where N=20 for Wargus and N=340 and 2000 for DOM. 

The difference in the number N of runs between Wargus and Dom is due to the fact 

that running DOM games is much quicker.  During each training episode, each agent 

played each of the M built-in opponents once (M=5 for Wargus and M=6 for DOM). 

During training, the agents GRL, LGDA and Retaliate are learning. We tested GRL 

against Retaliate and LGDA after each training episode. Because both DOM and 

Wargus are highly stochastic, games during testing were repeated 10 times. Any 

knowledge learned during a game in the testing phase was removed after the game 

ends. Thus, the only knowledge affecting the performance of the agents when 

competing versus one another was learned during training and any knowledge learned 

online within that particular game episode. 

Figures 2 and 3 summarize the average results. The x-axis plots the number of 

training episodes, while the y-axis plots the average utility (i.e., score difference of 

GRL versus another agent).  

 

Experiment 1 (Wargus): In most Wargus episodes (Figure 2), GRL clearly 

outperformed the other agents, although LGDA sometimes defeated GRL in the 

medium-size map (Figure 2b). Nevertheless in all cases the differences are 

statistically significant (p<0.001), as determined by a two-tailed Student’s t-Test on 

the utility scores of GRL versus the scores of another agent (i.e., Retaliate or LGDA). 

Hence our hypothesis is supported for Wargus, and we can draw three conclusions: 

 

1. There is either no universally good strategy for these games or none can be 

found by Q-learning even after a large number of episodes. 

2. GRL outperformed the Q-learning agent. This highlights the importance for 

using case-based approaches to learn and reason about expectations, goal 

formulation knowledge, and goal-specific policies in domains where no 

universally-best strategy can be elicited by RL. 

3. GRL outperformed the LGDA agent. This highlights the importance of 

identifying new goals and using CBR to learn and reuse goal-specific cases.  

 

We were surprised that GRL outperformed LGDA after only a few episodes 

because GRL begins with no goals and no policies. In contrast, LGDA begins with 

policies representing the built-in opponents’ strategies and goals for these policies. 

Upon inspection we found that the opponents’ strategies cause their units to form 

choke points while trying to reach the units they intended to attack. As a result, few 

units, mostly ranged attack units, actually were effective. Without knowledge about 

expectations and goals, LGDA rotates among the various opponents’ strategies. As 

mentioned, these end up being ineffectual because it frequently results in choke 

points. GRL instead initially performs random actions that, on average, cause more of 

their own units to damage opponent units, which explains the relative results of the 

first few episodes. 

We also investigated why, despite its overall good performance, GRL will 

occasionally lose games to the opponents in the medium-sized map (e.g., in round 13 



versus Retaliate (Figure 2a) and round 20 versus LGDA (Figure 2b)). We found that 

for this map the score limit was frequently reached even though both teams had 

several units left. That is, the maximum point threshold was set too low for the 

number and types of units in the scenario (i.e., killing a high-value unit such as a 

knight is worth many points, and the game ends sooner when any such unit is killed). 

This caused high variation in the results because, after a while, several units from 

both sides will have few health points. In this situation, after a few of these units die 

the game terminates because the point limit is reached. As a result, depending on the 

random factor that determines which unit attacks succeeded, units from either side die 

while others remain with few health points. However, points are only awarded for 

deaths, and not for low health points. This caused the variance in the results. This was 

not a factor in the large map because the number of points was set sufficiently high 

and, although there is fluctuation, GRL did not lose a game on average (Figures 2c 

and 2d). 

 

Experiment 2 (DOM): Figure 3 summarizes the results with DOM games. In all 

cases GRL clearly outperformed the other agents, although initially both Retaliate and 

LGDA outperformed GRL. This is to be expected; GRL initially has no knowledge of 

which goals to pursue nor how to achieve them. Nevertheless in all cases the 

difference is statistically significant (p<0.001) across the entire curves, as determined 

by a two-tailed Student’s t-Test for comparing the utility scores of GRL versus those 

of the other two learning agents). This also supports our hypothesis and allows us 

draw the same conclusions as mentioned above for Experiment 1.  

We investigated why it took so many episodes for GRL to start winning versus 

Retaliate and LGDA in the DOM game compared to Wargus. This occurred because 

the state model used by the agents forms a DAG for Wargus, meaning that a state is 

never visited more than once. As a result, for Wargus, we define the new goal to be 

the final state (whereas for DOM this is defined as the most frequently visited state). 

In contrast, the same state can be visited multiple times in DOM. Thus, multiple goals 

were frequently learned per DOM episode, resulting in many more goals being 

learned overall. Hence, П grows faster in the DOM rather than in the Wargus 

experiments during the initial training episodes. This in turn increases the number of 

episodes needed to learn useful goal formulation knowledge and good policies. Thus, 

it takes longer for GRL to outperform the other agents in DOM scenarios. 
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Figure 2:  The results of the Wargus experiments: GRL vs. Retaliate (a) and vs. 

LGDA (b) on the medium map, and GRL vs. Retaliate (c) and vs. LGDA (d) on the 

large map. The x-axis plots the number of training episodes, while the y-axis plots the 

average utility (i.e., score difference of GRL versus another agent).  

 

  (a)     (b) 

 

Figure 3:  Results from the DOM experiments: (a) GRL vs. Retaliate and (b) GRL vs. 

LGDA. The x-axis plots the number of training episodes, while the y-axis plots the 

average utility (i.e., score difference of GRL versus another agent). 

 

We also investigated why it took so many more episodes for GRL to outperform 

LGDA compared to Retaliate. Namely, it took around 150 episodes for Retaliate 

compared to almost 300 for LGDA. This was caused by the two strong hand-coded 

adversaries, which LGDA was able to leverage. This also explains why, in the first 
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episode, GRL loses to Retaliate by approximately 350 points whereas it loses to 

LGDA by approximately 1600 points. 

7   Conclusions and Future Work 

We introduced a goal-driven autonomy (GDA) agent, named the Goal Reasoning 

Learner (GRL), which uses CBR processes to learn and reuse goal-specific action 

policies, state expectations, and goal selection knowledge. It is the first GDA agent 

that learns all of this information, and in particular the first to learn policies. GRL 

uses a reinforcement learning (RL) process to learn its policies and goal formulation 

knowledge. GDA agents are designed for complex environments in which unexpected 

situations can occur, as is the case for complex video game environments. In our 

empirical study with two such environments (Wargus and DOM), we found that GRL 

outperforms its RL-only ablation, even though GRL is embedded in the same RL 

process: it uses the same reward function, has knowledge of the same actions, and 

uses the same state-action transition model.  

Our GDA agent does not perform discrepancy explanation (Molineaux et al., 

2010). GDA agents often generate an explanation for a discrepancy and formulate a 

new goal based on it. GRL bypasses this step by directly linking discrepancies with 

goals in the GFCB. Cox (2007) proposes a general taxonomy for plausible 

explanations of a discrepancy. This taxonomy classifies potential categories of 

explanations (called meta-explanations) including: incomplete domain knowledge, 

incorrect domain knowledge, and noise in the environment. Most research on 

explanations has been in the context of deterministic expectations, whereas GRL 

would require modeling stochastic explanations. We plan to study these issues in the 

future. As discussed in Section 6, learning too many goals caused GRL to require 

many episodes before it became competitive in the DOM domain. Hence, we also 

plan to study alternative criteria to learn goals. 
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