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Abstract— In Navy human firefighting teams, touch is used
extensively to communicate among teammates. In noisy, chaotic,
and visually challenging environments, such as among fires on
Navy ships, this is the only reliable means of communication.
The overarching goal of this work is to augment Navy fire-
fighting teams with an autonomous robot serving as a nozzle
operator; to accomplish this, the robot must understand the
tactile gestures of its human teammates. Preliminary results
recognizing touch gestures have indicated the potential of such
an autonomous system to serve as a nozzle operator in human-
centric firefighting scenarios.

I. INTRODUCTION

Fire presents a significant threat to Naval vessels. If not
dealt with quickly, fire can spread rapidly and result in a
significant loss of life and property. For example, in 2012, a
fire aboard the USS Miami resulted in $700 million dollars
in damage and injured seven Navy personnel [16].

Navy firefighting teams typically consist of two people:
a nozzle operator and a supervisor (see Figure 1). The
nozzle operator actively works toward fire suppression, using
the hose to engage the fire directly in front of them. The
supervisor generates a higher level strategy on the most
effective way to fight the fire in the given compartment.
They do this by visually searching the environment for higher
priority fires (e.g., fire near a person, fire near a gas supply).
The supervisor can redirect the nozzle operator as needed to
suppress higher priority fires. For safety, the nozzle operator
always attends to the fire immediately in front of them, and
does not visually search around for additional fires.

Effective communication in firefighting teams is vitally
important. However, the chaotic nature of the environment
can limit the ways that firefighting teams communicate.
Although hand gestures are commonly used in human-human
communication [8], [1], [5], they are used infrequently in
firefighting due to extremely poor visibility. Instead, com-
munications between the supervisor and nozzle operator are
primarily through speech and tactile gestures. The supervisor
touches the shoulders of the nozzle operator to communicate,
for example, a command to turn, enter a compartment, leave
a compartment, or reengage after the supervisor has returned
from investigating another region of the environment. Speech
is sometimes used to confirm the commands.

This paper works towards replacing the nozzle operator,
perhaps the most dangerous situation for a navy firefire-
fighter, with a humanoid robot. One challenge with introduc-
ing a robot into the firefighting team is teaching the robot
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Fig. 1. A Navy firefighting team engaging a fire in an enclosed compart-
ment. The team consists of two individuals: the supervisor (behind), and
the nozzle operator (in front).

how to respond to human touch in order to understand the
supervisor’s commands. To study this problem, we use the
humanoid robot, Octavia (see Figure 2), a mobile dexterous
social (MDS) robot built to study human-robot interaction.
Although not designed to fight fire, Octavia provides an
excellent platform to study the underlying HRI principles
of incorporating a robot into firefighting teams.

Typically, tactile information is processed when a human
makes contact with the robot, after which time the force
sensing resistors are used to interpret the meaning of the
touch. There are several problems with this approach. First,
a significant amount of hardware is required for the force
sensing resistors, and covering the entire surface of a robot
with these sensors is infeasible. Second, interpretation in this
manner can slow the robot’s response to the human contact.
Since firefighting requires fast responses between teammates,
we use a different approach where we can anticipate touch
before the human makes contact with the robot. Thus, rather
than recognizing touch, we instead look for visual touch
gestures, hand gestures that result in the supervisor touching
the robot, where we anticipate the tactile information before
a hand has made contact with the robot.

We make use of the Leap Motion [13] NIR sensor to
recognize visual touch gestures. The Leap Motion sensor was
designed to recognize hand gestures to control a computer
or interact with a virtual environment, and is sensitive to a
range of 0.1 m - 1 m which is sufficient to recognize visual
touch gestures. We propose a novel approach to processing
visual touch gestures with the Leap Motion. We demonstrate
our approach to be both accurate and reliable, typically
outperforming the Leap Motion SDK.
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Fig. 2. The humanoid robot, Octavia, engaged in the firefighting task

The rest of the paper is organized as follows. Section II
briefly discusses related research in this area, while Section
III provides technical details of our approach to tactile
gesture recognition. Section IV then evaluates our approach
to tactile gesture recognition, and Section V concludes the
paper by discussing the implications of this work.

II. RELATED WORK

This paper focuses on tactile communication between a
human and robot in the context of firefighting. Most prior
work in robotic firefighting has spanned the gamut from
design [14] to sensing [11], [17]. Naghsh et al. [19] proposed
to use a swarm of robots to fight a fire. In this case, the swarm
is remotely controlled by a human operator. This limits the
effectiveness of the team, as it is impossible for a human
firefighter to communicate directly with the robots. Penders
et al.[20] proposed to use a visor to provide situational
awareness to the human firefighter by showing information
on the swarm of robots. Again, this does not permit any
direct interaction with the robots, and limits the potential
for the robot to be a collaborative teammate. Closest to
our work, Martinson et al. [15] developed an interaction
system for robotic firefighting where the human directly
communicates with robot through speech and visual hand
gestures. This system performed well for communicating
situational awareness to the robot prior to engaging the fire,
but is not practical during firefighting operations since the
human and robot must face each other.

While there is almost no prior work recognizing visual
touch gestures in robotic firefighting, many researchers have
investigated the use of hand gestures in other contexts. Much
work has focused on hand gesture recongintion in a variety
of contexts [4], [10], [23], [25], [2], but all these approaches
assume that a continuous full view of the hand is available,
and it is not clear that they will work in a situation where
the hand is only partially visible as is often the case in visual
touch gestures.

Some work on human robot interaction has focused on
identifying different touch gestures. For example, Ji et al. [9]
developed a system to distinguish between similar but subtly
different types of touch (poke, grab, touching a large area).

Fig. 3. The Leap Motion Sensor mounted on Octavia’s back. The position
and angle of the sensor allows coverage of the most sensetive regions of
the torso for firefighting interactions.

Wu et al. [24] similarly used a support vector machine to
identify the orientation of the touch. A complete review of
tactile HRI can be found in [3].

An earlier version of this paper proposed to use force sen-
sitive resistors (FSR) to classifying different touch gestures
[12]. While the approach worked well, the small size (5 cm
by 5 cm) of each FSR requires a large number of sensors
to cover all the areas of interest for firefighting interactions.
The large number of sensors produces a significant volume
of wires and other necessary hardware components which
take up space on the robot and are a source of noise and
failures. Additionally, the FSRs are require physical contact
which results in a slow response from the robot.

In learning from demonstration, the term “tactile gestures”
to refer to small “nudges” are used to communicate desired
motor movements to a robot [18]. This is primarily used to
teach movement information, and no attempt is made to un-
derstand the intent of the touch. Interpreting the meaning of
touch is sometimes considered in the context of multi-touch
displays [26]. Although there is some similarity, sensing with
multi-touch displays is substantially different.

III. FEATURES FOR RECOGNIZING VISUAL TOUCH
GESTURES

To detect visual touch gestures, we use the Leap Motion
Senor, a small (30mm x 76 mm x 13mm) NIR stereo camera
which provides a wide field of view at short ranges. The
Leap uses IR emitters to detect hand gestures for computer
interaction (i.e., replace the standard mouse). While the Leap
Motion comes with a proprietary SDK, in our experience
most of the visual touch gestures were not detected due to
the speed at which the hand is moving. Experiments are
detailed below demonstrating this time delay. To cover the
areas most sensitive for firefighting, the Leap Motion Sensor
was attached to Octavia’s back and angled upwards and away
from the torso (Figure 3).

Our feature extraction procedure operates on the raw NIR
images coming off the Leap Motion Sensor. Before detecting
features, a preprocessing step enhances the edges and mini-
mizes noise. Next, an adaptive thresholding algorithm detects
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Fig. 4. Our feature extraction pipeline: the raw IR image from the Leap sensor, extracted hand blob, and motion vectors constructed from two successive
frames.

objects that are close to the sensor (i.e., the hand/arm). The
hand / arm is isolated with a convex hull and a feature vector
is constructed based on the region inside this convex hull.
The feature vector is a combination of static and dynamic
features: static features relate to the static pose of the hand
to include the location and the hand orientation, while the
dynamic features provide information about how the hand is
moving (i.e., speed and trajectory)

We construct a 13 element feature vector to describe visual
touch gesture, using a combination of features used in other
visual hand gesture recognition approaches[4], [10], [23],
[25], [2]. The static features consist of the (1-2) X and Y
image coordinates of the top-most hull point, a (3) depth
estimate based on the number of pixels between the convex
hulls in the two stereo images, and the (4) ratio of the convex
hull perimeter to detected hand/arm blob perimeter. The
dynamic features include the (5) change in depth between
frames, and a (6-13) histogram of angles containing eight
bins where each bin contains the magnitude of the movement
vectors. Figure 4 shows an example of the raw NIR image,
the associated hand blob, and the movement vectors. For
each frame, we collect a feature vector for each hand: if one
hand is not visible, then its feature vector is set to zero.

For each gesture sequence, we gather 20 frames of stereo
image pairs and compute a feature vector of length 26, or 13
features per hand. The final feature vector is a concatenation
of these 20 vectors, resulting a final feature vector of length
260. Finally, the feature vector is normalized to range [-1,
1].

IV. COMPLETE FIREFIGHTING ROBOT

Visual touch gesture recognition fits into the larger sys-
tem of a robot firefighter. The complete firefighting system
consists of sub-systems to detect fires, detect visual touch
gestures, and learn how to react to visual touch gestures.
We use a learning from demonstration (LfD) system to train
the robot to react to various visual touch gestures and fire
locations.

A. Fire Detection

Fire detection is done using an IR camera. Due to noise
in the raw IR images, we first process the image using a
Gaussian blur smoothing filter followed by thresholding to
isolate the brightest IR source, which is typically the fire.
Successive dilation and erosion operations further smooth
the images, and, then, individual IR blobs are extracted and
convex hulls are fitted to these blobs. The center of the fire
(i.e., the centroid of each convex hull) is used as an input to
the LfD system.

B. Reaction to Visual Touch Gestures

Learning from demonstration (LfD) is an effective way to
teach a robot to interact with humans [6], [7] since LfD
is flexible to enough adapt to different teaching styles. We
use the HiTAB (Hierarchical Training of Agent Behaviors)
LfD system [22], [21] which learns behaviors represented
as hierarchical finite state automaton (HFA) represented as a
Moore machine: individual states correspond to hard-coded
agent behaviors, or the states may themselves be another
automaton. An HFA is constructed iteratively: starting with a
behavior library consisting solely of atomic behaviors (e.g.,
turn, go forward), the demonstrator trains a slightly more
complicated behavior, which is then saved to the behavior
library. The now expanded behavior library is then used to
train an even more complex behavior which is then saved to
the library. This process continues until the desired behavior
is trained.

The motivation behind HiTAB was to develop a LfD
system which could rapidly train complex agent behaviors.
HiTAB uses manual behavior decomposition as its primary
method to reduce the size of the learning space, thus allowing
rapid training in areas such as behavior based robotics,
where samples are sparse and expensive to collect. HiTAB’s
behavior decomposition breaks complex joint finite-state
automata into a hierarchy of simpler automata which are iter-
atively learned and then composed via scaffolding into more
complex behaviors. This manual decomposition requires the
experimenter to choose the automaton’s general structure:
HiTAB then determines the appropriate transitions.
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To determine which behaviors to train, we observed videos
of Navy firefighting teams during training to learn which
behaviors teams typically perform. Primarily the nozzle
operator focuses only straight ahead, engaging any observed
fires, and does not search the environment. The supervisor is
responsible for searching the environment for other, possibly
higher priority, fires, and then using a combination of touch
and speech direct the nozzle operator to engage those fires.

Based on these observations, we used HiTAB to train a
behavior that searches for a visible fire, engages the fire,
and will change which fire is engaged based on visual touch
gestures from the human supervisor. The features available
were the X-position of the fire (see Section IV-A), the
classification of visual touch gestures as described earlier,
and a Done flag used to signal parent automata that a child is
complete. The basic behaviors were Turn Left, Turn Right,
and Idle, which turn the torso or keep it stationary. Using
these features and basic behaviors, we trained the following
automata (Figure 5):

• TOUCH TURN LEFT: Wait in Idle until Touch Left is
True, then Turn Left until Touch Left is False.

• TOUCH TURN RIGHT: Wait in Idle until Touch Right
is True, then Turn Right until Touch Right is False.

• SEARCH FIRE: Using Fire X-Position, perform visual
servoing to keep the fire in the center of the camera
frame.

• SEARCH FIRE HRI: Adds an Interested expression
to Octavia’s face prior to performing visual servoing.
This HFA acts as confirmation that Octavia has actually
observed a fire.

• FIREFIGHTING: Combines speech and visual touch in-
formation to allow the human supervisor to refocus
Octavia on a higher priority fire by turning Octavia
whenever the supervisor touches the robot.

V. EXPERIMENTAL RESULTS

In this section, we present our experimental results show-
ing the accuracy of visual touch gesture recognition and to
compare the accuracy of this system with the accuracy of
the Leap Motion SDK.

A. Tactile Gesture Classification

We recognize visual touch gestures using classification
approaches commonly used in hand gesture recognition.
Specifically, we evaluate support vector machines (SVM)
with a linear kernel, Random Forest (RF), Gradient Boosted
Trees (GBT), and artificial neural network (ANN). The ANN
is fully connected with a single hidden layer containing
60 nodes. Each node within the network uses a symmetric
sigmoid activation function, and is trained using resilient
back propagation. All the ensemble tree classifiers used 200
trees with 80% of samples and 70% of maximum features
considered at each split of the training set. Moreover, we also
added an AdaBoost (AdaB) and bagged (Bag) ensemble of
10 RF classifiers for complete comparative analysis.

To evaluate visual touch gesture recognition, we performed
a user study to collect examples of hand gestures from

Fig. 5. Trained HFAs for firefighting.

individuals. The individuals interacted with Octavia, our
humanoid robotics platform, providing a number of examples
of each of the visual touch gestures. We present results using
both 10-fold stratified sampling for cross-validation as well
as a randomly shuffled 80%-20% split.

B. Accuracy of the Proposed System

To evaluate the effectiveness of the developed autonomous
robotic firefighting system, we performed a user study in-
volving 10 healthy adults to act as the human supervisor
and collected data using the Leap Motion for visual touch
gesture recognition. 10 healthy adults (9 Male and 1 Female)
participated in the study performing 5 gestures each (of
engage, turn left, turn right, pull, and miscellaneous). The
miscellaneous class is added to avoid the case where any
noisy hand movement would be classified in to one of the
four important gestures for firefighting. Before each visual
touch gesture, the user was asked to stand at a distance
that represents a close working distance, around 1 m. The
subjects were instructed to perform each gesture 10 times
with variable ways of touching the robot including using dif-
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ferent hands (for instance one handed touch vs. two handed
touch), varying speed and individual ways of touching. The
models need to learn these individual preferences of touching
the robot for a more generalized recognition. 10 subjects
performed 5 gestures with 10 repetitions of each gesture
resulting in a total of 500 sample data points.

The results of this experiment are shown in Table I.
The results show that statistically, there is little difference
between the performance of the classifiers. Therefore, faster
classifiers such as a linear SVM would be appropriate for
our fast visual touch gesture recognition.

TABLE I
ACCURACY COMPARISONS OF THE CLASSIFICATION MODELS TRAINED

WITH VARIOUS CROSS-VALIDATION METHODS

10-fold 80%/20%
SVM 0.78 (+/- 0.08) 0.81 (+/- 0.03)
RF 0.80 (+/- 0.12) 0.88 (+/- 0.02)

GBT 0.80 (+/- 0.12) 0.87 (+/- 0.04)
ANN 0.80 (+- 0.01) 0.79 (+- 0.01)

Table II shows the confusion matrices of the best models
in each of the two cross-validation methods compared. It
is evident from these tables that the models were able to
accurately recognize all the 4 meaningful gestures. However,
the miscellaneous (Misc) gestures class was the worst clas-
sified in both instances. This is partially due to the way the
Misc gestures were performed by each subject. Subjects were
instructed to perform any hand gesture except the 4 gestures
and there were large variability both across subjects and how
similar some of the ‘misc’ gestures were to one of the 4 other
meaningful classes of gestures.

TABLE II
CONFUSION MATRIX FOR THE TWO CROSS-VALIDATION METHODS WITH

THE BEST PERFORMING MODELS. THE CONFUSION MATRIX SHOWS THE

RESULTS FOR ADABOOSTED RF (TOP) AND BAGGED RF (BOTTOM)

Engage Turn Left Turn Right Pull Misc
Engage 77.8% 0% 11.1% 1.1% 0%

Turn Left 0% 100% 0% 0% 0%
Turn Right 0% 0% 90.9% 9.1% 0%

Pull 0% 9.1% 0% 90.9% 0%
Misc 0% 10% 10% 20% 60%

Engage Turn Left Turn Right Pull Misc
Engage 77.8% 0% 0% 11.1% 11.1%

Turn Left 0% 100% 0% 0% 0%
Turn Right 0% 0% 100% 0% 0%

Pull 0% 9.1% 0% 90.9% 0%
Misc 0% 0% 0% 30% 70%

C. Comparison with the Leap SDK

To compare the performance of our approach with the
Leap SDK, we had several individuals perform each of
the tactile gestures that we were interested in and tracked
whether or not the leap SDK could detect a hand when
compared to our technique. The results shown in Table III

illustrate the need for our own feature extraction techniques.
Although no recognition took pace by the Leap SDK, it is
clear that many of the tactile gestures would not be detected
at all.

One interesting note about the data is that turning right
versus left is detected at greatly differing levels of accuracy
(53.3% vs. 13.3%). This is likely due to several factors:
where the users stood behind the robot, how the leap is
mounted, and what the hand preference is of the users (for
example all users here were right-handed).

TABLE III
PERCENTAGE OF TIMES WHERE THE LEAP SDK DETECTED A HAND

Percentage
Engage 90.0%

Turn Left 53.3%
Turn Right 13.3%

Pull 23.1%
Overall 45.7%

VI. DISCUSSION AND CONCLUSION

Using autonomous robots as part of Navy firefighting
teams presents a meaningful and difficult challenge. Here,
we investigated how to enable the robot to communicate with
its human teammates in the noisy and messy environment
that firefighters operate in. In particular, we developed an
approach to visual touch gesture recognition that allows
the robot to quickly and effectively understand its human
supervisor’s tactile gestures, even when the provided data is
sparse or incomplete.

To enable tactile gesture recognition for effective com-
munication between the human supervisor and the robot
nozzle operator, we have developed a novel way of extracting
features and recognizing tactile touch in the partially visible
and uncertain environment which performed much better
than the SDK of Leap as shown by the validation results.

Early results indicated that the hard task of effectively
equipping the robot with tactile recognition capabilities
would facilitate the human supervisor and robot nozzle
operator communication in a way similar to the human-
centric firefighting.

In the future, we would like to continue to more deeply
explore the rich nuances of tactile gestures. Gestures, for
example, may have different levels of urgency (e.g., touching
with extra speed and force), and the same gesture could
be used to communicate different commands or intents
depending on the context (e.g., single tap to get someone’s
attention, or to indicate spatial information). In future work,
we propose to further extend our understanding of touch
gestures to explore these nuances.
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