
2013 Annual Conference on Advances in Cognitive Systems: Workshop on Goal Reasoning

Learning Models of Unknown Events

Matthew Molineaux MATTHEW.MOLINEAUX@KNEXUSRESEARCH.COM
Knexus Research Corporation, 9120 Beachway Lane, Springfield, VA 22153

David W. Aha DAVID.AHA@NRL.NAVY.MIL
Naval Research Laboratory (Code 5514), 4555 Overlook Avenue SW, Washington, DC 20375 USA

Abstract
Agents with incomplete models of their environment are likely to be surprised by it. For agents in
immense environments that defy complete modeling, this represents an opportunity to learn. We
investigate approaches for situated agents to detect surprise, discriminate among different forms of
surprise, and ultimately hypothesize new models for the unknown events that surprised them. We
instantiate these approaches in a new goal reasoning agent, FOOLMETWICE, and investigate how
that agent performs in a simulated environment. In this case study, we found that FOOLMETWICE
learn models that substantially improve its performance.

1. Introduction
In most work on planning and reasoning, the world is assumed to be reasonably well-behaved,
changing according to a known model (e.g., a policy, a fixed set of rules). In contrast to most
other work, we relax the assumption that the agent has a complete and correct environment
model. Thus, the environment can surprise our agent, meaning that an event can occur for which
the agent lacks knowledge to predict or immediately recognize it.

For example, surprises can occur due to incomplete knowledge of events and their locations.
In the fictional Princess Bride (Goldman, 1973), the main characters entered a fire swamp with
three types of threats (i.e., flame spurts, lightning sand, and rodents of unusual size) for which
they had no prior model. They learned models of each type of threat after encountering it,
allowing them to predict and prevent each threat type. Surprising realistic events can likewise
occur while an agent monitors an environment’s changing dynamics: consider an autonomous
underwater vehicle that detects an unexpected underwater oil plume for which it has no model. A
typical default response might be to immediately surface (requiring hours) when surprised by a
novel occurrence and report to an operator. However, if the vehicle first learned a model of the
spreading plume, it could react to the projected effects, perhaps by identifying the plume's source.

Surprises are interesting because they occur frequently in real-world environments and cause
failures in real-world robots. The ability to respond autonomously to failures would allow such
robots to act for longer periods without oversight. While some surprises can be avoided by
increased knowledge engineering, it’s often impractical due to high environment variance, or
events unknown to the knowledge engineers. Therefore, we instead focus on the task of learning
from surprises. In this paper, we use FOIL (Quinlan, 1990) to learn environment models and
demonstrate its utility to control a simulated mobile robot.

M. MOLINEAUX AND D. AHA

In this paper, we introduce an approach for learning models of unknown events in response to
surprises as part of a goal reasoning agent. Surprise detection and response are critical to goal
reasoning (Klenk, Molineaux, & Aha, 2013), which includes the study of agents that dynamically
modify what goals they pursue in response to unexpected situations. Our approach to unknown
event learning is developed as an agent named FOOLMETWICE, an extension to the Autonomous
Response to Unexpected Events (ARTUE) agent. These agents implement the Goal-Driven
Autonomy (GDA) model of goal reasoning (Molineaux, Klenk, & Aha, 2010a), which entails
monitoring the environment for surprises, explaining the cause of surprises, and resolving them
through dynamic modification of goals. We begin by discussing related work in Section 2. We
review the GDA model in Section 3 and present a formal description of explanations and
surprises. In Section 4, we review GDA’s implementation in ARTUE and its extensions in the
novel agent FOOLMETWICE, which extends ARTUE with the capability to learn event models
using FOIL. Section 5 then describes its empirical evaluation. Our results support our research
hypothesis, which states that by learning event models, FOOLMETWICE can outperform ablations
that cannot learn these models as measured by the time required to perform navigation tasks.
Finally, we conclude in Section 7.

2. Related Work

This paper extends our work on deriving explanations for surprises as detected by a GDA agent.
Molineaux, Aha, and Kuter (2011) introduced DISCOVERHISTORY, an algorithm for discovering
an explanation given a series of observations; it outputs an event history and a set of assumptions
about the initial state. Rather than employing a set of enumerated assumptions,
DISCOVERHISTORY enumerates which predicates are observable (when true). Assumptions can be
made about the initial state value of any literal that is not observable. We showed that, given
knowledge of event models, an agent that uses DISCOVERHISTORY could improve its prediction
of future states. Molineaux, Kuter, and Klenk (2012) later described an extension of
DISCOVERHISTORY that can increase an agent’s accuracy for generating state expectations in the
context of replanning tasks. They also reported that, for one task, it significantly increased its goal
achievement rate versus an ablation that does not perform explanation. Our current work
addresses further the question of explanation in the absence of a complete model. Recent related
work on abductive diagnosis includes that by Sohrabi, Baier, and McIlraith (2010) concerning the
diagnosis of discrete-event systems using planning algorithms. This does not consider the
challenges of further reasoning and autonomous execution based on diagnoses, as does ours.
Gspandl et al. (2011) also conduct history-based diagnosis in an execution environment. Our
work differs in that we focus on diagnosis of exogenous events rather than failed actions, and we
compute diagnoses iteratively when new problems are found.

Several other investigations have addressed the task of explaining surprises in the current
state. Early work on SWALE (Leake, 1991) used surprises to drive a story understanding process
that conducted goal-based explanation to achieve understanding goals. Weber, Mateas, and
Jhala’s (2012) GDA agent learns explanations from expert demonstrations when a surprise is
detected, where an explanation is a prediction of a future state obtained from executing an
adversary’s actions. Hiatt, Khemlani, and Trafton (2012) introduce and instantiate a framework
for Explanatory Reasoning to identify and explain surprises, where explanations are generated
using a cognitively-plausible simulation process. Ramisinghe and Shen (2008) describe the

LEARNING MODELS FOR PREDICTING SURPRISING EVENTS

Surprise-Based Learning process, in which an agent learns and refines its action models. These
models are represented by qualitative rules that can be used to predict state changes and identify
when surprises occur (i.e., when the rules’ predictions fail). Nguyen and Leong (2009) introduce
the Surprise Triggered Adaptive and Reactive (STAR) framework to dynamically learn and revise
an agent’s models of its opponents’ strategies in non-stationary game environments (i.e.,
opponent strategies can change over time). After an accumulated surprise threshold is exceeded, a
STAR agent generates hypotheses to predict an opponent’s strategy, and will adopt a strategy if
its prediction accuracy exceeds a different threshold. While these studies, like our own, concern
agents that can recognize and (in most cases) respond to surprises, our contribution here is
unique: we describe an algorithm for learning (and applying) environment models of unknown
exogenous events (i.e., rather than action models for the agent or other agents).

A substantial amount of research has focused on learning environment models such as action
policies, opponent models, or task decomposition methods for planning (e.g., Zhuo et al., 2009).
However, a variety of techniques have also been used to learn other types of models, and under
different assumptions. For example, Bridewell et al. (2008) describe how Inductive Process
Modeling techniques can be used to learn process models from time series data, and predict the
trajectories of observable variables. Pang and Coghill (2010) instead survey methods for
Qualitative Differential Equation (QDE) Model Learning (QML), which have been used to study
real-world non-interactive dynamic systems. Reverse Plan Monitoring (Chernova, Crawford, &
Veloso, 2005) can be used to automatically perform sensor calibration tasks by learning
observation models during plan execution. In contrast to these prior investigations, we consider
the problem of obtaining models for use by a deliberative agent in subsequent prediction and
planning in an execution environment.

In model-free reinforcement learning (RL) (Sutton & Barto, 1998), agents are responsible for
acquiring environment models for their immediate use. Our work diverges significantly from the
RL framework in that it is goal-oriented rather than reward-driven, which allows frequent goal
change without requiring significant re-learning of a policy.

3. Models

Goal Reasoning is a model for online planning and execution in autonomous agents (Klenk et al.,
2013). As in our prior work, we focus on the Goal-Driven Autonomy (GDA) model of goal
reasoning, which separates the planning process from procedures for goal formulation and
management. Section 3.1 summarizes a minor extension of this model, Section 3.2 describes our
formalism for plausible explanations, and Section 3.3 describes how to use these to explain
anomalies. We describe GDA agent implementations in Section 4.

3.1 Modeling Goal-Driven Autonomy

Figure 1 illustrates how GDA extends Nau’s (2007) model of online planning. The GDA model
expands and details the Controller, which interacts with a Planner and a State Transition System
Σ (an execution environment).

System Σ is a tuple (S,A,E,O,γ,ω) with states S, actions A, exogenous events E, observations
O, state transition function γ: S×(A∪E)→S, and observation function ω: S→O. The transition
function γ describes how an action’s execution (or an event’s occurrence) transforms the

M. MOLINEAUX AND D. AHA

environment from one state to another. The observation function ω describes what observation an
agent will receive in a given state. We will use the term “event” to refer to an exogenous event.

The Planner receives as input a planning problem (MΣ,sc,gc), where MΣ is a model of Σ, sc is
the current state, and gc is the active goal, from the set of all possible goals G, that can be satisfied
by some set of states Sg ⊆ S. The Planner outputs (1) a plan pc, which is a sequence of actions
Ac=[ac+1,…,ac+n], and (2) a corresponding sequence of expectations Xc=[xc+1,… xc+n], where each
xi∈Xc is the state expected to result after executing ai in Ac, and xc+n∈gc.

The Controller takes as input initial state s0, initial goal g0, and MΣ, and sends them to the
Planner to generate plan p0 and expectations X0. The Controller forwards p0’s actions to Σ for
execution and processes the resulting observations, where Σ also processes exogenous events.

During plan execution, the Controller performs the following knowledge-intensive GDA
tasks:

Discrepancy detection: GDA detects unexpected events by comparing the observation
obsc∈O (received after action ac is executed) with expectation xc∈X. If one or more
discrepancies d∈D (i.e., the set of possible discrepancies) are found, then explanation generation
is performed.

Explanation generation: Given the history of past actions [a1,…,an] and observations
[obs0,…,obsc] and a discrepancy d∈D, this task hypothesizes one or more explanations of d’s
cause 𝜒 ∈ 𝕏, the set of possible explanations.

Goal formulation: Resolving a discrepancy may warrant a change in the current goal(s). If so,
this task formulates a goal g∈G in response to d, given also 𝜒 and obsc.

Goal management: The formulation of a new goal may warrant its immediate focus and/or
edits to the set of Pending Goals GP ⊆ G. Given GP and new goal g∈G, this task may update GP
and then select the next goal g′∈GP to be given to the Planner. (It is possible that g=g′.)

GDA makes no commitments to specific types of algorithms for the highlighted tasks (e.g.,
goal management may involve comprehensive goal transformations (Cox & Veloso, 1998)), and
treats the Planner as a black box.

Figure 1: Conceptual Model for Goal-Driven Autonomy (GDA)

LEARNING MODELS FOR PREDICTING SURPRISING EVENTS

3.2 Modeling Explanations

In this subsection, we present a detailed model of explanations useful for describing the
explanation generation task. While this is not the only model of explanation compatible with
explanation generation in GDA, it facilitates understanding of the DISCOVERHISTORY algorithm
(Molineaux et al., 2012), which we use here, and, possibly, future algorithms as well. Under this
model, explanations express statements about the occurrence and temporal ordering of a past
sequence of observations, actions, and exogenous events.

This model represents exogenous environmental effects as deterministic exogenous events
that must occur whenever their preconditions are met. In contrast to other representations for
exogenous effects, such as contingent action effects (Peot & Smith, 1992; Pryor & Collins, 1996)
or external actions (Sohrabi et al., 2010), this has three advantages. First, prediction or diagnosis
of the exact time of an event’s occurrence is possible, which reduces the set of potential
explanations for a given sequence of observations. Second, exogenous events are a factored
representation that allows effects to combine without an explosion in representation size. Finally,
the multiplication of possible states is caused only by hidden information and never by a
nondeterministic choice, which simplifies diagnosis.

3.2.1 Events

We assume several standard definitions from classical planning (Ghallab, Nau, & Traverso, 2004)
for our model. Let P be the finite set of all propositions describing a planning environment,
where a state assigns a value to each 𝑝 ∈ P. A planning environment is partially observable if an
agent 𝛼 has access to the environment only through observations that do not cover the complete
state. Let P𝑜𝑏𝑠 ⊂ P be the set of all propositions that 𝛼 will observe, where an observation
associates a truth value with each 𝑝 ∈ P𝑜𝑏𝑠. Let Pℎ𝑖𝑑𝑑𝑒𝑛⊆P be a set of hidden propositions that
𝛼 cannot observe (e.g., the exact location of a robot that does not have a GPS contact).

An event model is syntactically identical to a classical planning operator, comprising a tuple
(name; preconds; effects), where name, the name of the event, preconds and
effects, the preconditions and effects of the event, are sets of literals. We use effects– and
effects+ to denote the negative and positive literals in effects, respectively. An event is a
ground instance of an event model. We assume that an event always occurs immediately when all
of its preconditions are met in the state. After each action, any events it triggers occur, followed
by events they trigger, etc. When no more events occur, the agent receives a new observation.

3.2.2 Explanations

We formalize the agent’s knowledge about the changes in its environment as an explanation of
the environment's history. We define a finite set of occurrence points T={𝑡0, 𝑡1, 𝑡2,⋯ , 𝑡𝑛} and an
ordering relation between two such points, denoted as 𝑡1 ≺ 𝑡2 , where 𝑡1, 𝑡2 ∈ T .

Three types of occurrences exist. An observation occurrence is a pair (obs, 𝑡), where obs
is an observation and t is an occurrence point. An action occurrence is a pair (𝑎, 𝑡), where a is
an action. Finally, an event occurrence is a pair (𝑒, 𝑡), where e is an event. Given an occurrence
o, we define occ as a function such that occ(𝑜) ↦ 𝑡; that is, occ refers to the occurrence point t
of any observation, action, or event.

An execution history is a finite sequence of observations and actions
obs0;𝑎1;obs1;𝑎2;⋯ ;𝑎𝑘;obs𝑘+1. An agent’s explanation of a state given an execution history

M. MOLINEAUX AND D. AHA

is a tuple 𝜒 = (𝐶,𝑅) such that C is a finite set of occurrences that includes each obsi for 𝑖 =
0,⋯ ,𝑘 − 1 and each action 𝑎𝑗 for 𝑗 = 1,⋯ ,𝑘 for some number 𝑘. 𝐶 also includes zero or more
event occurrences that happened according to that explanation. 𝑅 is a partial ordering over a
subset of 𝐶, described by ordering relations occ(𝑜𝑖) ≺ occ(𝑜𝑗) such that 𝑜𝑖, 𝑜𝑗 ∈ 𝐶. As a
shorthand, we will sometimes write 𝑜𝑖 ≺ 𝑜𝑗 if and only if occ(𝑜𝑖) ≺ occ(𝑜𝑗).

We use the relations knownbefore(𝑝, 𝑜) and knownafter(𝑝, 𝑜) to refer to the value of a
proposition 𝑝 before or after an occurrence 𝑜 ∈ 𝐶 occurs. Let 𝑜 be an action or event occurrence.
Then, knownbefore(𝑝, 𝑜) is true iff 𝑝 ∈ preconds(𝑜). Similarly, knownafter(𝑝, 𝑜) is
true iff 𝑝 ∈ effects(𝑜). If 𝑜 is an observation occurrence and 𝑝 ∈ obs, then both
knownbefore(𝑝, 𝑜) and knownafter(𝑝, 𝑜) are true, and otherwise are false.

An occurrence 𝑜 is relevant to a proposition 𝑝 if the following holds:

relevant(𝑝, 𝑜) ≡ knownafter(𝑝, 𝑜) ∨ knownafter(¬𝑝, 𝑜) ∨
knownbefore(𝑝, 𝑜) ∨ knownbefore(¬𝑝, 𝑜).

We also use the predicates prior(𝑜,𝑝) and next(𝑜,𝑝) to refer to the prior and next occurrence
relevant to a proposition 𝑝, where:

prior(𝑜,𝑝) = {𝑜′│relevant(𝑝, 𝑜′) ∧ ∄𝑜′′ 𝑠. 𝑡. relevant(𝑝, 𝑜′′) ∧ 𝑜′ ≺ 𝑜′′ ≺ 𝑜}.
next(𝑜,𝑝) = {𝑜′│relevant(𝑝, 𝑜′) ∧ ∄𝑜′′ 𝑠. 𝑡. relevant(𝑝, 𝑜′′) ∧ 𝑜 ≺ 𝑜′′ ≺ 𝑜′}.

3.2.3 Plausible Explanations

The proximate cause of an event occurrence (𝑒, 𝑡) is an occurrence 𝑜 that satisfies the following
three conditions with respect to some proposition 𝑝:

1. 𝑝 ∈ preconds(𝑒)
2. knownafter(𝑝, 𝑜)
3. There is no other occurrence 𝑜′such that 𝑜 ≺ 𝑜′ ≺ (𝑒, 𝑡).

Every event occurrence (𝑒, 𝑡), must have at least one proximate cause, so by condition 3, every
event occurrence must occur immediately after its preconditions are satisfied. An inconsistency is
a tuple (𝑝, 𝑜, 𝑜′) where 𝑜 and 𝑜′ are two occurrences in 𝜒 such that knownafter(¬𝑝, 𝑜),
knownbefore(𝑝, 𝑜′), and there is no other occurrence 𝑜′′ such that 𝑜 ≺ 𝑜′′ ≺ 𝑜′ ∈ 𝑅 and 𝑝 is
relevant to 𝑜′′.

An explanation 𝜒 = (𝐶,𝑅) is plausible if and only if the following holds:

1. There are no inconsistencies in 𝜒.
2. Every event occurrence (𝑒, 𝑡) ∈ 𝜒 has a proximate cause in 𝜒.
3. For every pair of simultaneous occurrences such that 𝒐,𝒐′ ∈ 𝑪 and occ(𝒐) = occ(𝒐′),

there may be no conflicts before or after. That is, for all 𝒑, knownafter(𝒑,𝒐) ⟹
¬knownafter(¬𝒑,𝒐′), and knownbefore(𝒑,𝒐) ⟹ ¬knownbefore(¬𝒑,𝒐′).

4. If preconds(𝑒) of an event 𝑒 are all satisfied at an occurrence point 𝑡, 𝑒 is in 𝜒 at 𝑡.

3.3 Modeling Surprise
We now give a precise definition of surprise as it affects various agents, in order to conscribe our
task. Informally, we will say that surprise occurs when an observation contradicts an agent's
expectations. In some cases, the observations also contradict an agent's model of the environment.

LEARNING MODELS FOR PREDICTING SURPRISING EVENTS

It follows from this that an agent which neither generates expectations nor models the
environment, such as a random or a greedy agent, cannot be surprised. However, disparate agents
such as those that instantiate a cognitive architecture or a reinforcement learning agent, can be
surprised. Recognizing when a surprise is caused by an environment model contradiction is
necessary to correctly detect and model unknown events.

3.3.1 Surprise as Contradiction of Expectations

Formally, we denote the a priori expectations of a logical agent 𝛼 about the state of its
environment at time 𝑡, before making an observation, as expectations(𝛼, 𝑡), and its
observations at time 𝑡 as observations(𝛼, 𝑡). Furthermore, if it has a model (or background
theory) of its environment that relates expectations to observations, then we shall denote that
theory as 𝛽. In simple cases, expectations and observations may be contradictory assertions about
the state, and 𝛽 may be empty. Given this, we define the condition of an agent being surprised by
a contradiction to its expectations as follows:

 surprisex(𝛼, 𝑡) ≡ expectations(𝛼, 𝑡) ∪ observations(𝛼, 𝑡) ∪ 𝛽 ⊨ ⊥. (1)

In terms of a GDA agent, we can describe expectations(𝛼, 𝑡) as 𝑋𝑡 and
observations(𝛼, 𝑡) as obst. While the GDA framework describes no semantics of logical
entailment, the comparison process that takes place in discrepancy detection is sometimes
equivalent to an entailment test. In particular, ARTUE’s discrepancy detection process
(Molineaux et al., 2010) detects discrepancies precisely when it is surprised under this definition;
every time ARTUE detects a discrepancy, it is surprised by a contradiction to its expectations.

3.3.2 Surprise as Contradiction of an Environment Model

In many agents, all surprises result from a contradiction of the environment model. This is
because the agent’s expectations are a function of only prior observations and the environment
model itself; since prior observations (by definition) cannot change, only the model can be wrong.
This holds in particular for many agents that reason with uncertainty, such as those based on
Partially Observable Markov Decision Processes. Because these agents’ beliefs are so all-
encompassing, they are rarely contradicted and cannot be surprised unless the model itself is
wrong. On the opposite extreme, many agents assume that uncertainty is entirely absent. Their
environment models do not accommodate external change, and therefore every (frequent) surprise
contradicts their environment models.

However, in some cases expectations are a function of assumptions about the state. We define
assumptions as properties of the environment that the agent reasons about despite not being able
to observe them. For example, after inferring a model of fire spouts, Westley might assume, in the
absence of information, that there is no fire spout behind a tree in front of him, even though he
cannot yet observe the location. In algorithms that infer expectations based on assumptions,
surprises often result from faulty assumptions rather than a faulty model, and contradiction of the
model therefore has a special status. We define a set of possible assumptions 𝛩, and a function
derivedexpectations(𝛼,𝜃, 𝑡) that yields the expectations derived from the set of
assumptions 𝜃⊂𝛩 taken by the agent as true. We define the condition of an agent being surprised
by a contradiction to its model as follows:

surprisem(𝛼, 𝑡) ≡ ∀𝜃⊂𝛩: [derivedexpectations(𝛼,𝜃, 𝑡) ∪ observations(𝛼, 𝑡) ∪ 𝛽 ⊨⊥] (2)

M. MOLINEAUX AND D. AHA

From this, we can derive the fact that

 [∃𝜃⊂ 𝛩: expectations(𝛼, 𝑡) = derivedexpectations(𝛼,𝜃, 𝑡)] (3)
⊨ �surprisem(𝛼, 𝑡) ⊨ surprisex(𝛼, 𝑡)�.

This second type of surprise (Equation 2) requires that the expectations derived from all possible
sets of assumptions be inconsistent with the observations. In this case, we say that 𝛽, the model
itself, contradicts the observations. As derived in Equation 3, a model contradiction surprise will
always result in an expectations surprise, if the agent's expectations at time 𝑡 are derived from a
set of possible assumptions.

In our model of explanations, the definition of a consistent explanation is based on logical
entailment of observations from some set of assumptions and the model. Therefore, if a plausible
explanation exists, an agent’s surprise is not due to a contradiction with its environment model.
Therefore, the occasions when a GDA agent using this explanation formalism is surprised due to
a model contradiction (i.e., the set of all 𝑡 such that surprisem(𝛼, 𝑡)) must be a subset of those
occasions when a discrepancy is detected and no consistent explanation is found. Below, we
describe an agent that uses this method as a means of identifying when model contradictions
occur. By using this procedure to identify model contradictions, we avoid the computational
complexity of testing every possible set of assumptions, instead incurring only the complexity of
the search for consistent explanations.

3.3.3 Surprise example

If Westley has a model of a fire spout, he may still be surprised by one; if a fire spout exists at a
location X, and Westley has not observed it, and assumes there is no fire spout at location X, then
his expectations do not predict that a flame will spurt at location X. Once this spurt occurs, he is
surprised; this surprise contradicts his expectations, but not his model. If Westley then adopts the
assumption that a fire spout exists at location X, his expectations change and the contradiction
disappears.

In contrast, without a model of fire spouts, Westley will be surprised by the flame spurt even
with the assumption that a flame spout exists at location X, because his model fails to predict that
the flame spurt occurs. In this case, Westley's expectations are contradicted as well as his model.

4. Learning Event Models

We perform our investigation of learning from surprise by creating FOOLMETWICE, an agent that
extends ARTUE (Section 4.1) (Molineaux et al., 2010a) with the ability to learn models of
unknown events whose observations caused model contradictions. Our process for learning these
models has three steps: (1) recognizing unknown events (Section 4.2), (2) generalizing event
preconditions (Section 4.3), and (3) hypothesizing an event model (Section 4.4).

4.1 ARTUE
ARTUE performs the four GDA tasks as follows: (1) discrepancy detection is performed by
checking for element-wise contradictions between its observations and expectations, (2)

LEARNING MODELS FOR PREDICTING SURPRISING EVENTS

explanation generation is performed by searching for consistent explanations using
DISCOVERHISTORY (Molineaux et al., 2012), (3) goal formulation uses a rule-based system to
generate new goals with associated priorities, and (4) goal management enacts the goal with the
highest current priority. ARTUE uses a version of the hierarchical network (HTN) planner
SHOP2 (Nau et al., 2003) to generate plans. To predict future events, Molineaux, Klenk, and Aha
(2010b) extended SHOP2 to reason about planning models that include events in the PDDL+
representation. To work with an HTN planner, ARTUE uses a pre-defined mapping from each
possible goal to an HTN task that accomplishes it.

4.2 Recognizing Unknown Events

As described in Section 3.3.2, in FOOLMETWICE a surprise due to model contradiction can occur
only when a discrepancy is detected and no consistent explanation can be found. In our current
work, we assume that (1) a model contradiction has occurred each time no consistent explanation
can be found and (2) the surprise that triggered discrepancy detection was caused by some
unknown event 𝑒. An explanation that contains all correct events other than unknown events must
be inconsistent with regard to the effects of each unknown event e. However, this event need not
be the proximate cause; 𝑒 may have instead triggered another event or event sequence that was
directly responsible for the contradictory observation. For this reason, the unknown event may
have occurred in advance of the surprise. To find an explanation that is correct with respect to all
known events, FOOLMETWICE searches for a minimally inconsistent explanation that is more
plausible than any other inconsistent explanation that can be described based on the current model
and observations. This inconsistent explanation does not fix the model contradiction, but does
help to pinpoint the unknown events that caused it.

DISCOVERHISTORY searches through the space of possible explanations by iteratively
refining an existing inconsistent explanation (Molineaux et al., 2012). These refinements can
include event removal, event addition, and hypothesis of different initial conditions. At each
successive iteration, a refinement can cause additional inconsistencies. Search ends when the
entire explanation is consistent or a search depth bound is reached.

To search for minimally inconsistent explanations, we extend DISCOVERHISTORY with an
additional refinement that ignores a single inconsistency by creating an inconsistency patch.
Given an inconsistency (𝑝, 𝑜, 𝑜′), it refines the explanation by adding a patch occurrence 𝑜ℎ =
(𝑒ℎ , 𝑡′). Here, eh is a patch event that satisfies effects+(𝑒𝑢) = {𝑝} and precond(𝑒𝑢) =
{¬𝑝}, and 𝑡′ is an occurrence point such that occ(𝑜) ≺ 𝑡′ ≺ occ(𝑜′). This operation will not
change any other literal, and thus will never cause an inconsistency. An explanation containing a
patch event is not consistent and all patched inconsistencies are considered for purposes of
determining whether the explanation is minimally inconsistent.

The extended DISCOVERHISTORY used by FOOLMETWICE conducts a breadth-first search,
stopping only when all inconsistencies are resolved or patched. We define the minimally
inconsistent explanation as the inconsistent explanation with the lowest cost, where cost is a
measure of the explanation’s plausibility. In particular, we define the cost for patching an
inconsistency to be much greater (10) than other refinements (1). Since we define lower cost
explanations as more plausible than higher cost explanations, this cost differential reflects that a
known and modeled event is a much more likely cause than an unknown event. As a result, the
search process heavily favors explanations with fewer patches. If all correct events are described

M. MOLINEAUX AND D. AHA

by the explanation, unknown events correspond directly to the inconsistency patches; the
unknown effects are the same as those of the patch events.

The predominant computational cost of DISCOVERHISTORY and the extended version
presented here is the breadth-first search for explanations. We bound this depth to a constant
factor to ensure manageable execution times; a depth bound of 20 was used in this paper,
resulting in a worst-case complexity of 𝑂(𝑛20), where n is the branching factor (i.e., the number
of possible refinements available at each node). Typical values range between 2 and 10. Each
explanation search conducted in these experiments took less than 60 seconds to perform.

4.3 Generalizing Event Preconditions

Once we have determined when unknown events occur using a minimally inconsistent
explanation, we must generalize over the states that trigger that events to create a model of its
preconditions. We chose FOIL (Quinlan, 1990) for our preliminary investigation on learning
event models because it is well-known, operates on relational data, and generates logical
hypotheses (called concept definitions). FOIL takes as input a set of positive and negative
examples of a target relation (i.e., ground literals that are true and false in the domain), as well as
an extensional definition of other relations (i.e., a set of all true ground literals for each relation).
To find a target definition, FOIL recursively adds non-ground literals to a Horn clause until some
positive examples but no negative examples are covered. FOIL greedily chooses a literal that
produces the most information gain to add to the Horn clause at each step of this search. When a
rule is discovered, the positive examples covered by that rule are removed and the process repeats
until all positive examples are covered. The resulting clauses form a set of rules from which the
concept can be inferred. To prefer shorter concept definitions, we employ an iterative deepening
search through the FOIL target definition space.
 For the purpose of event learning, the target concept we wish to learn is the state that triggers
an unknown event. We create a relation event-occurs to represent this concept; the
arguments of this literal include the name and arguments of the inconsistent literal p we believe to
be caused by the event, as well as the occurrence point at which a patch was created, and a unique
symbol referring to the scenario during which it occurred. For example, a minimally inconsistent
explanation for the Princess Bride Fire Swamp environment might include a patch occurrence
(𝑒𝑢, 𝑡′) where effects(𝑒𝑢) = {(sinking−rapidly Buttercup)}. Here, the target
concept is the event that causes the effect literal. The positive example literal here would be
(event−occurs sinking−rapidly Buttercup 𝑡′ PrincessBride).

Along with these examples, we must provide an extensional definition of the environment
that includes all ground literals explained by the current minimally inconsistent explanation 𝜒.
Like the event-occurs predicate, we extend each predicate in the domain to include an
occurrence point at which it is known to be true and a unique id for the scenario in which it
occurred, so that literals describing the same state can be grouped. For example, the extensional
definition for the Fire Swamp could include the following literals:

[(friend-of Westley Buttercup 𝑡0 PrincessBride)
(friend-of Buttercup Westley 𝑡0 PrincessBride)
(location Buttercup house 𝑡0 PrincessBride)
(location Westley stable 𝑡0 PrincessBride)
(friend-of Westley Buttercup 𝑡′ PrincessBride)
(friend-of Buttercup Westley 𝑡′ PrincessBride)

LEARNING MODELS FOR PREDICTING SURPRISING EVENTS

(location Buttercup under-a-tree 𝑡′ PrincessBride)
(location Westley on-the-path 𝑡′ PrincessBride)
(sandy-location under-a-tree 𝑡′ PrincessBride)].

4.4 Hypothesizing an Event Model
After FOOLMETWICE completes a scenario, it searches for a minimally inconsistent explanation
that uses none of the previously learned event models. These models are kept out of this
explanation, which is input to the learning process, to avoid compounding errors between
multiple learning iterations. All literals consistent with this explanation are added to a persistent
extensional definition for their respective relations, as well as event-occurs literals
corresponding to all inconsistency patches. Then, FOIL is called once for each ground literal
covered by an inconsistency patch during the most recent scenario.

Each Horn clause output by FOIL is used to construct a new learned event model that has as
its condition the Horn clause output, and as its effects, the single ground literal believed to be
found to be inconsistent. While all original relation terms are ground in the target concept to
learn, the occurrence point and scenario id are free variables. For example, the target concept for
the Princess Bride Fire Swamp example would be (event-occurs sinking-rapidly
Buttercup ?t ?scn). If FOIL then output as its result the Horn clause (event-occurs
sinking-rapidly Buttercup ?t ?scn) ← (location Buttercup ?x ?t
?scn) (sandy-location ?x ?t ?scn), FOOLMETWICE would construct the event:

(:event new-event51
 :conditions ((location Buttercup ?x) (sandy-location ?x))
 :effect (sinking-rapidly Buttercup)
)

FOOLMETWICE adds formulated events to its environment model, which can be used for planning
and explanation during future scenarios. With each scenario, the extensional definition
knowledge is increased, which allows FOOLMETWICE to induce more accurate models, if
necessary, after experiencing additional scenarios. Thus, models improve over time.

5. Experiment

While the learning task is to construct accurate event models, multiple models may accurately
predict the same phenomena. Therefore, we evaluate FOOLMETWICE based on its capability to
construct better plans with the learned models than without.

5.1 Environment and Hypothesis

For this study, we use a simple deterministic environment called MudWorld, which consists of a
discrete navigational grid on which a simulated robot can move in the four cardinal directions.
The robot is aware of its location and destination, and its only obstacle is mud. Each location can
be muddy or not muddy, and the robot can see the mud when it enters an adjacent grid location. If
the robot enters the mud, its movement speed is halved until it leaves. The robot’s plan cost
function attempts to minimize traversal execution time, so spending time in mud will decrease its
performance. However, the initial model given to our robot does not describe this decrease in

M. MOLINEAUX AND D. AHA

speed. It can observe its current speed, and it will therefore be surprised when it changes due to
the mud. We hypothesize that, by learning, the robot can improve its performance, spending less
time achieving its navigation goals than it would otherwise.

5.2 Experiment Description
We randomly generated 50 training and 25 test scenarios in MudWorld, where each scenario
consists of a 6x6 grid with random start and destination locations, and a 40% chance of each grid
location being muddy. Start and destination locations were constrained so that all routes between
start and destination locations contain at least 4 steps, irrespective of mud. We conducted 10
replications. In each replication, we measured its performance on each of the 25 test scenarios
before and after learning on each of 5 successive training scenarios (i.e., each of the 50 training
scenarios was used once in our experiment).

5.3 Results

Figure 2 shows the results of our experimental evaluation. We depict the results of testing
FOOLMETWICE in blue, and for comparison show results achieved on the same test scenarios for
a non-learning version with a complete hand-engineered model (in green) and without (in red).
The vertical axis depicts the simulated time required to complete the test scenarios, where lower
numbers are better (faster completion times). The horizontal axis depicts the number of training
scenarios provided. Each point on the red (square markers) and green (circle markers) curves is
an average of performance on the 25 testing scenarios. Each point on the blue (triangle markers)
curve is an average of performance on the 25 testing scenarios across all 10 replications of the
experiment.

In our tests, FOOLMETWICE was always able to achieve the same maximal performance as an
agent with a complete model after only two training scenarios. After even one scenario, we can

Figure 2: Time required by FOOLMETWICE to complete a scenario.

LEARNING MODELS FOR PREDICTING SURPRISING EVENTS

state with high statistical confidence (p < .001) that average performance is improved over the
prior model.

We expect that similar results could be obtained for similar domains in which unknown
events are deterministic and based only on predicate literals. Our results do not currently
generalize to nondeterministic events, willed actions, or events dependent on values of function
literals. We discuss some future research topics in Section 6.

6. Conclusions

We described an initial investigation into the problem of learning from surprises in the context of
Goal-Driven Autonomy. We provided a novel definition of surprise that distinguishes types of
surprise (i.e., contradiction of expectations versus contradiction of the environment model) that
has not been previously recognized. We described a novel agent, FOOLMETWICE, which uses a
new technique for identifying contradictions present in a model based on surprise and explanation
generation, and a method for using relational learning to update an environment model in such a
context. Finally, we conducted an initial evaluation of FOOLMETWICE in an execution context.
This evaluation showed that it is possible to learn a better environment model rapidly under some
conditions.

FOOLMETWICE's mechanism for detecting unknown events is not infallible; while we have so
far assumed that an expectation’s surprise which cannot be explained is the result of a model
contradiction, it is possible that an existing explanation simply was not found, perhaps due to
computational constraints. In such cases, FOOLMETWICE will incorrectly attempt to learn a new
model to explain the contradiction. In other cases, unknown events do not cause a model
contradiction, because an incorrect explanation can be found for a surprise. These false positives
and false negatives are an important area for future investigation.

In addition to improving detection of unknown events, future work will focus on
demonstrating the performance of FOOLMETWICE in domains with greater complexity. In
particular, research into opportunistic domains, where surprises provide affordances rather than
represent obstacles, is an important next step. In addition, after our agent reaches an acceptable
level of performance at learning unknown event models for these more complex domains, we will
investigate the problem of learning process models that represent continuous change, as well as
models of the actions of other agents and their motivations.

We also intend to apply the algorithms described here to the problem of active transfer
learning, in which an agent acting in a similar domain to one it understands quickly acquires
environment models in that domain with minimal expert intervention. FoolMeTwice can
theoretically perform transfers between similar domains by treating the environment model of a
source domain as an incomplete model of its new domain. However, additional research into
integrating expert feedback and removing prior incorrect models are necessary to fulfill this
promise.

Acknowledgements
Thanks to OSD ASD (R&E) for sponsoring this research, and to the anonymous reviewers for
their recommendations. The views and opinions contained in this paper are those of the authors
and should not be interpreted as representing the official views or policies, either expressed or
implied, of NRL or OSD.

M. MOLINEAUX AND D. AHA

References
Bridewell, W., Langley, P., Todorovski, L., & Džeroski, S. (2008). Inductive process modeling.

Machine learning, 71(1), 1-32.
Chernova, S., Crawford, E., & Veloso, M. (2005). Acquiring observation models through reverse

plan monitoring. Proceedings of the Twelfth Portuguese Conference on Artificial Intelligence
(pp. 410-421). Covilhã, Portugal: Springer.

Cox, M.T., & Veloso, M.M. (1998). Goal transformations in continuous planning. In M.
desJardins (Ed.), Proceedings of the AAAI Fall Symposium on Distributed Continual Planning
(pp. 23-30). Menlo Park, CA: AAAI/MIT Press.

Ghallab, M., Nau, D., & Traverso, P. (2004). Automated planning: Theory & practice. San
Mateo, CA: Morgan Kaufmann.

Goldman, W. (1973). The princess bride. San Diego, CA: Harcourt Brace.
Gspandl, S., Pill, I., Reip, M., Steinbauer, G., & Ferrein, A. (2011). Belief management for high-

level robot programs. In Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence. Barcelona, Spain: AAAI Press.

Hiatt, L.M., Khemlani, S.S., & Trafton, J.G. (2012). An explanatory reasoning framework for
embodied agents. Biologically Inspired Cognitive Architectures, 1, 23-31.

Klenk, M., Molineaux, M., & Aha, D.W. (2013). Goal-driven autonomy for responding to
unexpected events in strategy simulations. Computational Intelligence, 29(2), 187-206.

Leake, D. B. (1991). Goal-based explanation evaluation. Cognitive Science, 15, 509–545.
Molineaux, M., Aha, D.W., & Kuter, U. (2011). Learning event models that explain anomalies. In

T. Roth-Berghofer, N. Tintarev, & D.B. Leake (Eds.) Explanation-Aware Computing: Papers
from the IJCAI Workshop. Barcelona, Spain.

Molineaux, M., Klenk, M., & Aha, D.W. (2010a). Goal-driven autonomy in a Navy strategy
simulation. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence.
Atlanta, GA: AAAI Press.

Molineaux, M., Klenk, M., & Aha, D.W. (2010b). Planning in dynamic environments: Extending
HTNs with nonlinear continuous effects. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence. Atlanta, GA: AAAI Press.

Molineaux, M., Kuter, U., & Klenk, M. (2012). DiscoverHistory: Understanding the past in
planning and execution. Proceedings of the Eleventh International Conference on Autonomous
Agents and Multiagent Systems (Volume 2) (pp. 989-996). Valencia, Spain: International
Foundation for Autonomous Agents and Multiagent Systems.

Nau, D.S. (2007). Current trends in automated planning. AI Magazine, 28(4), 43–58.
Nau, D., Au, T.-C., Ilghami, O, Kuter, U, Murdock, J.W., Wu, D., & Yaman, F. (2003). SHOP2:

An HTN planning system. Journal of Artificial Intelligence Research, 20, 379-404.
Nguyen, T.H.D., & Leong, T.Y. (2009). A surprise triggered adaptive and reactive (STAR)

framework for online adaptation in non-stationary environments. In Proceedings of the Fifth
Artificial Intelligence and Interactive Digital Entertainment Conference. Stanford, CA: AAAI
Press.

LEARNING MODELS FOR PREDICTING SURPRISING EVENTS

Pang, W., & Coghill, G.M. (2010). Learning qualitative differential equation models: A survey of
algorithms and applications. Knowledge Engineering Review, 25(1),: 69-107.

Peot, M., & Smith, D.E. (1992). Conditional nonlinear planning. Proceedings of the First
International Conference on Artificial Intelligence Planning Systems (pp. 189-197). College
Park, MD.

Pryor, L., & Collins, G. (1996). Planning for contingencies: A decision-based approach. Journal
of Artificial Intelligence Research, 4, 287-339.

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine learning, 5(3), 239-
266.

Ramisinghe, N., & Shen, W.-M. (2008). Surprised-based learning for developmental robotics.
Proceedings of the ECSIS Symposium on Learning and Adaptive Behaviors for Robotic
Systems (pp. 65-70). Edinburgh, Scotland: IEEE Press.

Sohrabi, S., Baier, J. A., & McIlraith, S. A. (2010). Diagnosis as planning revisited. In
Proceedings of the Twelfth International Conference on Principles of Knowledge
Representation and Reasoning. Toronto, Ontario, CA: AAAI Press.

Sutton, R.S., & Barto, A.G. (1998). Reinforcement learning: An introduction. Cambridge, MA:
MIT Press.

Weber, B., Mateas, M., & Jhala, A. (2012). Learning from demonstration for goal-driven
autonomy. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence.
Toronto, Canada: AAAI Press.

Zhuo, H.H., Hu, D.H., Hogg, C., Yang, Q., & Muñoz-Avila, H. (2009). Learning HTN method
preconditions and action models from partial observations. Proceedings of the Twenty-First
International Joint Conference on Artificial Intelligence (pp. 1804-1810). Pasadena, CA: AAAI
Press.

