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Abstract— This  paper  proposes  a  path-planning  approach 
to enable a team of unmanned aerial vehicles (UAVs) to 
efficiently conduct surveillance of sensitive areas. The proposed 
approach, termed PARCOV (Planner for Autonomous Risk- 
sensitive Coverage), seeks to maximize the area covered by the 
sensors mounted on each UAV while maintaining high sensor 
data quality and minimizing detection risk. PARCOV uses a 
dynamic grid to keep track of the parts of the space that have 
been surveyed and the times that they were last surveyed. This 
information is then used to move the UAVs toward areas that 
have not been covered in a long time. Moreover, a nonlinear 
optimization formulation is used to determine the altitude at 
which each UAV flies. The efficiency and scalability of PARCOV 
is  demonstrated  in  simulation  using  complex  environments 
and an increasing number of UAVs to conduct risk-sensitive 
surveillance. 

Fig. 1.    Snapshots of PARCOV at different iterations showing how the 
quadcopters cover the designated area. The risk model is shown as a heatmap 
with red indicating high risk and blue indicating low risk. Figures better 
viewed in color and on screen. 

I.  INTRODUCTION 

UAVs are seen as providing a viable way to enhance 
automation in environmental monitoring, search-and-rescue 
missions, package delivery, target tracking, and many other 
applications. UAVs, such as ARDrone and AscTec Pelican 
quadcopters, are becoming more commercially available, 
making them also an economically-feasible option for de- 
ployment in autonomous aerial missions. 

Towards increasing the autonomy of UAVs, this paper 
describes an algorithm for persistent area coverage using 
multiple cooperative quadcopters while accounting for the 
risk and sensor data quality involved in the coverage. The 
proposed approach, PARCOV, seeks to move the quadcopters 
to promote informed coverage and adjusts the altitude to 
maximize sensor data quality while minimizing the associ- 
ated risk. Risk plays an important role in many autonomous 
aerial missions, especially when seeking to reduce the likeli- 
hood of being detected by a possibly hostile agent. Although 
this paper focuses on detection risk, PARCOV is general and 
can minimize other risk metrics that decrease in value as 
the altitude increases. For instance, risk can also be used to 
model a brushfire. In such scenario, PARCOV  can provide 
risk-sensitive aerial coverage of a wildfire while maximizing 
the sensor data quality. 

There is a burgeoning body of work focusing on aerial 
missions using one or several UAVs [1], [2]. Ergezer and 
Leblebicioğ lu [3] describe an algorithm for 3D path planning 
using UAVs that seeks to avoid forbidden regions and max- 
imize information collection from desired regions. Nikolos 
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et al. [4] develop evolutionary algorithms for offline/online 
path planning for UAVs. Kuhlman et al. [5] provide an 
algorithm that optimizes a closed-loop trajectory path for 
persistent area coverage by a single UAV that maximizes 
the information gained from information-rich areas. Beard 
and McLain [6] take into account communication-range 
constraints in order to ensure that UAVs always remain in 
communication range as they visit desired regions and avoid 
forbidden regions. Cheng, Keller, and Kumar [7] derive a 
control policy that generates time-optimal UAV trajectories 
for urban structure coverage. Chandler, Pachter, and Ras- 
mussen [8] propose cooperative control techniques in order 
to minimize team exposure to radar detection. Distributed- 
task allocation procedures are developed in [9]–[11] in order 
to enhance cooperative searching. Sydney, Paley, and Sofge 
[12] provide a physicomimetic method for target detection 
using a group of UAVs. This approach continuously searches 
the area by following the gradient of an information surface 
to track targets using mutual information between the UAVs. 
A bio-inspired approach is proposed in [13] which seeks 
to model the information of a search space as a field for 
grazing and the UAVs as grazing animals that seek to eat the 
available information. This approach has shown to converge 
more quickly to total information collection than traditional 
lawnmower methods. Genetic algorithms are used in [14] to 
design evolving behaviors that could increase the autonomy 
of a swarm of UAVs in carrying out search-and-destroy 
missions. Huynh, Enright, and Frazzoli [15] analyze the 
persistent-patrol problem for a team of UAVs and propose 
several policies to minimize the expected waiting time be- 
tween the occurrence and detection time of an incident. 

The proposed approach, PARCOV, offers several contribu- 
tions. In particular, it utilizes simple interactions between 
UAVs  to  promote  an  emergent  behavior  that  maximizes 



coverage and sensor data quality while minimizing the

risk. PARCOV achieves scalability by separating planning of

motions to maximize coverage with adjustments in altitude

to account for sensor data quality and risk. PARCOV does

not try to avoid forbidden regions, but seeks to mitigate the

potential risk. The efficiency and scalability of PARCOV is

demonstrated in 3D simulation using complex environments

and an increasing number of UAVs to conduct surveillance.

II. PROBLEM FORMULATION

In the problem setting considered in this paper, a number

of quadcopters are required to survey a given area. The

coverage criteria and the models for sensor data quality and

detection risk are described below.

a) Area coverage and persistency: Each quadcopter

is equipped with a sensor which is mounted at a fixed

angle φ. The team of quadcopters seeks to maximize the

area coverage on the xy-plane, where a point is considered

covered if it is sensed by at least one of the quadcopters.

More specifically, the area covered by the quadcopters at

time t is given by

SensedAreaq1(t) ∪ . . . ∪ SensedAreaqn(t),

where n denotes the number of quadcopters and

SensedAreaqi(t) denotes the area on the xy-plane sensed by

the i-th quadcopter at time t. The experiments in this paper

consider spotlight sensors, so the sensed area corresponds

to an ellipse, which is a function of the position and

orientation of the quadcopter, the angle φ at which the

sensor is mounted, and the conic aperture α. Fig. 1 provides

an illustration of the area covered by the quadcopters.

As the team of quadcopters may not be sufficiently large

to achieve complete area coverage, another objective of

PARCOV is to ensure that no part of the space goes too long

without being surveyed. In this way, the quadcopters will not

remain still but fly from one part to the next to ensure that

the entire area is persistently surveyed.

b) Quality of sensor data: A second objective is to

maintain high sensor data quality, which is needed in many

applications in order to detect objects of interest in the area

being surveyed. To model the quality of the sensor data, it

is assumed first that there is an optimal altitude, denoted by

μsq, to fly the quadcopter in order to achieve the highest

sensor data quality. This optimal altitude depends on the

object being tracked and varies from situation to situation.

For example, the optimal altitude to track a person is much

less than the optimal altitude to track a tank since the tank

is larger and moves faster. In this paper, the optimal altitude

μsq is passed to PARCOV as an argument by the user.

Furthermore, the sensor data quality is assumed to de-

crease exponentially as the deviation from the optimal al-

titude increases. More precisely, the sensor data quality

is modeled as a distribution with mean μsq and standard

deviation σsq, i.e.,

SQ(z) = exp (−( z

cosφ
− μsq)

2/(2σ2
sq)),

where z is the altitude at which the quadcopter is flying and

φ is the angle at which the sensor is mounted.
c) Detection risk: While surveying the area, the quad-

copters also seek to reduce the risk of being detected, where

a function R : R3 → (0, 1) determines the detection risk

R(x, y, z) at each location (x, y, z). In this paper, R(x, y, z)
is modeled based on a ground-level risk, R0 : R2 → (0, 1),
where R0(x, y) indicates the risk of the quadcopter being

detected at location (x, y) on the ground level. More specif-

ically, the ground-level risk is used to scale R as altitude

increases with an exponential decay, defined as follows:

R(x, y, z) = R0(x, y) · exp
(
− z2

K ·R0(x, y)2

)
,

where K is a scaling constant. In this way, when the

ground-level risk is high, which would indicate a hostile

environment, the quadcopters would need to fly at high

altitudes in order to reduce the detection risk. When the

ground-level risk is low, the quadcopters can fly at lower

altitudes without risking detection.
The ground-level risk R0(x, y) is modeled by centering

normal distributions around risk points that are given a

priori. More precisely, a set of risk points RiskPoints =
{p1, . . . , pm} is sampled uniformly at random inside the

boundaries of the area to be surveyed. Each risk point pi
defines a threat that decreases exponentially as the distance

from pi increases. Then, R0(x, y) is defined as

R0(x, y) = max
p∈RiskPoints

exp

(
−||p− (x, y)||2

L

)
,

where L is a scaling constant. An illustration of R0(x, y) is

provided in Fig. 2.

Fig. 2. Illustration of the ground-level risk R0(x, y) corresponding to
the case of 10 randomly-sampled risk points. Color intensity indicates risk
values.

d) Problem statement: Putting it all together, the prob-

lem considered in this paper can be stated as follows: Given

an area to be surveyed, models for sensor data quality and

detection risk, and an initial placement of the quadcopters,

move the quadcopters so that they maximize area coverage,

ensure that no part of the space goes too long without being

surveyed, maintain high sensor data quality, and reduce the

detection risk.



III. METHOD

To achieve the stated objectives, PARCOV splits planning

into two stages: (i) planning the quadcopters’ motions in xy
to promote area coverage and persistency and (ii) planning

for the altitude to minimize the detection risk and maximize

sensor data quality. Pseudocode is provided in Alg. 1.

Descriptions of the main steps of the algorithm follow.

Algorithm 1 Pseudocode for PARCOV

1: G ← INITGRID()

2: while FINISHED() = false do
3: for q ∈ Quadcopters do
4: (v′, β′)← GETDIRECTIONANDORIENTATION(q,G)
5:

[
x′

y′

]
←

[
q.x

q.y

]
+ step · v′

||v′||
6: z′ ← DETERMINEALTITUDE(x′, y′)
7: SETPOSITIONANDORIENTATION(q, x′, y′, z′, β′)
8: UPDATEGRID(G, q)

A. Planning to promote area coverage and persistency

First, PARCOV imposes a grid over the xy bounding box

of the area being surveyed. The grid, denoted by G, is used to

keep track of the parts of the space that have been surveyed

and the times that they were last surveyed (Alg. 1:1).

Whenever a grid cell c is sensed by some quadcopter, i.e.,

c ∈ SensedAreaqi(t), the current time t is stored in that grid

cell (Alg. 1:8). An illustration of the grid G at some time

instance is provided in Fig. 3.

Fig. 3. An instance of the grid G where the color in the spectrum denotes
the time (as iteration count) that the cell at x, y was visited, i.e., red denotes
recently-visited areas.

PARCOV uses the grid G to determine the new direction

and orientation of each quadcopter. Pseudocode is given in

Alg. 2. In particular, PARCOV seeks to move a quadcopter q
toward areas that have not been covered in a long time. In

order to take advantage of locality, PARCOV considers the

vicinity of the area sensed by q at the current time.

To determine the new direction and new orientation,

PARCOV first uses random sampling to generate a set of

candidate orientations (Alg. 2:2). Let SensedArea(β) denote

the area that would be sensed by q when setting its orienta-

tion to β (keeping the position fixed). As an example, for the

spotlight sensor model used in the experiments, the sensed

area would be an ellipse defined parameterically with respect

to ω ∈ [0, 2π] as follows:[
x
y

]
+ Rot(β) ·

[
z · tan(φ− α) +AM · (1 + cosω)

Am · sinω
]
,

where (x, y, z) is the position of the quadcopter, Rot(β) is

the 2D-rotation matrix, AM = z · tan (φ+ α)− z · tanφ is

the major axis, and Am = z·tanα
cosφ is the minor axis.

Next, PARCOV generates a number of segments along

ξ(β), where ξ(β) denotes SensedArea(β) enlarged by some

ε > 0 (Alg. 2:4–5). The i-th segment is generated by

connecting the points on the perimeter of ξ(β) corresponding

to the angles (i−1)ζ and (i+1)ζ, where ζ is a user-defined

parameter (set to 10◦). The average wait time for a segment s,
denoted by AvgWaitTime(G, s), is computed by considering

a number of equally-spaced points along the segment s,
where WaitTime(G, x, y) denotes the number of iterations

that have passed since the point (x, y) was last sensed by

some quadcopter. Note that this information is obtained from

the grid G by looking up the iteration number associated with

the grid cell that contains (x, y) and subtracting the value of

the grid cell from the current iteration number.

The quadcopter q will move toward the segment s with

the maximum average wait time, i.e.,

s = arg max
s′∈AllSegments

AvgWaitTime(G, s′)

where AllSegments =
⋃

β∈orientations segments(ξ(β)).
The new orientation of the quadcopter q is set to the

candidate orientation β from which the ξ(β) that contains

the segment s was derived (Alg. 2:11). The new direction

is set by taking a weighted average of the equally-spaced

points along the segment s (Alg. 2:12–13), i.e.,

−(q.x, q.y) +
∑

(x,y)∈points(s)

WaitTime(G, x, y)
t

(x, y),

where t =
∑

(x′,y′)∈points(s) WaitTime(G, x′, y′).
This rule has desirable emergent properties for the team

of quadcopters. Since the quadcopters share the same grid

G, they will act cooperatively to fill the unvisited space

without having to explicitly coordinate with one another.

In particular, each quadcopter will move towards an area

in its vicinity that has a large average wait time. This

makes it less likely for the quadcopters to clutter together.

Suppose two or more quadcopters are moving towards the

same segment. When a quadcopter senses the segment, its

wait time becomes zero, which causes the other quadcopters

to move towards other segments. Furthermore, since the

segment selected by each quadcopter q is in the vicinity of

the area sensed by q, then it is likely that q will reach it first,

hence further reducing the likelihood of clutter.

Moreover, this planning is not dependent on the number

of quadcopters. If a quadcopter leaves the area, it would

simply no longer update the grid G. The other quadcopters

would have no knowledge that it left and would still be

able to persistently cover the area being surveyed. This is



Algorithm 2 GETDIRECTIONANDORIENTATION(q,G)
1: waitTime ← −∞; v′ ← (0, 0);β′ ← 0
2: orientations ← GETRANDOMSAMPLES(0, 2π)
3: for β ∈ orientations do
4: ξ ← ENLARGEDELLIPSE(q.x, q.y, q.z, β, φ, α, ε)
5: segments ← GETSEGMENTS(ξ)
6: for s ∈ segments do
7: points ← GETPOINTS(s)
8: t←∑

(x,y)∈points WaitTime(G, x, y)
9: if waitTime < t/|points| then

10: waitTime ← t/|points|
11: β′ ← β
12: (x̄, ȳ)←∑

(x,y)∈points
WaitTime(G,x,y)

t · (x, y)
13: v′ ← (x̄− q.x, ȳ − q.y)
14: return (v′, β′)

particularly important for missions that combine persistent

coverage and target tracking. The persistent coverage can be

used to determine the positions of targets, and a sub-swarm

of quadcopters can be deployed from the group to track the

targets while the rest continues to provide coverage.

B. Determining the altitude

To determine the altitude, PARCOV optimizes an objective

function that maximizes the sensor data quality and mini-

mizes the detection risk, i.e.,

J(x, y, z) = SQ(z)−R(x, y, z).

Therefore, the optimal altitude can be determined by finding

the z value that maximizes J for a given x, y, i.e.,

DETERMINEALTITUDE(x, y) = arg max
z∈[zmin,zmax]

J(x, y, z).

Nonlinear optimization solvers can then be used to numer-

ically compute the optimal altitude (this paper uses SciPy,

which is open source).

After determining the altitude, the quadcopter is set at the

new position and orientation (Alg. 1:18). The grid is updated

accordingly to account for the new sensed area. Since the

grid is shared among the quadcopters, the change in altitude

of one quadcopter would cause a change in the sensed area,

which could potentially change which parts of the grid are

covered. As a result, the rest of the group will react to this

new information. In particular, if a quadcopter decreases its

altitude, then there will be more uncovered space around it

so the rest of the quadcopters will move to cover this space.

These dynamic adjustments, as shown by the experimental

results, make it possible to efficiently and persistently cover

the area being surveyed while maintaining high sensor data

quality and reducing the detection risk.

IV. EXPERIMENTS AND RESULTS

Experiments are conducted in simulation with an increas-

ing number of quadcopters and risk points.

A. Experimental Setup

1) Scenes: A scene is defined by its dimensions and

the number and location of the risk points. Three scene

dimensions were used: small (600 × 600 × 160), medium

(1000 × 1000 × 160), and large (2000 × 2000 × 160). The

risk points were randomly placed inside the xy bounding

box. The generated scenes are referred to as sceneX n, where

X ∈ {small,medium, large}, and n ∈ {1, 3, 5, . . . , 21}. The

quadcopters all started in a square formation at the top left

of the scene. The number of quadcopters was varied as

1, 6, 11, 16, 21, 26.

2) Performance criteria: Results report on the average

percentage of the total area coverage, the average sensor

data quality, the average risk, and average wait time in

the grid G. The sensor data quality and risk metrics were

determined using the same functions as in the optimization

process (Section II).

Area coverage was computed using a Monte-Carlo process

where a large number of random points (1000) were sampled

inside the xy bounding box of the scene. At each iteration

of PARCOV, each sampled point is checked whether or not

it is sensed by some quadcopter. The ratio of the number of

sampled points which are within any of the sensed areas to

the total number of sampled points was used to determine

the percentage of the total area covered.

The average wait time is used to show that no part of the

area being surveyed goes for too long a time without being

sensed. This metric was computed at each iteration as

1

|cells(G)|
∑

c∈cells(G)
WaitTime(G, c).

Recall that WaitTime(G, c) corresponds to the number of it-

erations since the last time c was sensed by some quadcopter.

3) Hardware and software: Experiments are conducted

on an Intel Core i7 machine (CPU: 2.40GHz, RAM: 16GB)

using Ubuntu 14.04. Code was written in Python 2.7. ROS

rviz was used for visualization.

B. Results

Before presenting quantitative results, we provide some

qualitative illustrations to show PARCOV in action. Fig. 1

shows how the quadcopters cover the designated area. Using

the information from the grid G, the quadcopters start moving

toward the uncovered areas.

Another illustration of PARCOV in action is provided in

Fig. 4, which shows trajectories taken by two quadcopters.

Note how the quadcopters increase their altitude when sur-

veying areas designated as high risk and reduce their altitude

when going over low-risk areas. As discussed in Section III-

B, PARCOV uses a nonlinear optimization process to reduce

detection risk while maintaining high sensor data quality.

1) Performance as a function of the number of iterations:
Fig. 6 shows that in a small number of iterations, regardless

of the number quadcopters or number of risk points, the team

of quadcopters was able to achieve high coverage of the des-

ignated area. In fact, at around 20 iterations the coverage was
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Fig. 4.    Trajectories taken by two quadcopters shown in blue and red, 
respectively. The initial risk R0  is shown as a heatmap. 
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Fig. 6.     Performance criteria as a function of the number of iterations. 
Results are shown for instances of the medium-size scene with different 
numbers of risk points and quadcopters. 

even when increasing the number of risk points (Fig. 7 plots 
Fig. 5.    Runtime per iteration. Bars indicate standard deviation. 

over 90% for each of the scenarios. An iteration corresponds 
to computing one move (position and orientation) for each 
quadcopter (Alg. 1:4–8). As shown in Fig. 5, PARCOV scales 
linearly with the number of quadcopters. 

Results in Fig. 6 also show that the detection risk rapidly 
decreased. To test the ability of the approach to reduce the 
detection risk, in the experiments the quadcopters started at 
the minimum viable height, which carries the highest risk. 
The quadcopters were quickly able to readjust their height to 
minimize the risk. Likewise, the sensor data quality rapidly 
increased as the iterations increased because the quadcopters 
quickly determined the optimal altitude. We also notice that 
the sensor data quality, coverage, and detection risk did not 
change much as the number of risk points increased. This is 
because the quadcopters are able to spread out appropriately 
and reconfigure the altitude in order to maximize the sensor 
data quality and minimize the detection risk. 

2) Performance as a function of the number of quad- 
copters: Results in Fig. 7 show the performance criteria as 
the number of quadcopters is increased. As expected, the 
area coverage increases as more quadcopters participate in 
the task. The increase in coverage is very rapid initially and 
slows down as the required number of quadcopters to ensure 
complete coverage is reached. These results indicate that 
PARCOV  effectively dispatches the quadcopters to fly over 
uncovered  areas.  Moreover,  PARCOV   keeps  the  detection 
risk low and the sensor quality high even as the number 
of quadcopters is increased. The same trends are observed 

the performance criteria as a function of the number of 
quadcopters for three different scenarios obtained by varying 
the number of risk points). 

3) Wait times: Table I shows the average wait time (Sec- 
tion IV-A.2) as a function of the number of quadcopters. As 
the number of quadcopters increases, the average wait time 
decreases since the quadcopters spread through the space 
cooperatively and therefore cover the space more quickly. 

nr. quadcopters 1 6 11 16 21 26 
awt [nrRiskPts=13] 37.90 2.19 0.14 0.08 0.03 0.03 
awt [nrRiskPts=17] 37.14 3.09 0.18 0.12 0.06 0.04 
awt [nrRiskPts=21] 35.53 1.89 0.19 0.11 0.06 0.02 

TABLE I 
AVE RAG E WAIT  TIME  (AW T ). 

4) Performance as a function of scene size: Table II shows 
the performance of PARCOV  on three different scene sizes: 
small, medium, and large. In all cases, PARCOV  efficiently 
covers the area while maintaining high-sensor quality and 
low detection risk. As expected, more quadcopters are needed 
to cover the large scene. 

5) Performance as a function of the projection angle: 
Fig. 8 provides a summary of the results when varying the 
angle at which the sensor is attached to the quadcopter. 
As shown, PARCOV  works well for a variety of values. 

V.  DISCUSSION 

This paper developed a path-planning approach to enable 
a team of quadcopters to efficiently conduct surveillance. 



nr. quadcopters 1 6 11 16 21 26 30 35 
(A) coverage 
(B) coverage 
(C) coverage 

51%  95%  98%  99%  99%  99%  99%  99% 
13%  43%  94%  96%  99%  99%  99%  99% 
3%    26%  44%  54%  62%  77%  84%  93% 

(A) sensor quality 
(B) sensor quality 
(C) sensor quality 

88%  92%  92%  92%  91%  92%  92%  92% 
84%  91%  90%  92%  93%  92%  92%  92% 
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(B) risk 
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nr. quadcopters nr. quadcopters nr. quadcopters 

pe
rc

en
ta

ge
 

pe
rc

en
ta

ge
 

pe
rc

en
ta

ge
 

pe
rc

en
ta

ge
 

100 
90 
80 
70 
60 
50 
40 
30 
20 
10 

0 

coverage 

sensor quality 

risk 

[nrRiskPoints = 13] 

100 
90 
80 
70 
60 
50 
40 
30 
20 
10 

0 

coverage 

sensor quality 

risk 

[nrRiskPoints = 17] 

100 
90 
80 
70 
60 
50 
40 
30 
20 
10 

0 

coverage 

sensor quality 

risk 

[nrRiskPoints = 21] 

Fig. 7.    Performance criteria as a function of the number of quadcopters. Shown percentages are computed after 250 iterations of the algorithm. Results 
are shown for instances of the medium-size scene with different numbers of risk points. 

TABLE II 
(A ) SM AL L S CE NE : 600X 600X 200 (B ) MED IUM  S CEN E : 1000X 1000X 200 

(C ) LA RGE  S CE NE : 2000X 2000X 200. IN A L L C A S E S , NR RIS K PTS =17. 
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