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Abstract:	
  
	
  

	
  Autonomous	
  systems	
  can	
  provide	
  the	
  Navy	
  with	
  valuable	
  informa8on	
  about	
  opera8ng	
  environments.	
  
The	
  goal	
  of	
  this	
  research	
  is	
  to	
  build	
  upon	
  nature-­‐inspired	
  approaches	
  to	
  area	
  coverage	
  using	
  swarms	
  or	
  
teams	
  of	
  autonomous	
  systems	
  performing	
  area	
  coverage	
  tasks,	
  and	
  to	
  apply	
  these	
  systems	
  to	
  problems	
  
of	
  Navy	
  interest.	
  	
  	
  Foraging for Information

Application to autonomous teams

Foraging as guidance

Biological agents find most
e�cient paths to food

Simple heuristics for uncertainty
and unexpected constraints

Information as food

Bayesian estimation shows
where to collect information

Information theory gives optimal
sensor positions

the error variance of the state estimate. In addition, Cortés
[Cortés, 2009] developed a distributed filtering algorithm
based on the Kalman filter for estimating environmental fields.
The algorithm also estimated the gradient of the field, which
is then used for multi-robot control. There have been similar
Kalman filter approaches for tracking multiple targets, such
as by Chung et al. [Chung et al., 2004].

Recently nonparametric filters have become popular in
robotics as the platforms become more computationally
capable. In an early work, Engelson and McDermott
[Engelson and McDermott, 1992] used a sequential Monte
Carlo method to construct a mapper robust enough to
address the kidnapped robot problem. Since then, non-
parametric algorithms have become commonplace in lo-
calization [Borenstein et al., 1997], simultaneous localization
and mapping [Montemerlo et al., 2002], and target track-
ing [Schulz et al., 2001]. Fox et al. [Fox et al., 2000] ap-
plied these algorithms to multiple collaborating robots us-
ing a sample-based version of Markov localization. Most
relevant is the recent work by Hoffmann and Tomlin
[Hoffmann and Tomlin, 2010], who proposed a sequential
Monte Carlo method to propagate a Bayesian estimate, then
used greedy and pair-wise approximations to calculate mutual
information. In addition, Belief Propagation [Pearl, 1988] has
seen nonparametric extensions [Ihler et al., 2005], which use
Gaussian mixtures to solve graphical inference problems.

B. Paper Outline

The paper is organized as follows. We formalize the multi-
robot inference and coordination problem in Section II, then
derive the gradient-based controller with nonparametric ex-
tensions in Section III. In Section IV, we present the commu-
nication model and consensus algorithm used to distributively
approximate the joint measurement probabilities. In Section
V, we discuss the results from our two hardware experiments
and one numerical simulation, then conclude the paper in
Section VI. Proofs for all theorems and descriptions for
all notation are found in Appendix A and Appendix B,
respectively.

II. PROBLEM FORMULATION

We motivate our approach with an information theoretic
justification of a utility function, then develop the problem
formally for a single robot followed by the centralized multi-
robot case with an ideal network.

A. Information and Utility

We wish to infer the state of an environment from measure-
ments obtained by a number of robots equipped with sensors

Fig. 2. This figure shows the representation of a robot system within
an information theoretic framework. The robots observe the state of the
environment using sensors of finite footprints. The joint measurement proba-
bilities describe the accuracy of the continuous-time joint observations, which
through Bayes’ Rule provide the relationship between the system’s prior,
P(Xk), and posterior, P(Xk|Yk), distributions.

(see Figure 2). Ideally, we would represent the potentially time
varying state in a continuous manner. However, the robots’
inference calculations happen at discrete times, and for this
paper we assume that all robots perform these calculations
synchronously at a constant rate of 1/Ts. Thus at time
t = kTs, where k denotes the discrete time step, we model
the environment state as a discrete-time random variable, Xk,
that takes values from an alphabet, X .

Our goal is to enable the inference calculations necessary for
collectively estimating the environment state and reducing un-
certainty in the system. Each robot forms an observation from
sensor measurements influenced by noise and other effects.
We consider the observations of all robots together as a single
joint observation, which we model as a discrete-time random
variable, Yk, that takes values from an alphabet, Y . The
relationship between the true state and the noisy observation
is described by joint measurement probabilities, P(Yk|Xk).
Sensing may be interpreted as using a noisy channel, and since
the sensors are attached to the robots, the joint measurement
probabilities are dependent on the position of the robots and
the orientation of their sensors. From Bayes’ Rule, we can use
a joint observation and the system’s prior distribution, P(Xk),
to compute the system’s posterior distribution,

P(Xk|Yk) =
P(Xk)P(Yk|Xk)�

x�X
P(Xk = x)P(Yk|Xk = x)dx

. (1)

Since our objective is to best infer the environment state,
we are motivated to move the robots and their sensors into
a configuration that minimizes the expected uncertainty of
the inference after receiving the next joint observation. Our
optimization objective is equivalent to minimizing conditional
entropy,

H(Xk|Yk) = H(Xk) � I(Xk, Yk),

where H(Xk) is the entropy of the environment state and
I(Xk, Yk) is the mutual information between the environ-
ment state and the joint observation. Since the entropy of
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How do we express these for deployable autonomous vehicles?

Quadrotor sensor network using states-of-matter search to detect 
and simultaneously track multiple targets on the ground. 
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