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Introduction 

 Imagine a meteorologist preparing a weather forecast. In addition to years of experience 

and a vast store of domain knowledge, the forecaster has access to satellite images, to computer–

generated weather models and programs to display them in a variety of ways, and to an 

assortment of special-purpose tools that provide additional task-relevant data. There is no 

shortage of data, yet despite this array of resources, the task remains very challenging. One 

source of complexity is the uncertainty inherent in these data, uncertainty that takes many forms. 

Why are two weather models making different predictions? Are the models based on many 

observations or just a few? Are there enough observations in a given model to trust it? Is one 

model more reliable than another in certain circumstances, and if so, what are they? Which one, 

if either, should be believed? How long ago were these data collected? How have things changed 

since the data were originally displayed? What is the real location of this front, and how is it 

affected by other changing variables, such as wind direction and speed, which may also have 

changed? 

To complicate matters further, the uncertainty in the data is not explicitly represented; 

rather, the visualizations indicate that the data are exactly as they appear. The visualizations thus 

invite the forecaster to map uncertain data to certain values, yet to do so would most likely lead 

to erroneous predictions. How does he or she manage this incongruity, in order to develop the 

most accurate forecast possible?  

This example illustrates the basic question we investigate in this paper: how do people, 

especially experts, deal with uncertainty in highly spatial domains, when the data are inherently 

uncertain but the tools actually display very little uncertainty? Experts in many domains depend 

on complex visualizations that use spatial representations of data, in areas as diverse as military 
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operations (e.g., testing and evaluation of electronic warfare systems and of techniques to 

counter antiship missile threats, mission rehearsal prior to combat), geosciences (e.g., weather 

analysis and forecasting, geology, environmental science, oceanography) and scientific 

visualization (e.g., neuroscience, computational fluid dynamics, molecular biology, medical 

research and practice). In each of these examples—and there are many more we could cite—the 

practitioner must contend with uncertainty in the data. We first examine how uncertainty affects 

operations in three representative domains, submarine operations (military), meteorology 

(geoscience), and fMRI research (scientific visualization), in which dealing with uncertainty is a 

critical component of the task. We then investigate how experts in two of these domains, 

meteorology and fMRI, manage uncertainty as they perform problem-solving activities and make 

decisions as part of their regular task performance.  

 The sources of uncertainty in these three domains are many and varied. Uncertainty is 

inherent in the submarine world due to the nature of the primary sensory system, passive sonar. 

The causes of uncertainty are the ocean environment (the physics of sound transmission through 

ocean water, interactions with the bottom, wave action, noise caused by ocean creatures and 

ships, etc.), the under-determined nature of target motion analysis (TMA) from bearings-only 

measurements, and the unpredictability of human actions and intentions (both unintentional and 

intentional deception). These problems have become even more critical with the emphasis on 

operations in the crowded and noisy littoral regions, and uncertainty is the primary cause of error 

and delayed action. In meteorology, as outlined above, there is considerable uncertainty in 

Meteorology and Oceanography (METOC) data, both in observations and models. Weather 

models are based on underlying assumptions that may or may not be accurate, and they may 

depend on unreliable or sparsely sampled observations to make their predictions; satellite images 
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do not portray current conditions, but rather show “truth” as it was some time in the recent past; 

weather-related variables are depicted as having absolute values or locations, whereas in reality, 

only approximations can be displayed. Likewise, in fMRI, several factors contribute to an overall 

high level of uncertainty. Irrelevant areas of the brain may be activated by subjects’ off-task 

thoughts. The spatial resolution of the display itself is considerably coarser than neurons or even 

assemblies of neurons. The measurements themselves can be systematically biased by a variety 

of factors (e.g., the closeness to the skull, deformations in areas near the nasal passages due to 

breathing). In addition, the processes of neurons themselves are thought to be stochastic and the 

neuronal processes happen at a faster pace than the temporal resolution of fMRI. Moreover, to 

deal with the measurement noise, the analysis of the data typically averages data across several 

seconds of time or across many trials.   

Despite the many sources of uncertainty in these domains, the visualizations often do not 

explicitly display the uncertainty, but may rather present data in a much less ambiguous fashion 

than is congruent with reality. For example, Figure 1 shows examples of three typical different 

visualizations of fMRI data. Moving clockwise, from the top, they show the degree of activation, 

indicated with a color scale superimposed over a gray-scale structural brain image in three 

different planar slices and a surface cortex map; a graph of the number of activated voxels in an 

area as a function of various condition manipulations; and a table of the number of activated 

voxels in different brain areas (Regions of Interest) as a function of different conditions. Note the 

lack of uncertainty represented in the display. For example, in the first visualization, the lit areas 

signifying neural activity are clearly bounded, and even the different colors are unambiguously 

discrete. Thus the visualization suggests a precision in the mapping between location in the brain 

and level of neural activity that, in fact, is unlikely to reflect the actual activity within the brain. 
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Figure 1. Example of visualizations of fMRI data. 

 

 Similarly, Figure 2 shows some visualizations used in passive sonar: above, a waterfall 

diagram shows the angle of various noise sources across the horizontal axis over time across the 

vertical axis; and below, a table shows the target motion analysis solutions for six different  
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Figure 2: Visualizations used in submarine operations 

 

algorithms. Note the range of the differences in the solutions for the different solutions in the 

tabular display, and the lack of guidance for interpreting those differences. Of the five displayed 

variables (Range, Bearing, Course, Speed, and Brg Rate (“Bearing Rate”)), only Bearing has the 

same value in each solution. Moreover, the other values differ greatly. Range, for example, 

varies from a low value of 1059 to a high of 2043, Course from 210 to 357, and Speed from 62 
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to 100. Combining these different values into a composite representation of the other submarine 

compounds those differences, as five completely different scenarios are created. Yet the AO 

must make a decision about what action to take based on this uncertain information. 

Finally, Figure 3 shows a typical meteorological chart, displaying not only land masses, 

but also multiple weather-related variables in relation to those masses. Variables represented 

include sea height, wind speed and wind direction. Again, precise values and locations are 

indicated by wind barbs, alpha-numeric symbols, and defining lines. However, these 

representations mask a great deal of uncertainty attributable to ranges of values and the dynamic 

nature of the systems, as well as the questionable trustworthiness and accuracy of the data. 

Similar mismatches between the implicit certainty of the displayed data and the actual 

uncertainty of those data exist in the submarine domain, because of both the dynamic nature of 

the data and the many sources of noise in the ocean environment as the data are collected. 

 

Figure 3. Example of meteorological visualization 
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 The incongruity between the uncertainty inherent in the data and the lack of uncertainty 

explicit in the display presents a serious problem in each of these domains. One of the most time-

critical and uncertain events for a submarine is a “close encounter” with another vessel. In such a 

case the Approach Officer (AO), who is responsible for “fighting the ship” in a hostile 

encounter, has a very short time in which to assess the evidence (e.g., is the ship friendly or 

hostile) and take action. As a result, the AO must make safety-critical decisions under extreme 

uncertainty. Meteorologists must prepare a forecast while contending with inexact information 

and conflicting model predictions. Weather forecasts are prepared for a customer; inaccurate 

forecasts can have serious consequences, whether the customer is a Navy pilot who needs 

detailed flight weather information for the next several hours, a tactical and strategic military 

planner who needs to know how weather will affect decisions being made for missions, or the 

general public, who may need to take precautions against severe weather conditions. Results 

from fMRI and other scientific research are used to inform further research and are often applied 

to treatments or other problem solutions. fMRI research proceeds along a different timescale 

from either submarine operations or meteorology; consequently, erroneous results may take 

weeks, months or even years to be identified and corrected, and may have a significant, negative 

impact on continuing research.  

How do experts think with data and compensate for uncertainty in such uncertain 

domains? Most studies of decision-making in situations of uncertainty have focused on people’s 

responses to different gambles based on various probable outcomes. In such studies, the level of 

risk—or uncertainty—is explicitly manipulated by offering participants the opportunity to win 

money by placing bets with different probabilities of winning and losing. Extensive work in this 



 8 

area has shown that people respond to this type of uncertainty by relying on heuristics rather 

than, for example, mathematically calculating the likelihood of gain versus loss (e.g., Tversky & 

Kahneman, 1974).  

However, there are several differences between these tasks and those described above 

that make it unlikely that similar strategies will be used. First, the stakes are much higher, in that 

the outcome for the experts has real-world implications, as opposed to simply affecting the 

results of a laboratory study. Second, the tasks themselves explicitly involve the analysis of large 

amounts of complex data, some of which is uncertain, rather than a simple choice between two 

constrained options; furthermore, the goal is not to reach a single decision to take one action 

rather than another, but rather a deeper understanding of a whole set of circumstances, which 

may itself inform a decision to be taken later on. Third, the information is presented spatially, 

rather than mathematically; consequently, it is likely that experts will use a spatial strategy to 

resolve the uncertainty. Three factors have been identified that play an important role in 

understanding how experts handle uncertainty: first, complex, spatial domains are rife with 

uncertainty; second, that uncertainty is often not explicitly displayed; and third, disregarding that 

uncertainty is likely to have harmful consequences. When uncertainty is not explicitly displayed, 

the expert must add his or her own understanding of uncertainty to the visualization itself, in 

order to be able to generate useful solutions to the task at hand.   

The challenge for experts working in spatial domains such as those discussed above is 

thus not only to weigh the implications of explicit uncertainty, such as the potential risks given 

specific odds, (although this may be a part of the task) In addition, the experts must develop a 

means of locating areas of uncertainty and re-evaluating the data in accordance with their revised 

understanding of the likely accuracy of the representation. Consequently, when a visualization 
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displays information that the expert believes to actually be uncertain, in order to use the data, we 

propose that the expert must modify his or her internal representation to account for that 

uncertainty. For example, the submarine operator may need to mentally adjust the bearing of a 

submarine located on radar, in order to represent it as a range rather than an exact angle. In 

meteorology, the forecaster may need to mentally add information, such as the range of wind 

speed, or an updated location of a front, to account for likely changes since the data were 

originally collected and displayed. In fMRI, the researcher may find it necessary to delete an area 

of activation from his or her mental representation of the data, determining it to be noise rather 

than viable data. The expert can then use the modified internal representation of the data, which 

more accurately reflects the external state of affairs, in order to reason and problem-solve about 

the situation represented in the external visualization.  

Constructing and modifying internal representations takes place by mental processes we 

call “spatial transformations.” Spatial transformations are cognitive operations that a person 

performs on an internal representation (e.g., a mental image) or an external visualization (e.g., a 

computer-generated image).1 Sample spatial transformations are creating a mental image, 

modifying that mental image by adding or deleting features, mental rotation (Shepard & Metzler, 

1971), mentally moving an object, animating a static image (Hegarty, 1992), making 

comparisons between different views (Kosslyn, Sukel, & Bly, 1999; Trafton, Trickett, & Mintz, 

in press), and anything else a person mentally does to a visualization in order to understand it or 

facilitate problem-solving. Spatial transformations may be used in all types of visual-spatial 

tasks, and thus represent a general problem-solving strategy in this area. 

                                                
1 If the visualization is external, the operation is not literally performed on the external 
representation, but rather on the internal model of the external representation. 
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 Thus experts viewing unambiguous displays of uncertain data must modify their 

representation of the data, and spatial transformations are a means by which such mental 

modifications occur. For example, a meteorologist faced with different weather models making 

different predictions must somehow resolve those differences in order to construct a single 

representation of the data. This might be done, for example, by averaging, reconciling, justifying 

one model over another, creating a composite, or some other means that involves mentally 

modifying the representation. We hypothesize that when people are more uncertain while 

working with complex data visualizations, they will perform more spatial transformations than 

when they are certain. In other words, while spatial transformations may be part of the visual 

problem-solving toolkit, they are particularly important for resolving uncertainty in complex 

visual displays. 

 In order to investigate this hypothesis, we conducted two studies of experts performing 

their regular tasks. Study 1 presents a re-analysis of previously collected ex-vivo data (Trafton et 

al., 2000) of a meteorologist preparing a weather brief. It is an initial examination of the 

relationship between uncertainty and the use of spatial transformations. Study 2 is an in vivo 

study of meteorologists making a forecast and fMRI researchers conducting their own research, 

designed to elaborate and expand the results of the first study.  

Study 1 

To explore whether expert meteorologists perform more spatial transformations when 

uncertain, we re-analyzed one expert forecaster from previously collected data (Trafton et al., 

2000).  The forecaster was an expert Naval meteorological forecaster with 16 years of 

forecasting experience; in the past year he had made approximately 600 forecasts.  The 
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forecaster worked with a technician and had access to a “regional center,” typically staffed with 

experienced forecasters who are there to provide assistance as well as specialized visualizations. 

Procedure 

The forecaster’s task was to prepare a written brief for an airplane flown from an aircraft 

carrier to a destination 12 hours in the future (the destination was Whidbey Island, Washington 

State).  The brief was to cover the entire round trip and the forecaster was asked to provide 

specific weather information for departure, en-route, destination and alternate airfields.  In order 

to do this, the forecaster had to determine detailed qualitative and quantitative information about 

the weather conditions.  This task was a very familiar one for the forecaster.  The forecaster was 

given 2 hours to finish his task, though it took him less than 50 minutes.  Further details of the 

procedure can be found in Trafton et al., 2000. 

Coding Scheme 

The forecaster’s utterances were transcribed and coded using standard protocol analysis 

techniques (Ericsson & Simon, 1993).  We used a purely syntactic approach to coding 

uncertainty; hedge words like “probably,” “sort of,”  and explicit verbalizations of uncertainty 

(“We’ll have to see if we agree with that or not”) were coded as “uncertain utterances.”  We also 

extracted approximately 20% of the forecaster’s verbalizations that did not have any uncertainty 

to use as a control. Spatial transformations were coded for each utterance as well.  Table 1 shows 

examples of uncertain/certain utterances as well as spatial transformations.   

Utterance Code Spatial Transformations (ST) 
Nogaps [a mathematical model] 
has some precipitation over the 
Vancouver/Canada border (while 
viewing a visualization) 

 
Certain 

 
No ST 

This is valid today Certain No ST 
Possibly some rain over Port 
Angeles 

 
Uncertain 

 
No ST 
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And then uh, at Port Angeles, 
there’s gonna be some rain up at 
the north, and if that sort of sneaks 
down, we could see a little bit of 
restriction of visibility, but only 
down to 5 miles at the worst 

 
 

Uncertain 

 
 

ST:  mentally moving rain 
[sneaks down] 

I don’t think the uh front’s gonna 
get to Whidbey Island [in 12 
hours], but it should be sitting 
right about over Port Angeles 
right around 0Z this evening 

 
 

Uncertain 

 
 

ST:  mentally moving front / 
animation 

 
Table 1:  Examples of certain and uncertain utterances (indications of uncertainty in bold) 
 

 Results and Discussion 

What is the relationship between uncertainty and spatial cognition?  If an expert needs to 

mentally manipulate a complex visualization in order to understand the uncertainty, we would 

expect more spatial transformations during the uncertain utterances than the certain utterances.  

In fact, this is exactly what we found, χ2(1) = 4.1, p < .05.  As Figure 4 suggests, when the 

forecaster was uncertain, he performed about twice as many spatial transformations as when he 

was certain. Said another way, spatial transformations may be associated in this case with factors 

other than uncertainty, but about 50% of all the spatial transformations are specifically related to 

uncertainty. 
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Figure 4: Percentage of utterances containing spatial transformations during certain and 
uncertain utterances. 

 

 

Study 2 

The results of Study 1 suggest that the forecaster was often mentally manipulating the 

visualizations in order to understand the uncertainty inherent in the domain.  However, there are 

several obvious shortcomings to this study.  First, only one forecaster was examined, and these 

findings could be idiosyncratic to this forecaster.  Second, the grain size (sometimes several 

complete thoughts) was quite large in the utterances examined and the large size of these 

utterances may have confounded the coding.2 Also, the task itself was constructed specifically 

for the purposes of the experiment. In other words, although the participant was a true expert 

                                                
2 This was a deliberate feature of study 1, since it was necessary to see both certainty or lack 
thereof and the spatial transformation in the same utterance. 
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performing a task typical of his daily work, the task was not entirely naturalistic, and it is 

possible that the slightly artificial nature of this experiment affected the experts’ behavior and 

thus their handling of uncertainty. For example, being asked to perform a constructed task might 

have made the experts somewhat eager to “get the forecast right” and therefore less likely to 

express their uncertainty. 

 In addition to these shortcomings, the coding scheme itself may have biased the results. 

The syntactic nature of the coding scheme for uncertainty captured uncertainty well at a local or 

immediate level; that is, within the utterance the verbal expressions of uncertainty were most 

likely an accurate reflection of the forecasters’ uncertainty at a given moment about a specific 

piece of data. However, the coding scheme may not have captured uncertainty at a more global 

level—for example, if a forecaster was uncertain about the specific location of a front, that 

uncertainty might have been expressed in only one utterance, but continued in the forecaster’s 

mind for a much longer period. In such a case, the forecaster might gather additional certain data 

in order to try to resolve the uncertainty. Such utterances would be coded as certain, when the 

forecaster’s state of mind was, in fact, uncertain. Furthermore, the degree of certainty and the 

use of spatial transformations could not be independently assessed in this dataset. 

 In order to eliminate these possible sources of bias, and to improve the generalizability of 

our results, we conducted a second experiment to further investigate the relationship between 

uncertainty and the use of spatial transformations, and added a second domain. Study 2 was a 

true in vivo study (Dunbar, 1995, 1997), involving both meteorologists and fMRI researchers 

conducting their own research. 

Method 

Participants 
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 Participants were two fMRI researchers and two meteorologists. The fMRI researchers 

had conducted 3 or 4 studies and had an average of approximately 3 years experience in fMRI 

research. They were thus considered near-experts (see Schunn’s chapter in this volume for 

additional descriptions of these researchers). The meteorologists had many years experience 

(over 10 years each) working as Navy forecasters, and were thus experts in this domain.  

Procedure 

The experiment took place at the participant’s regular work location, and all participants 

had access to all the tools, visualizations and computer equipment that they usually employed. 

All participants agreed to be videotaped during the session. Participants working alone were 

trained to give talk-aloud verbal protocols (Ericsson & Simon, 1993). All participants were 

instructed to carry out their work as though no camera were present and without explanation to 

the experimenter. It is important to emphasize that all participants were performing their usual 

tasks in the manner in which they typically did so, without interruption from the experimenter. 

 While the participants performed the task, the experimenter made note of “interesting 

events”. Interesting events consisted of any event that seemed to pique the participant’s interest, 

major changes in the computer display, such as a new visualization or application, an event that 

spurred a burst of participant activity, and the like. In other words, “interesting events” were 

those that struck the experimenter, in this on-line coding, as non-routine and worthy of further 

probing.  

After the task was completed, the experimenter showed the participant a one-minute 

segment of the video surrounding the “interesting event”; we shall refer to these video segments 

as interesting minutes. For each interesting minute, after reviewing the videotape, the 
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experimenter asked the participant “What did you know and what did you not know at this 

point?” Participants’ responses to these questions were also recorded on videotape.  

Coding 

 All utterances, from both the in vivo data and the interview data, were transcribed and 

segmented according to complete thought. For the in vivo data, all spatial transformations for the 

interesting minutes were identified, as described in Study 1. For the interview data, a second, 

independent coder (from a different lab) coded each utterance as certain or uncertain, using the 

same criteria as in Study 1. The difference between the uncertainty coding for the two 

experiments was that in Study 1, the coding scheme was applied to the in vivo data, whereas in 

Study 2, it was applied to the interview data. Based on the percentage of uncertain utterances in 

each interview minute, the corresponding in vivo minute was coded as certain (when fewer than 

10% of the utterances were uncertain), mixed (when 10 to 20% of the utterances were uncertain), 

or uncertain (when more than 20% of the utterances were uncertain).  

The participants’ retrospective utterances about their task performance provide an 

independent measure of their uncertainty during problem-solving, and thus address the concern 

discussed above about possible bias in the uncertainty coding in the first study. It is important to 

emphasize that the coder for the in vivo data did not have access to the interview minutes, or to 

any coding associated with those minutes. Likewise, the coder of the interview minutes did not 

have access to the in vivo data or the spatial transformation coding associated with it. Thus the 

two coding schemes were applied completely independently of one another, further precluding 

possible coding bias in the association between uncertainty and spatial transformations. 
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Results and Discussion 

Quantitative Analysis  

Of the 19 interesting minutes, 5 were coded as certain, 3 as mixed, and 11 as uncertain, 

thus confirming the large amount of uncertainty practitioners in these domains must contend 

with. Participants used least spatial transformations in the certain minutes, more in the mixed 

minutes, and most in the uncertain minutes, and this difference was significant, χ2 (1) = 20.85, p 

< .01. Figure 5 clearly shows the increase in the use of spatial transformations that accompanies 

the shift from greater certainty to greater uncertainty. These results support our basic hypothesis, 

that people will use more spatial transformations when they are uncertain than when they are 

certain. 

 One possible explanation for this increased use of spatial transformations is that it is part 

of a pattern of generally increased activity that occurred during uncertainty. That is, perhaps the 

participants were simply doing more things, or thinking more, when they were uncertain than 

when they were certain. In order to test this possibility, we examined the number of interface 

actions the scientists took in the certain and uncertain minutes. Interface actions were defined as 

manipulations of displayed data, and included closing visualizations and opening new ones, 

adjusting images (e.g., zooming in to enlarge them), opening and closing windows, etc. in order 

to advance an understanding of the data. As Figure 6 shows, the number of interface actions was 

not related to the certainty/uncertainty coding. Participants used about the same number of 

interface actions (1.2 compared with 1.8) when they were uncertain as when they were certain, 

with a slightly increased use of spatial transformations when their uncertainty level was mixed. 

The lack of obvious linear increase shown in Figure 6 strongly suggests that these practitioners’ 

general level of activity was independent of their level of uncertainty. It certainly indicates that 
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there is no reason to suspect that participants were conducting more interface actions when 

uncertain than when they were certain. 

 

 

Figure 5. Average numbers of spatial transformations used in certain, mixed, and uncertain 

interesting minutes 
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Figure 6. Average number of interface actions in certain, mixed, and uncertain interesting 

minutes 

 

Qualitative Analysis 

 We hypothesized that people would use more spatial transformations when they were 

uncertain than when they were certain, and this hypothesis was supported. We further proposed 

that spatial transformations would provide a means for practitioners to project their own 

knowledge—or suspicions—of uncertainty onto the external display, thereby constructing a 

more accurate internal representation of the data. Experts would then be able to work with this 

projected, internal representation of uncertainty in order to carry out the task at hand.  



 20 

 There are many instances of this type of process in these data. For example, consider the 

following extract from the protocol of one meteorologist using the visualization in Figure 3:  

You also have a 12 max 14—winds are not supporting that. The 
next chart has it moving down further to the south. There is a low 
coming off the coast that is probably getting around, so I would 
move it further to the south. And that just supports what I said 
about ours, OK.  
 

The meteorologist’s overall goal in this section was to determine whether or not a high seas 

warning is warranted. First, the meteorologist extracts information about the wave height from 

the chart (You also have a 12 max 14), but then she realizes that there is a mismatch between this 

information and another source of relevant information, wind speed and direction (winds are not 

supporting that). (The meteorologist had earlier commented that what drives the seas is the 

winds.) This conflict between two sources of information gives rise to uncertainty on her part. 

She consults a third source of information in memory—a chart she had looked at previously—

and comparing this information with the location of the specific wave height in the current 

visualization realizes the charts are suggesting two different locations for the “12 max 14.” 

Which location should she use to inform her forecast? With all this information in mind, the 

forecaster then introduces a fourth data source, an area of low pressure. The interesting thing 

about this low is that it is not represented on the visualization. In other words, the meteorologist 

first mentally creates the low (there is a low coming off the coast) and then—also mentally—

moves it around to position it in relation to the other data already in mind (that is probably 

getting around). She then uses the implications of this new internal representation to mentally 

relocate the area of “12 max 14” wave height  (so I would move it further to the south). 

Inspecting this revision, she is able to resolve the uncertainty (And that just supports what I said 

about ours, OK), because, the more southerly location makes better sense given the spatial 
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transformations she has performed. Spatial transformations thus allow the meteorologist to 

confirm the uncertainty (comparison between currently displayed and remembered data), to 

introduce relevant information that is not displayed (the low), to manipulate that information in 

relation to the displayed data (moving the low), to use domain knowledge to project the 

implications of these manipulations (relocate the “12 max 14”), and finally to evaluate the 

results. 

 Similar examples of the way spatial transformations function are found in the fMRI data. 

At one point, one of the fMRI researchers expressed some uncertainty about the pattern of 

activation on the display: 

They’re all decreasing below baseline, but it’s still hard to know 
what decreases in activation mean, so I don’t know what’s going 
on there. I’ll see if Jane knows. I don’t think anybody really knows 
what decreases really mean.…So punish looks like it’s a little bit 
higher, but that’s probably not significant, and it looks like [these 
two] are the same. [Pause] That is—ah! If that’s really postcentral 
gyrus that would make sense—they’re hitting a button in both 
cases. 

This entire episode takes place in a context of uncertainty. The researcher begins by reading off 

information (They’re all decreasing below baseline), but then acknowledges that that 

information isn’t especially useful in terms of understanding brain functioning, because it is 

uninterpretable (I don’t think anybody really knows what decreases really mean). He continues 

to try to read off information, comparing activation in two conditions (punish looks like it’s a 

little bit higher) and interpreting what it might mean (but that’s probably not significant). 

Unfortunately, the experiment doesn’t seem to have worked (it looks like these two are the 

same). He seems to feel a significant amount of confusion about what the data are saying, 

because this was an experimental manipulation in which significant differences in activation 

between conditions were predicted. Then he appears to have an insight (that is—ah!) and 
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proceeds to perform a spatial transformation of the data, by positing the area of activation is 

actually in an adjacent region of the brain (if that’s really post-central gyrus, that would make 

sense). In other words, if the display is not really showing what it purports to, but the area of 

activation is, in fact, the post-central gyrus, the pattern of activity “would make sense.” The 

researcher further projects the participants’ actions onto the representation (they’re hitting a 

button in both cases), a supposition which would account for the lack of difference between the 

conditions. The uncertainty and confusion can thus be resolved  

 These two examples are typical of the kind of problem-solving behavior demonstrated 

during the uncertain minutes: the experts used the visualizations as an initial source of data but 

then mentally manipulated the visualization in order to accommodate and resolve their 

uncertainty about what the data really represented. Comparing this behavior with their use of the 

visualizations during the certain minutes further highlights the role of spatial transformations 

during uncertainty. Consider this excerpt from one of the certain minutes in the fMRI domain: 

Now we’re going to do a contrast of areas that are active for 
words but have, really compare the contrast between the two. Ah, 
there we go. Now that’s what I like to see; it makes a lot more 
sense. You can see, this is, this is, um, this is beautiful. This is 
exactly what you want to see for this type of data. You see a trend 
going right up the um, right here, [these] coordinates—left is 
right3—so right along the right ventral visual pathway, you see this 
nice stream of activation. 
 

In contrast to the two examples discussed earlier, in this instance the researcher’s expectations 

about differences in activation patterns for the experimental conditions are clearly met. He 

announces the particular comparison he is going to make, and the data are displayed as he has 

predicted. His utterances consist entirely of either reading off information from the display (e.g., 

                                                
3 The comment “left is right” is not a spatial transformation but rather refers to the fact that the 
left side of the graph represents the right side of the brain; in other words, it describes the 
mapping of graph to data. 
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You see a trend going right up the um, right here; right along the right ventral visual pathway, 

you see this nice stream of activation) or of exclamations of satisfaction (e.g., this is beautiful; it 

makes a lot more sense). There is no uncertainty in his interpretation of the data, and there are no 

spatial transformations. Perhaps because his expectations have been met, he has no reason to be 

anything other than certain about the accuracy of the display. 

General Discussion and Conclusion 

 We conducted two studies to investigate our hypothesis that people using complex 

visualizations would use more spatial transformations when they are uncertain about the 

visualization than when they are certain. The results of both studies support this hypothesis. 

Study 1 provided an in-depth examination of the protocol of a single expert preparing a weather 

brief, using an on-line measure of uncertainty. Study 2 provided an extension of study 1 by 

expanding the number of domains and participants, and by developing independent coding 

schemes for uncertainty and spatial transformations. Furthermore, the results of study 2 showed 

that participants were not merely engaged in greater general problem-solving activity as 

uncertainty increased, as the number of interface actions was unrelated to their level of 

uncertainty. 

 One caveat to the results of our two studies is that the data are correlational, and 

consequently, we are unable at this time to conclude that uncertainty causes the experts to use 

spatial transformations. Nonetheless, given their contrasting behavior when participants were 

more certain, we do believe that the use of spatial transformations is a strategy by which experts 

deal with, and in some cases resolve, uncertainty in spatial domains. Although it is possible that 

a spatial strategy could be used in non-spatial domains, such as the likely responses to different 

gambles based on various probable outcomes discussed earlier in this paper, we think it unlikely, 
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in fact, that this is the case. Our main point is that in spatial domains, when experts must handle 

uncertainty, they use spatial transformations to do so. 

Specifically, we propose that because the participants were experts or near-experts, they 

had significant domain knowledge as well as the ability to recognize a large number of patterns 

in their given domain. Thus, they are aware (through training) that whereas the data appear 

certain, there are in fact many reasons to doubt its seeming precision and lack of ambiguity. 

Furthermore, their pattern-recognition capacities (developed from experience) can help guide 

them to identify those instances when they should doubt the data and make necessary 

modifications. They make these modifications by means of spatial transformations (mental 

manipulations) of the displayed data, by mentally creating or deleting data points, mentally 

moving objects around, mentally animating data, mentally projecting stored memories of past 

experiences, and the like. The modified representation—now internal—becomes a new resource 

with which to reason about the data. This internal representation can itself be further modified by 

additional spatial transformations, as new information is obtained. Thus, in long chains of 

reasoning, a complex dialogue between the external and internal visualizations may evolve, in 

which each can be updated until the expert is satisfied that he or she has enough information to 

reach a conclusion or to make a decision. In contrast, when they are certain about the data, 

experts use only the external visualization as a source of information, focusing their problem-

solving activity on reading off data values or other relevant types of information. When the data 

are considered reliable and sufficient, no further action is required.  

 How do our results mesh with the results of other research presented in this volume? 

Several researchers address issues of reasoning about uncertainty; however, the majority of those 

papers concentrate on uncertainty as the statistical notion of variability and error. In contrast, the 
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research presented in our paper focuses primarily on reasoning with visual data, rather than 

quantitative or statistical data. Whereas it is true that participants in these other studies used or 

even created graphical representations of statistical uncertainty, they did so mostly in order to 

represent, manipulate, and understand numerical variability. This use is consistent with the 

general use of graphs in modern statistics as a tool to understand numbers rather than as a means 

to examine real underlying effects in the data. 

Although variability and error are indeed factors for our experts, there are many more 

varied sources of uncertainty in the data that they must address—visual uncertainty (e.g., “I’m 

not sure if my area is being masked by this whole temporal area”), uncertainty about whether the 

data are complete or accurate (e.g., “I would move [the low] further to the south”), uncertainty 

about whether the data are outdated (e.g., “I’m somehow having to run off an old model, which 

is frustrating”), interpretive uncertainty (“It’s still hard to know what decreases in activation 

mean…I don’t think anyone really knows what decreases in activation mean”), and even 

uncertainty about whether the data in question represent the correct view (e.g., “…[he made] 

design files, but I think I told him to do it the wrong way”)—to name a few. 

 The different areas of focus (visual versus quantitative) raise important questions about 

the reasons for that divergence. Does the difference arise simply from what the individual 

researchers chose to examine, or does it reflect a genuine difference in an understanding of what 

data analysis is really about? In other words, to what extent does data analysis, in the sense of 

interpreting statistical concepts, capture the nature of “thinking with data”?  

 Statistical reasoning is, in fact, a crucial component of thinking with data. For many 

people, it is also a difficult process because it requires an understanding of concepts of 

uncertainty (variability and error), in order for useful interpretations to be constructed. However, 
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we propose that statistical representations of uncertainty are just one of many aspects of 

uncertainty in thinking with data, and that the full complexity of what constitutes uncertainty 

when thinking with data might be masked in some experimental settings.   

One important factor that may contribute some insight to this issue is the “in vivo” nature 

of our study. Not only were our participants asked to do tasks that they regularly perform, but 

they also had access to a wide range of data and analysis tools. Their problem-solving goal was 

internally motivated. In contrast, the other studies were conducted in a classroom setting with its 

attendant requirements to complete certain structured learning objectives prior to moving onto 

another unit of study. The participants were also engaged in problem-solving activities, but their 

motivation may have been external rather than internal. “Thinking with data” may necessarily 

mean different things in these different settings, one naturalistic and the other instructional. 

A second difference in our study that may be relevant is the fact that our participants 

were experts with many years of experience and a great deal of accumulated domain knowledge, 

in contrast to either children learning both the content and the methodology or college students 

working on an abstract task. As we noted above, we believe that an integral part of our 

participants’ response to uncertainty was initially recognizing that uncertainty existed in the data. 

The large number of patterns stored in memory from prior experience, and the ability to 

recognize and interpret them, were instrumental in discerning uncertainty, even when it was not 

explicitly portrayed. Novices and those working in abstract domains cannot rely on pattern 

recognition mechanisms to help identify areas of uncertainty; nor do they necessarily have the 

requisite training to understand at a general level the uncertainty inherent in any empirical data 

(due to measurement error, problems with experimental design, and so on). Thus, it is not 

surprising that in addition to performing more complex tasks, the experts were more aware of the 
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potential for multiple sources of uncertainty in the data, many of which were not explicitly 

represented. We suggest that this awareness and ability to exploit it are important factors, 

specifically in dealing with uncertainty, and more generally in thinking with data. However, how 

such awareness develops remains an open question. 

 The issues raised by the differences in these two approaches to data analysis are 

important as we think more broadly about what it means to “think with data.” Are the processes 

the same regardless of the situation?  Or does this, in fact, represent two qualitatively different 

tasks for experts and novices, or in real-world science as opposed to a laboratory or instructional 

setting, or in formal science rather than everyday or informal reasoning? A next step to 

investigate these issues further would be to study how novices in a domain (with some years of 

formal training and thus the requisite domain knowledge) handle uncertainty. 
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