
McDowell, L., Gupta, K.M., & Aha, D.W. (2009). Using caution to explain and improve
collective classification (Technical Report AIC-09-140). Washington, DC: Naval Research
Laboratory, Navy Center for Applied Research in Artificial Intelligence.

Using Caution to Explain and
Improve Collective Classification

Luke K. McDowell1, Kalyan Moy Gupta2, and David W. Aha3

1Dept. of Computer Science; U.S. Naval Academy; Annapolis, MD 21402
2Knexus Research Corp.; Springfield, VA 22153

3Navy Center for Applied Research in Artificial Intelligence;
Naval Research Laboratory (Code 5514); Washington, DC 20375

lmcdowel@usna.edu, kalyan.gupta@knexusresearch.com, david.aha@nrl.navy.mil

Abstract. Many algorithms for collective classification (CC) have been shown
to increase accuracy when instances are interrelated. Such algorithms must be
carefully applied, however, since CC’s use of estimated labels can in some
cases decrease accuracy. Thus, a deeper understanding of algorithmic
performances on data sets of different characteristics is needed. Although prior
work has begun to study and compare such algorithms, many important
questions remain unanswered. To address these limitations, we extend the
recently introduced notion of caution in CC algorithms to predict which CC
algorithms and training techniques will outperform others and identify the data
characteristics for which such performance differences will be substantial.
Using the theme of caution and our experimental results we demonstrate the
close relationship between two very different algorithms (Gibbs sampling and
Gradual Commit), show when they outperform less cautious algorithms, and
explain multiple conflicting results from prior CC research.

Keywords: collective inference, approximate probabilistic inference,
statistical relational learning

1 Introduction

Traditional methods for supervised learning assume that the instances are independent
of each other. However, in many classification tasks, instances can be related. For
example, hyperlinked web pages are more likely to have the same class label (e.g.,
“faculty” vs. “student” home page) than unlinked pages. Such auto-correlation
(correlation of class labels among interrelated instances) has been observed in a wide
variety of data [11], including situations where the relationships are implicit (e.g.,
email messages between two people are likely to share topics).

Collective classification (CC) is a methodology that simultaneously classifies
related instances. To do so, CC uses a base classifier and iterative collective
inference, enabling it often to attain higher accuracies than traditional methods when
instances are interrelated [9,16,4,11,15]. Several algorithms have been used for

collective inference, including relaxation labeling [2], iterative convergence
techniques [9,6], loopy belief propagation (LBP) [16], and Gibbs sampling [4,11].

All collective inference algorithms exploit relational features based on uncertain
(and thus noisy) estimation of class labels, and thus may in some cases actually
decrease accuracy [11,14,15]. Consequently, there is a need to compare the behavior
of CC algorithms on data sets with varying characteristics. Although recent work has
begun to study such comparisons [11,14,15,7], close examination of these prior
studies reveals several important and unanswered questions. First, Gibbs sampling is
often regarded as one of the most accurate inference algorithms, and has been shown
to work well for CC [4,11]. If so, why did Sen et al. [15] find no significant difference
between Gibbs and the much less sophisticated Iterative Classification Algorithm
(ICA)? Second, we recently showed that Gradual Commit (GC), a simple variant of
ICA, outperformed both Gibbs and ICA on three real-world tasks [8]. Why would GC
outperform Gibbs, and for what data characteristics are GC’s gains significant?

To answer these questions, we extend the notion of caution – favoring more certain
(i.e. less noisy) label estimations to diminish their negative effects – that we
previously introduced to explain GC [8]. In this paper, we show that the advantages of
caution also apply to Gibbs sampling, though they are achieved differently. In
addition, we explain how to utilize caution for training classifiers in CC by applying a
standard cross-validation technique. This technique for parameter tuning, which we
call CVPL (Cross-Validation Parameter Learning) has not been used for CC, yet can
provide significant performance advantages. We then show that, in contrast to prior
results, GC and Gibbs perform very similarly — if the base classifier uses appropriate
features and cautiously learns parameters suitable for CC. Also, both algorithms can
significantly outperform the more aggressive (i.e., less cautious) ICA, although GC is
computationally much less expensive than Gibbs.

Our contributions are as follows. First, we broaden the original notion of caution to
include three distinct types of cautious behaviors and show how specific algorithms
such as Gibbs benefit from it, as we previously did for GC. Second, we explain how
to make a CC algorithm, cautious or otherwise, more cautious via CVPL to account
for the algorithm’s use of estimated class labels during testing. Third, we identify the
data characteristics for which these cautious techniques should out-perform more
aggressive approaches such as ICA and/or naïve parameter learning. In particular, we
hypothesize that the cautious algorithms will outperform more aggressive versions
when the data characteristics are such that the intermediate relational feature values
estimated by the algorithms are highly uncertain. Fourth, we evaluate our hypotheses
over a wide range of synthetic data using two base classifiers, several CC algorithms,
and multiple baseline algorithms. Our results identify which data set characteristics
lead to significant performance differences and highlight the importance of CC-
specific parameter tuning. Finally, based on our findings, we answer the previously
mentioned questions regarding CC.

We next summarize related work and collective classification in general. We then
explain why CC needs to be cautious and describe three types of cautious behavior,
followed by specific CC algorithms that use such caution. Finally, we present our
experimental evaluation and discuss our findings.

2 Background on Collective Classification

In some classification tasks, the unlabeled instances can be implicitly or explicitly
related (e.g., hyperlinked web pages). Standard classifiers ignore such relations and
would typically classify a web page by considering only the features derived from its
words. Accuracy can be increased by adding features derived from related instances
(e.g., the words from hyperlinked pages). Even greater increases can occur when the
class label(s) of the related pages are used to derive relevant relational features [4].
However, some or all of their labels are initially unknown and must be estimated to
bootstrap the classification process. For example, initial class label estimates can be
obtained using non-relational features only. Next, these estimates could be used to
compute relational feature values and reclassify the instances. This process iterates,
and may increase accuracy.

CC algorithms operate in this manner and thus simultaneously classify interrelated
instances. They have two primary components:
• Base Classifier: To classify an instance i (e.g., a webpage), the base classifier uses

non-relational features (e.g., the words in page i) and relational features (e.g., the
most common class label among other pages linked to i). Many classifiers have
been used to do this, including those derived from Naïve Bayes [4], Markov
networks [16], k-nearest neighbor [8], and logistic regression [6].

• Collective inference: An inference algorithm (e.g., Gibbs sampling, LBP, ICA) is
used to update the class labels (or conditional probabilities), which are then used to
re-compute the relational feature values. This process repeats until some criteria or
convergence test is met.
Jensen et al. [4] examine how some data characteristics and feature choices affect

CC, but do not compare CC variants. Sen et al. [15] compare a different set of CC
algorithms than we do here, vary fewer data characteristics, and do not focus on the
topic of caution.

3 Types of Caution in CC and Why Caution is Important

In each iteration, a CC algorithm usually predicts the most likely class label for each
instance and uses it to determine the next iteration’s predictions. Although using label
predictions encapsulates the influence of a linked instance and simplifies learning [4],
it can be problematic. For example, iterating with incorrectly predicted labels can
propagate and amplify errors [11,14,15].

To address this problem, we recently proposed the use of caution in a CC
algorithm [8]. We defined an algorithm to be cautious if it sought to “explicitly
identify and preferentially exploit the more certain relational information,” and
explained that GC is cautious because it selectively ignores the estimated class labels
for which the classifier is less certain. Neville and Jensen [9] had introduced a simpler
version of GC but compared it only with non-relational classifiers. We showed that
GC could outperform ICA and Gibbs, but did not identify the conditions under which
such gains hold.

In this paper, we broaden our original notion of caution to identify three general
types of cautious techniques for CC. All three address the key potential problem with
CC (which is also its potential strength): its use of estimated labels during testing.
Below we summarize all three types and identify a specific example of that type for
further study.
• Caution type #1: Favoring more certain information. CC algorithms may

choose to favor predicted information that has higher confidence. This is the
approach taken by Gradual Commit (GC), which chooses to use only the most
certain labels at the beginning of it’s operation, then “gradually” incorporates less
certain predictions in later iterations.

• Caution type #2: Reasoning with uncertainty. At each iteration, instead of
always selecting the most likely class label for each instance (like ICA), a CC
algorithm can utilize the estimated label distribution of each instance. For example,
techniques like LBP and relaxation labeling directly reason with the estimated
label distributions. Alternatively, at each iteration Gibbs sampling re-samples the
label of each instance based on its estimated distribution. For further study of this
class of techniques, we select Gibbs sampling, in part because it has been
frequently studied and its generalization behavior tends to be more consistent than
relaxation labeling or LBP [15].

• Caution type #3: Training influenced by test procedure uncertainty. Training a
CC algorithm can be influenced by recognizing the disparity between the training
set (where labels are known and certain) and the test scenario (where labels may be
estimated and hence incorrect). In particular, a relational feature may appear to be
highly predictive of the class when examining the training set (e.g. to learn
conditional probabilities or feature weights), yet actually decrease accuracy if its
value is often incorrect during testing. In response, one approach is to ensure that
appropriate training parameters are cross-validated using the actual testing
conditions (e.g. with estimated test labels). We use CVPL to achieve this goal.
Section 4 describes how these ideas can be applied. Later, our experimental results

demonstrate when they lead to significant performance improvements.

4 Applying Caution to Collective Classification

The previous section described three general types of cautious techniques for CC.
Each addresses the fundamental problem of potential estimation errors in labels
during collective inference. Some of the techniques can be combined, and at least one
is used or is applicable to every CC algorithm known to us.

In this section, we provide examples of how each of the three types of caution can
be applied by describing specific CC algorithms that exploit them. Table 1
summarizes the four CC algorithms that we will consider (along with one non-
collective baseline) and the types of caution they can exploit. Below, we first describe
the non-cautious ICA algorithm, then explain how GC adds Type 1 caution to it.
Second, we summarize Gibbs sampling and explain how it exhibits Type 2 caution.
Third, we describe the wvRN algorithm, which also uses Type 2 caution. Finally, we

ICA (Iterative Classification Alg.)

GC (Gradual Commit)

Caution Type UsedFeatures Used
Non-relat.

Gibbs (Gibbs Sampling)

wvRN (weighted vote Relat. Neighbor)

CO (content only)
321Relat.

ICA (Iterative Classification Alg.)

GC (Gradual Commit)

Caution Type UsedFeatures Used
Non-relat.

Gibbs (Gibbs Sampling)

wvRN (weighted vote Relat. Neighbor)

CO (content only)
321Relat.

Table 1. The five classification algorithms considered in this paper. CO is a baseline
(non-collective) algorithm that only uses non-relational features. The other four
algorithms are CC algorithms. For the Caution Types (see Section 3), a black check
indicates that type is used, while a grey check indicates that the algorithm could
profitably use that type; our experiments consider both variants.

describe CVPL, our parameter learning technique for CC that can add caution to any
CC algorithm (excluding the few that do not learn from a training set).

ICA: Figure 1 displays pseudocode that can represent either ICA or GC; DoGC and
DoCVPL are boolean parameters that control its operation. In particular, when DoGC
is false, then Figure 1 represents ICA, which operates as follows. In step 1, it
computes the relational features’ values for the fully labeled training set. In Step 2, a
base classifier is learned using the training data. If DoCVPL is true, then this step
utilizes Type 3 caution via CVPL, which is described more fully later. Step 3 predicts
the test instances’ labels using only non-relational features. In steps 6-7, ICA
estimates the relational features’ values based on its predictions and reclassifies the
test set using all features. These steps are then repeated for n iterations. Note that step
6 uses all available labels for feature computation and step 7 picks the most likely
label for each instance based on the new predictions, so this process utilizes neither
Type 1 nor Type 2 caution. Step 8 returns the final set of estimated class labels.

GC: In step 6, ICA assumes that the assigned instance labels are all equally likely to
be correct. When DoGC is true, the algorithm becomes GC, a more cautious
algorithm because it only considers label assignments for which it has more
confidence (Type 1 caution). Specifically, step 5 commits only the best K of the
current label assignments (we use posterior probability as a confidence measure) and
sets all other labels to unknown. Step 6 computes the relational features using only the
committed labels, and step 7 classifies using this information. Step 5 gradually
increases the number of test set labels that are committed per iteration (e.g., 0%, 10%,
20%,…, up to 100% when n=10). Instances committed in an iteration j are not
necessarily committed again in iteration j+1.

GC favors more confident information (Type 1 caution) by ignoring instances
whose labels are estimated with lower confidence. Step 5 executes this preference, but
it affects the algorithm in several ways. First, leaving some label assignments as
unknown in step 5 causes the feature value computation in step 6 to ignore those
labels. Since this computation depends only on the most reliable label assignments,
subsequent assignments should also be more reliable. Also, a secondary effect is that
the computed value of some features will be unknown (e.g., when an instance links

Figure 1. Pseudocode for ICA (when DoGC is false) and GC (when
DoGC is true). We use n = 10.

return Te.Labels // return most likely class per test instance8
// ClassifyTe.Labels←classify(Te,Tr,M,NR,R,C)7

Te.R.values←setRelationalFeatures(Te∪Tr,R)6

if (DoGC) // Keep only top K labels (none when j=0)
K = (j / n) * |Te|
Te.Labels←commit_best_k (Te.Labels, K)

5
// Iteratefor j = 0 to n4
// BootstrapTe.Labels←classify(Te,Tr,M,NR,∅,C)3
// TrainM←induce_model(Tr,NR,R,C,DoCVPL)2

Tr.R.values←setRelationalFeatures(Tr,R)1

ICC(Tr,Te,NR,R,n,C,DoGC,DoCVPL) =
// Tr=Training data, Te=Test data, NR=non-relational features,
// R=rel. features, n=#iters, C=classifier, DoGC=do Gradual Commit,
// DoCVPL=do Cross-Validation Parameter Learning

Figure 1. Pseudocode for ICA (when DoGC is false) and GC (when
DoGC is true). We use n = 10.

return Te.Labels // return most likely class per test instance8
// ClassifyTe.Labels←classify(Te,Tr,M,NR,R,C)7

Te.R.values←setRelationalFeatures(Te∪Tr,R)6

if (DoGC) // Keep only top K labels (none when j=0)
K = (j / n) * |Te|
Te.Labels←commit_best_k (Te.Labels, K)

5
// Iteratefor j = 0 to n4
// BootstrapTe.Labels←classify(Te,Tr,M,NR,∅,C)3
// TrainM←induce_model(Tr,NR,R,C,DoCVPL)2

Tr.R.values←setRelationalFeatures(Tr,R)1

ICC(Tr,Te,NR,R,n,C,DoGC,DoCVPL) =
// Tr=Training data, Te=Test data, NR=non-relational features,
// R=rel. features, n=#iters, C=classifier, DoGC=do Gradual Commit,
// DoCVPL=do Cross-Validation Parameter Learning

only to instances labeled unknown). Second, a realistic CC scenario’s test set may
have links to training instances (e.g., new web pages may link to pages with known
labels); these are the “most certain” labels that link to the test set and thus may aid
classification. GC exploits only these labels when j=0. In this case, step 5 sets the
value of all labels in the test set to unknown, but some relational feature values in step
6 can be still be computed based on known labels in the training set. Thus, the known
labels influence the first classification in Step 7, before any estimated labels are used,
and in subsequent iterations.

In prior work [8], we separately evaluated GC’s performance benefit from these
two effects (favoring more confident labels vs. favoring known labels), and found
both helpful. For this paper, we likewise found benefits from both, but for simplicity
only report results with them together, since both are Type 1 cautious behaviors.

Gibbs Sampling: Figure 2 summarizes how Gibbs sampling can be applied to
collective inference. Steps 1-3 are identical to those in Figure 1, except that the
classifier must output distributions with the likelihood of each class. In step 5, within
the loop, the algorithm probabilistically samples the current class label distributions
and assigns a label to each instance based on its distribution. In step 6, it records these
labels, and in step 7 it computes the relational feature values given the current class
labels. In step 8, it re-computes the posterior class label probabilities given these
relational features. The process then repeats. When the process terminates, the
statistics recorded in step 6 approximate the joint distribution of class labels, which is
used in step 9 to identify each instance’s most likely class label. These labels are
returned in step 10.

Like GC, Gibbs is cautious in its use of estimated labels, but in a different way. In
particular, GC exercises caution in step 5 by ignoring (at least for some iterations)
labels that have lower confidence (Type 1 caution). In contrast, Gibbs exercises
caution by sampling, in step 5, values from each instance’s predicted label
distribution (Type 2 caution) – causing instances with lower prediction confidence to
reflect that uncertainty via higher fluctuation in their assigned labels. We expect
Gibbs to perform better, since it makes use of more information, but this requires

Te.Labels←pickMostLikelyClass(Te.Stats)9

Figure 2. Psuedocode for CC using Gibbs sampling. We use n = 1000.
return Te.Labels // return most likely class for each instance10

// ClassifyTe.ClassProbs←classify(Te,Tr,M,NR,R,C)8
Te.R.values←setRelFeatures(Te∪Tr,R)7

// Take statsTe.Stats←updateStats(Te.Stats,Te.Labels)6
// SampleTe.Labels ←sampleDist(Te.ClassProbs)5
// Iteratefor j =1 to n4
// BootstrapTe.ClassProbs←classify(Te,Tr,M,NR,∅,C)3
// TrainM←induce_model(Tr,NR,R,C,DoCVPL)2

Tr.R.values←setRelFeatures(Tr,R)1

GibbsCC(Tr,Te,NR,R,n,C,DoCVPL) =
// Tr=Training data, Te=Test data, NR=non-relational features,
// R=rel. features, n=#iterations, C=classifier,
// DoCVPL = do Cross-Validation Parameter Learning

Te.Labels←pickMostLikelyClass(Te.Stats)9

Figure 2. Psuedocode for CC using Gibbs sampling. We use n = 1000.
return Te.Labels // return most likely class for each instance10

// ClassifyTe.ClassProbs←classify(Te,Tr,M,NR,R,C)8
Te.R.values←setRelFeatures(Te∪Tr,R)7

// Take statsTe.Stats←updateStats(Te.Stats,Te.Labels)6
// SampleTe.Labels ←sampleDist(Te.ClassProbs)5
// Iteratefor j =1 to n4
// BootstrapTe.ClassProbs←classify(Te,Tr,M,NR,∅,C)3
// TrainM←induce_model(Tr,NR,R,C,DoCVPL)2

Tr.R.values←setRelFeatures(Tr,R)1

GibbsCC(Tr,Te,NR,R,n,C,DoCVPL) =
// Tr=Training data, Te=Test data, NR=non-relational features,
// R=rel. features, n=#iterations, C=classifier,
// DoCVPL = do Cross-Validation Parameter Learning

careful confirmation. Furthermore, the sophistication of Gibbs comes at a cost – ICA
and GC generally converge in about 10 iterations, whereas Gibbs typically requires
thousands of iterations to yield good performance (for all three algorithms the cost
per iteration is similar). Thus, GC’s simplicity and speed may make it a promising
alternative to Gibbs.

Weighted-Vote Relational Neighbor Classifier (wvRN). wvRN is a relational-only
CC algorithm that Macskassy and Provost [7] argued should be considered as a
baseline for all CC evaluations. At each iteration, each instance i updates its estimated
class distribution by averaging the current distributions of each of its linked
neighbors. wvRN ignores all non-relational features. Thus, wvRN is useful only if the
test set links to some instances with known labels to “seed” the inference process.
Macskassy and Provost showed that this simple algorithm could work well if auto-
correlation of instance labels was high and enough known labels were available. Since
wvRN computes directly with the estimated label distributions, it exercises Type 2
caution. However, unlike the other CC algorithms, it does not learn from a training
set, and thus parameter learning with CVPL (Type 3 caution) does not directly apply.

Cross-Validation Parameter Learning (CVPL). CC algorithms typically train a
base classifier on a fully-labeled training set, then use that base classifier with some
collective inference algorithm to classify the test set. Unfortunately, the classifier
learned from the (fully labeled) training set may tend to produced poor estimates of
important parameters related to the relational features (e.g., feature weights,
conditional probabilities), since these features depend upon labels that may be
estimated incorrectly during collective inference. We found that, in some cases, this
can have a large negative impact on performance.

One way to address this problem is to perform automated parameter tuning based
on cross-validation (e.g., [5]). However, unlike the typical situation where the training
and test sets have the same known features, the CC situation differs, since relational
features must be estimated for testing. CVPL performs automated tuning by
repeatedly evaluating a learned base classifier, with the collective inference

algorithm, on a holdout set (a subset of the training set) using different values of a
parameter that controls the impact of relational features. It selects the value that yields
the best performance and applies it during testing. In essence, we use CVPL to set a
classifier parameter that compensates for the bias that would otherwise be incurred
from training on a fully-labeled set while testing using estimated labels.

We expect CVPL’s utility to vary based upon the number of “known labels” that
are available to the test set. If the test set has many such known labels, then there is
less discrepancy between the training and test environments, and hence less need to
apply CVPL. Conversely, if few labels are known, there is a large discrepancy and we
expect CVPL to have a large effect. Also, because almost all CC algorithms use a
base classifier that learns parameters based on relational features, CVPL is widely
applicable (e.g., it can be applied to ICA, GC, and Gibbs, as shown in Table 1).

CVPL has not been previously used for CC. A possible exception is Lu and Getoor
[6], who appear to have used a form of CVPL to tune a relational parameter, but they
did not discuss its need, the specific procedure, or the performance impact. Here, we
explain its importance for CC, and empirically confirm that it can significantly
increase accuracy.

5 Evaluation Methodology

Our goal is to investigate the performance and the utility of the three types of caution
over a wide range of data characteristics (e.g., link density, auto-correlation).

Data. We use a synthetic data generator with two components: a Graph Generator and
an Attribute Generator. First, the Graph Generator [15] has four inputs: NI (the
number of nodes/instances), NC (the number of classes), ld (the link density), and dh
(the degree of homophily). For each link, dh specifies the probability that the linked
nodes have the same class label; higher values yield higher auto-correlation. The final
number of links is approximately NI/(1-ld), and the final link degrees follow a power
law distribution, which is common in real networks [1]. To make this a practical
study, we chose default parameter values that mimic characteristics of two frequently
studied CC datasets, Cora and Citeseer [8,11,15]. In particular, NC=5 classes and
Table 2 shows additional default values. We chose NI=250 instances, a smaller value
than with Cora/Citeseer, to reduce CC execution time, but larger values did not
change our trends. We use synthetic data instead of the actual Cora/Citeseer data to
allow us to directly vary all of the interesting data characteristics.

Second, the Attribute Generator1 uses a method motivated by our observations of
common CC datasets. We found that, unlike synthetic models used in prior studies,
different attributes vary in their utility for class prediction. To simulate this we
construct 10 (NA) binary attributes Aj (j∈[0,NA-1]) and generate each attribute Aj’s
values so that they are most predictive of a particular class Ck, where k=j mod NC. For
node i with class Ci, we set the probability that its jth attribute Xij has value 1 as
follows:

1 For simplicity, we henceforth refer to non-relational features as attributes.

…decreases. (H4)0.0, 0.2lpLabeled proportion
…decreases. (H3)0.2ldLink density
… decreases. (H2)0.6apAttribute predictiveness
…increases. (H1)0.8dhDegree of homophily

Hypothesis: Relative gain of caution
will increase as parameter value…

Default
value

AbbrevData parameter

…decreases. (H4)0.0, 0.2lpLabeled proportion
…decreases. (H3)0.2ldLink density
… decreases. (H2)0.6apAttribute predictiveness
…increases. (H1)0.8dhDegree of homophily

Hypothesis: Relative gain of caution
will increase as parameter value…

Default
value

AbbrevData parameter

Table 2. The four data generation parameters that we vary to investigate our hypotheses.
Default values are based on measurements from the Cora and Citeseer datasets [8,15].

P(Xij=1|Ci=Ck) = 0.15+(ap−0.15)*j/(NA−1) if k = j mod NC
 = 0.1 if k = (j−1) mod NC
 = 0.05 if k = (j+1) mod NC
 = 0.02 Otherwise
The first line indicates that, when Ck is the class associated with Aj (i.e., k=j mod

NC), P(Xij=1|Ci=Ck) ranges from 0.15 for j=0 to ap (attribute predictiveness) for j=9.
However, Xij may also be 1 when Ck is some other class; the next three lines encode
this class ambiguity. This is based on our observations of Cora and Citeseer and is
similar to the binomial distribution of Sen et al. [15].

We focus on two evaluation conditions: the out-of-sample task, where test set
nodes do not link to nodes with known labels, and the in-sample task, where they do
link to known labels (e.g., in the training set). Both types of tasks may emerge in real-
world situations [10]. We simulate the latter by using a parameter for test set
generation called lp (labeled proportion – the proportion of test instances with known
labels), where accuracy is evaluated only over the unknown labels. We use a default
lp value of 0.2, the average of the values found for Cora and Citeseer. For the out-of-
sample task, we set lp=0.0 (a second default value).

Hypotheses. We evaluate the following hypotheses, which are summarized in Table
2. In general, we expect cautious behaviors to be more important as the uncertainty in
the relational features increases. Thus, each hypothesis varies one data generation
parameter that impacts such uncertainty, and compares the resultant performance of
GC and Gibbs (Types 1 or 2 caution) with ICA (non-cautious). Section 6 also briefly
summarizes results for CVPL (Type 3 caution).
H1: The relative gain of GC and Gibbs vs. ICA increases with the degree of

homophily (dh). Larger homophily means higher label auto-correlation among
related instances, in which case the relations are more predictive. This magnifies
the impact that an error in a predicted label can have on neighboring instances.
Therefore, we expect cautious algorithms to improve classification by a greater
margin in such cases.

H2: The relative gain of GC and Gibbs vs. ICA increases with decreasing attribute
predictiveness (ap). Decreased ap implies a greater potential of errors/uncertainty
in the predicted labels. The effect of cautiously using uncertain labels should be
greater in such cases.

H3: The relative gain of GC and Gibbs vs. ICA increases with decreasing link density
(ld). When the number of links is high, a single mispredicted label has relatively
little impact on its neighbors. As the number of links decreases, however, a single

misprediction can cause larger relational feature uncertainty, increasing the need
for caution.

H4: The relative gain of GC and Gibbs vs. ICA increases with decreasing labeled
proportion (lp). When lp is high, only a small fraction of each instance’s
neighbors have estimated labels (most are known with certainty), and thus it is
less important to use estimated labels cautiously. However, as lp decreases the
uncertainty in estimated labels increases and thus we expect the impact of caution
to increase.

CC Algorithms. We evaluate the 5 algorithms listed in Table 1. CO is a non-CC
baseline, while wvRN is a collective but relational-only baseline. ICA, GC, and
Gibbs are collective algorithms that use both relational features and attributes, with
GC and Gibbs being more cautious than ICA. For Gibbs, we use 1000 iterations
with a burn-in of 200.

Classifiers. To account for possible variations in overall CC performance trends due
to the effect of the underlying classifier, we tested two base classifiers with each CC
algorithm except wvRN (which does not use a base classifier). The first classifier is
Naïve Bayes (NB). With the relational features, NB employed a Dirichlet prior with a
single “hyperparameter” α [3]. The manual setting used α=1.0, which reduces to the
common Laplace smoothing. CVPL searched for α in [1,5000] (larger values yield
less extreme probabilities). The second classifier is k-Nearest Neighbor (kNN); we
empirically set k=5. When computing similarity, non-relational features (attributes)
had a weight of 1, and relational features had weight WR. For a manual setting,
WR=1.0. CVPL searched for WR in [0.01,5]. The specific similarity function, for
instances i and j, was:

∑∑ −−=
k

k
k

kkk wjfifwjisim /))()(1(),(

where wk is the weight of feature k, and fk(i) is the value of feature k for instance i.
Weighted similarity was used for voting.

Instance Representation. Each instance is represented by ten binary attributes and
some relational features. Because representation choices can affect how well a CC
algorithm handles the uncertainty of estimated labels, we considered two different
types of relational features: proportion and multinomial. For NB, we experimented
with both and found that multinomial consistently performed best across the different
algorithms. For kNN, only the proportion features are directly applicable, so we used
that. Below, we describe each feature in detail:
• Proportion (used by kNN): This type represents the proportion of neighbors that

belong to a particular class. There is one such feature fc per class label c, yielding 5
total. The value of a feature fc(i) = Neighborsc(i) / Neighbors(i), where
Neighbors(i) is the number of instances hyperlinked to instance i whose values are
not unknown, and Neighborsc(i) is the number whose current label is c. If
Neighbors(i) is zero, then fc(i) is set to unknown.

• Multinomial (used by NB): Proportion features, like other features that have been
used for CC such as count and exists, are features that aggregate the labels of an

instance’s neighborhood to produce a single value (for proportion, a value between
zero and one). In contrast, a multinomial feature uses a multinomial set to fully
represent the estimated labels of all of an instance’s neighbors. During inference,
each label in the set (excluding unknown labels) is then separately used to update
the conditional probability that an instance has true label c. This is the
“independent value” approach of Neville, Jensen, and Gallagher [12], which they
also used in their later work (e.g., [11]).

Test Procedure. For each control condition (i.e., data generated with a combination
of dh, ap, ld, and lp values, see Table 2) we ran 25 random trials. For each trial, we
generated training, holdout, and test data sets of 250 nodes (i.e., instances) each. The
holdout set, when not used for parameter learning, was merged with the training set.
We measured classification accuracy on the test set.
Statistical Analysis. To compare algorithms for a single control condition, we used a
one-tailed paired t-test accepted at the 95% confidence level. For hypotheses H1-H4,
we compared two algorithms (e.g., GC vs. ICA) for each independent variable (X)
(e.g., ld) as follows: For each trial, we computed the difference in the algorithms’
classification accuracies (e.g., 225 such differences for 25 trials and 9 values of ld).
We performed linear regression (Y=a+bX), where the accuracy difference is the
dependent variable (Y) and X is the independent variable (e.g., ld). The estimated
value of slope b, when non-zero, indicates an increasing (+) or decreasing (-) trend.
Regression produces a p value associated with the slope that indicates the significance
level for hypothesis testing; we accept when p<0.05. Below, we only report results for
lp=0.2 (the in-sample task). However, regression analyses for results with lp=0 (the
out-of-sample task) supported the same conclusions. Likewise, we only mention the
slope b for GC vs. ICA, but Gibbs vs. ICA yielded the same conclusions unless
otherwise noted.

6 Results

Figure 3 display plots for average classification accuracy. These results all include
CVPL except for where it does not apply (CO and wvRN); later we evaluate its effects
separately. We consider each of the four hypotheses (see Table 2) in turn, then
consider wvRN and CVPL. Percentages given are the raw difference between
accuracies (e.g., we report a 6% gain due to improving the accuracy from 60% to
66%, rather a percentage change of 10%).
Result 1: GC and Gibbs outperform ICA by increasing amounts as the degree of
homophily (dh) increases. The regression analyses all found positive values for the
slope b (e.g., 0.10 for GC-NB and 0.05 for GC-kNN, all p < 0.001), so we accept H1.

Figures 3a and 3b show the details. When homophily is low, CC offers little gain
and all algorithms except wvRN perform comparably. As the potential advantages of
CC increase with higher homophily, the relative gain of GC and Gibbs increases
(e.g., for NB from 4% at dh=0.6 to 9-10% at dh=0.9). These gains are significant for
dh≥0.5 for NB (excluding dh=0.6 for Gibbs) and for dh≥0.7 for kNN.

a) NB

55%

60%

65%

70%

75%

80%

85%

90%

95%

0.0 0.2 0.4 0.6 0.8 1.0

Degree of Homophily (dh)

GC
Gibbs
ICA
CO
wvRN

c) NB

20%

30%

40%

50%

60%

70%

80%

90%

0.0 0.2 0.4 0.6 0.8 1.0

Attribute Predictiveness (ap)

e) NB

60%

65%

70%

75%

80%

85%

90%

95%

0.0 0.2 0.4 0.6 0.8 1.0

Link Density (ld)

b) kNN

55%

60%

65%

70%

75%

80%

85%

90%

95%

0.0 0.2 0.4 0.6 0.8 1.0

Degree of Homophily (dh)

GC
Gibbs
ICA
CO
wvRN

f) kNN

60%

65%

70%

75%

80%

85%

90%

95%

0.0 0.2 0.4 0.6 0.8 1.0

Link Density (ld)

d) kNN

20%

30%

40%

50%

60%

70%

80%

90%

0.0 0.2 0.4 0.6 0.8 1.0

Attribute Predictiveness (ap)

g) NB
90%

60%

65%

70%

75%

80%

85%

0.0 0.2 0.4 0.6 0.8

Labeled Proportion (lp)

h) kNN
90%

60%

65%

70%

75%

80%

85%

0.0 0.2 0.4 0.6 0.8

Labeled Proportion (lp)

Result 2: GC and Gibbs outperform ICA by increasing amounts as attribute
predictiveness (ap) decreases. The regression analyses of ap vs. the difference
between ICA and either Gibbs or GC found a negative slope b (e.g., -0.34 for GC-
NB and -0.18 for GC-kNN, all p <0.001), so we accept H2.

Figures 3c and 3d show details. When ap is 0.6 (the default), GC and Gibbs
outperform ICA by 6-7% for NB and 2-3% for kNN. However, as ap decreases to
0.2, label uncertainty increases (as evidenced by the drop for CO), causing the
relative gain to increase to 23-25% for NB and 9%-12% for kNN. These gains are
significant for all values of ap shown, except for Gibbs-kNN at ap=0.9.
Result 3 GC and Gibbs outperform ICA when link density (ld) is low, but have
mixed results when ld is high. The regression analyses found a significant negative
slope for most cases (e.g., -0.14 for GC-NB and -0.12 for GC-kNN), but not for
Gibbs-kNN. Thus, we do not accept H3.

GC and Gibbs significantly outperform ICA when ld is low to moderate (Figures
3e and 3f)). However, the performance of ICA consistently improves with ld;
enabling it to eventually significantly outperform GC and Gibbs for NB, and GC for
kNN. Intuitively, when the link graph is dense, the relational features are relatively
unaffected by a few incorrect labels. Thus, if accuracy is high, ICA outperforms GC
by simply using all available labels, since almost all are correct. Other results confirm
that when attribute predictiveness is low, this effect does not hold and GC outperforms
ICA even when ld is high. Since Gibbs uses all available information, at high ld it
performs on par with ICA when using kNN – but not with NB. Instead, when ld is
very high the NB classifier tends to produce probability estimates that are very close
to zero or one, in which case Gibbs sampling is known to perform poorly.
Result 4: GC and Gibbs outperform ICA more as the labeled proportion (lp)
decreases.. All regression analyses found negative valued slopes (p < 0.002). Thus,
we accept H4.

As expected, Figures 3g and 3h show that the greater uncertainty caused by small
lp yields larger gains for the more cautious algorithms. In addition, for GC and Gibbs
(but not for ICA), CC accuracy improves by only 2-3% from lp=0.2 to lp=0.8,
suggesting that the more cautious CC algorithms are effective in replicating the gain
possible if almost all neighbors were known, even when few are actually known.
wvRN: wvRN’s performance depends on homophily, link density, and lp. In our study,
wvRN was competitive with the other CC algorithms only when homophily and/or lp
was high, or when the attributes were not very predictive. For tasks in which a high lp
or weak attributes are presumed, wvRN’s accuracy should be more competitive. On
the other hand, wvRN requires that some labels are known in the test set, so it is not
applicable when lp = 0 (the out-of-sample task).
CVPL: The results described above all used CVPL. We found that when some test
labels were known (lp > 0), CVPL had only a small impact. When all labels were
unknown (lp = 0), however, the use of CVPL was sometimes important. Using CVPL
almost always increased accuracy by at least a few percentage points. Moreover, for
each algorithm there was some type of data for which not adjusting for CC training
biases (i.e., not using CVPL) led to very poor performance. Using CVPL corrected for

these problems. For instance, CVPL improved performance dramatically for the NB
classifier (e.g., by 15-33% with Gibbs) when link density was high and for the kNN
classifier (e.g., by 6-9% with ICA) when homophily was moderate. Thus, applying
CVPL in all of our other experiments seemed advisable for maximizing performance
and ensuring the fairest comparisons.

7 Discussion and Explanation of Prior Results

Our results enable us to explain the unanswered questions from Section 1:
• Why did Sen et al. [15] find no consistent difference between Gibbs and ICA? In

contrast, Gibbs had worked well in other work, and in this paper we found that
Gibbs (and GC) often did significantly increase accuracy vs. ICA. However, our
results and careful study of Sen et al.’s methodology explains the discrepancy: to
generate the test set, they used a particular “snowball” sampling method that we
found produced an effective labeled proportion of at least 0.5 – a region where we
showed that the use of caution has little impact. Also, they did not vary attribute
predictiveness, which we show is a significant factor in the relative performance of
more cautious CC algorithms.

• Why did McDowell et al. [8] find that GC outperformed Gibbs, while the results of
this paper generally found Gibbs performing at least as well as GC? To
investigate, we re-ran the earlier experiments (which used three real-world
datasets), but with two variations informed by our now refined understanding of
caution. First, we used CVPL with both the NB and kNN classifiers. Second, we
changed the NB classifier to use multinomial features (instead of proportion). The
use of multinomial features is in some sense more cautious, since it retains all label
info rather than aggregating, and our results showed it yielded better accuracy for
NB (it didn’t apply for kNN). With these enhancements, Gibbs’s relative
performance improved, so that GC and Gibbs both significantly outperformed ICA,
but Gibbs and GC were not significantly different from each other. Thus, more
careful learning and representation choices yields results for the three previously-
used datasets that are highly consistent with those reported here for synthetic data.

• When will cautious algorithms outperform more aggressive variants? We found
that using more cautious CC frequently and sometimes dramatically increased
accuracy. In general, cautious CC performs comparatively better whenever there is
more uncertainty in the estimated relational feature values (e.g., as occurs when the
attribute predictiveness is low) or when the effect of any such uncertainty is
magnified (e.g., when homophily is high). In some cases, such as when the test set
links to many known labels (high lp), using a more cautious CC algorithm may be
unnecessary. However, in many cases (and with most previous work) lp is small or
zero, and thus caution may be important. To increase the robustness of our
conclusions, we performed additional tests using an alternative graph generator
[11], an alternative attribute generator (a Naïve Bayes model learned directly from
the raw Cora data), and different relational feature choices (neighbor counts
thresholded to yield a binary value). The results were consistent with those
reported here.

This paper also examined several types of cautious behavior for CC. In particular,
GC and Gibbs used different types of caution: favoring confident information (Type
1) vs. re-sampling based on label distributions (Type 2). Because Gibbs more fully
uses the available information, we expected Gibbs to perform better than GC in some
situations. Instead, we found that, while Gibbs sometimes had a small gain over GC,
they performed remarkably similarly given their large algorithmic differences. This is
particularly interesting because, while they require similar execution time per
iteration, deterministic GC typically needs several orders of magnitude fewer
iterations to achieve good results. Thus, GC’s simplicity and speed may make it a
promising alternative to Gibbs.

Regarding Type 3 caution, we found that CVPL generally increased accuracy,
sometimes substantially. It is well-known that parameter tuning is important for
learning non-relational classifiers. We show for the first time that it can be especially
critical for CC due to CC’s reliance on uncertain labels during testing. For example,
further results showed that when link density was high, Gibbs-NB with a naïve α
(prior hyperparameter) of 1.0 attained 99% of the accuracy attainable with any α – if
most test labels were known (e.g., lp=0.8). However, when lp=0 this strategy’s
accuracy was just 61% of optimal. Using CVPL instead increased accuracy, as we
also found with ICA and GC, and expect to find with other classifiers and CC
algorithms.

8 Conclusion

We identified and investigated three types of “cautious” algorithmic behaviors that
address the problem of using estimated test set labels with collective classification
(CC). Each behavior had been seen before in some context, but none had been
subjected to analysis that explained its behavior in the context of cautious algorithms
in general and that identified the data characteristics for which it outperformed more
aggressive variants like ICA. In particular, we showed that cautious techniques
produce accuracy gains that are especially large when the data characteristics are such
that there is greater uncertainty in the values of the relational features. These results
enabled us to answer several important unanswered questions from previous work.

We showed that these cautious techniques work well with two base classifiers and
expect that they will provide comparable benefits with others, although this needs to
be demonstrated empirically. Also, our investigation should be extended to compare
with other CC techniques that exercise caution including LBP and Markov Logic
Networks [13]. Finally, we plan to investigate techniques that will improve cautious
CC’s performance on data with high link density or other extreme conditions.

References
1. Bollobas, B., Borgs, C., Chayes, J., & Riordan, O. (2003). Directed scale-free

graphs. Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (pp.
132-139). Baltimore, MD: ACM.

2. Chakrabarti, S., Dom, B., and Indyk, P. (1998). Enhanced hypertext categorization
using hyperlinks. Proceedings of the International Conference on Management of
Data (pp. 307-318). Seattle, WA: ACM.

3. Heckerman, D. (1995) A tutorial on learning with Bayesian networks (Technical
Report MSR-TR-95-06). Redmond, WA: Microsoft Research.

4. Jensen, D., Neville, J., and Gallagher, B. (2004). Why collective inference
improves relational classification. Proceedings of the Tenth International
Conference on Knowledge Discovery and Data Mining (pp. 593-598). Seattle,
WA: ACM.

5. Kohavi, R., and John, G.E. (1997). Wrappers for feature subset selection. Artificial
Intelligence, 97(1-2), 273-324.

6. Lu, Q., and Getoor, L. (2003). Link-based classification. Proceedings of the
Twentieth International Conference on Machine Learning (pp. 496-503).
Washington, DC: AAAI.

7. Macskassy, S., and Provost, F. (2007). Classification in networked data: A toolkit
and a univariate case study. Journal of Machine Learning Research, 8, 935-983.

8. McDowell, L., Gupta, K. M., and Aha, D.W. (2007). Cautious inference in
collective classification. In Proceedings of the Twenty-Second Conference on
Artificial Intelligence. Vancouver, Canada: AAAI Press.

9. Neville, J., and Jensen, D. (2000). Iterative classification in relational data. In L.
Getoor and D. Jensen (Eds.) Learning Statistical Models from Relational Data:
Papers from the AAAI Workshop (Technical Report WS-00-06). Austin, TX:
AAAI.

10.Neville, J., and Jensen, D. (2005). Leveraging relational autocorrelation with latent
group models. Proceedings of the Fifth International Conference on Data Mining.
Houston, TX: IEEE.

11.Neville, J., and Jensen, D. (2007). Relational dependency networks. Journal of
Machine Learning Research, 8, 653-692.

12.Neville, J., Jensen, D., and Gallagher, B. (2003). Simple estimators for relational
bayesian classifiers. Proceedings of the Third IEEE International Conference on
Data Mining. Melbourne, FL: IEEE.

13.Richardson, M., and Domingos, P. (2006). Markov logic networks. Machine
Learning, 62(1-2), 107-136.

14.Sen, P., and Getoor, L. (2006). Empirical comparison of approximate inference
algorithms for networked data. In A. Fern, L. Getoor, and B. Milch (Eds.) Open
Problems in Statistical Relational Learning: Papers from the ICML Workshop.
Pittsburgh, PA: www.cs.umd.edu/projects/srl2006.

15.Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., and Eliassi-Rad, T.
(2008). Collective classification in network data. To appear in AI Magazine.

16.Taskar, B., Abbeel, P., and Koller, D. (2002). Discriminative probabilistic models
for relational data. Proceedings of the Eighteenth Conference on Uncertainty in
Artificial Intelligence (pp. 485-492). Edmonton, Canada: Morgan Kaufmann.

