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Abstract. Many algorithms for collective classification (CC) have been shown 
to increase accuracy when instances are interrelated. Such algorithms must be 
carefully applied, however, since CC’s use of estimated labels can in some 
cases decrease accuracy. Thus, a deeper understanding of algorithmic 
performances on data sets of different characteristics is needed. Although prior 
work has begun to study and compare such algorithms, many important 
questions remain unanswered.  To address these limitations, we extend the 
recently introduced notion of caution in CC algorithms to predict which CC 
algorithms and training techniques will outperform others and identify the data 
characteristics for which such performance differences will be substantial.  
Using the theme of caution and our experimental results we demonstrate the 
close relationship between two very different algorithms (Gibbs sampling and 
Gradual Commit), show when they outperform less cautious algorithms, and 
explain multiple conflicting results from prior CC research. 
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1  Introduction 

Traditional methods for supervised learning assume that the instances are independent 
of each other. However, in many classification tasks, instances can be related. For 
example, hyperlinked web pages are more likely to have the same class label (e.g., 
“faculty” vs. “student” home page) than unlinked pages. Such auto-correlation 
(correlation of class labels among interrelated instances) has been observed in a wide 
variety of data [11], including situations where the relationships are implicit (e.g., 
email messages between two people are likely to share topics). 

Collective classification (CC) is a methodology that simultaneously classifies 
related instances. To do so, CC uses a base classifier and iterative collective 
inference, enabling it often to attain higher accuracies than traditional methods when 
instances are interrelated [9,16,4,11,15]. Several algorithms have been used for 



collective inference, including relaxation labeling [2], iterative convergence 
techniques [9,6], loopy belief propagation (LBP) [16], and Gibbs sampling [4,11]. 

All collective inference algorithms exploit relational features based on uncertain 
(and thus noisy) estimation of class labels, and thus may in some cases actually 
decrease accuracy [11,14,15]. Consequently, there is a need to compare the behavior 
of CC algorithms on data sets with varying characteristics. Although recent work has 
begun to study such comparisons [11,14,15,7], close examination of these prior 
studies reveals several important and unanswered questions. First, Gibbs sampling is 
often regarded as one of the most accurate inference algorithms, and has been shown 
to work well for CC [4,11]. If so, why did Sen et al. [15] find no significant difference 
between Gibbs and the much less sophisticated Iterative Classification Algorithm 
(ICA)? Second, we recently showed that Gradual Commit (GC), a simple variant of 
ICA, outperformed both Gibbs and ICA on three real-world tasks [8]. Why would GC 
outperform Gibbs, and for what data characteristics are GC’s gains significant? 

To answer these questions, we extend the notion of caution – favoring more certain 
(i.e. less noisy) label estimations to diminish their negative effects – that we 
previously introduced to explain GC [8]. In this paper, we show that the advantages of 
caution also apply to Gibbs sampling, though they are achieved differently. In 
addition, we explain how to utilize caution for training classifiers in CC by applying a 
standard cross-validation technique. This technique for parameter tuning, which we 
call CVPL (Cross-Validation Parameter Learning) has not been used for CC, yet can 
provide significant performance advantages. We then show that, in contrast to prior 
results, GC and Gibbs perform very similarly — if  the base classifier uses appropriate 
features and cautiously learns parameters suitable for CC. Also, both algorithms can 
significantly outperform the more aggressive (i.e., less cautious) ICA, although GC is 
computationally much less expensive than Gibbs. 

Our contributions are as follows. First, we broaden the original notion of caution to 
include three distinct types of cautious behaviors and show how specific algorithms 
such as Gibbs benefit from it, as we previously did for GC. Second, we explain how 
to make a CC algorithm, cautious or otherwise, more cautious via CVPL to account 
for the algorithm’s use of estimated class labels during testing. Third, we identify the 
data characteristics for which these cautious techniques should out-perform more 
aggressive approaches such as ICA and/or naïve parameter learning. In particular, we 
hypothesize that the cautious algorithms will outperform more aggressive versions 
when the data characteristics are such that the intermediate relational feature values 
estimated by the algorithms are highly uncertain. Fourth, we evaluate our hypotheses 
over a wide range of synthetic data using two base classifiers, several CC algorithms, 
and multiple baseline algorithms. Our results identify which data set characteristics 
lead to significant performance differences and highlight the importance of CC-
specific parameter tuning. Finally, based on our findings, we answer the previously 
mentioned questions regarding CC. 

We next summarize related work and collective classification in general. We then 
explain why CC needs to be cautious and describe three types of cautious behavior, 
followed by specific CC algorithms that use such caution. Finally, we present our 
experimental evaluation and discuss our findings.  



2  Background on Collective Classification 

In some classification tasks, the unlabeled instances can be implicitly or explicitly 
related (e.g., hyperlinked web pages). Standard classifiers ignore such relations and 
would typically classify a web page by considering only the features derived from its 
words. Accuracy can be increased by adding features derived from related instances 
(e.g., the words from hyperlinked pages). Even greater increases can occur when the 
class label(s) of the related pages are used to derive relevant relational features [4]. 
However, some or all of their labels are initially unknown and must be estimated to 
bootstrap the classification process. For example, initial class label estimates can be 
obtained using non-relational features only. Next, these estimates could be used to 
compute relational feature values and reclassify the instances. This process iterates, 
and may increase accuracy.  

CC algorithms operate in this manner and thus simultaneously classify interrelated 
instances. They have two primary components: 
• Base Classifier: To classify an instance i (e.g., a webpage), the base classifier uses 

non-relational features (e.g., the words in page i) and relational features (e.g., the 
most common class label among other pages linked to i). Many classifiers have 
been used to do this, including those derived from Naïve Bayes [4], Markov 
networks [16], k-nearest neighbor [8], and logistic regression [6].  

• Collective inference: An inference algorithm (e.g., Gibbs sampling, LBP, ICA) is 
used to update the class labels (or conditional probabilities), which are then used to 
re-compute the relational feature values. This process repeats until some criteria or 
convergence test is met.  
Jensen et al. [4] examine how some data characteristics and feature choices affect 

CC, but do not compare CC variants. Sen et al. [15] compare a different set of CC 
algorithms than we do here, vary fewer data characteristics, and do not focus on the 
topic of caution. 

3  Types of Caution in CC and Why Caution is Important 

In each iteration, a CC algorithm usually predicts the most likely class label for each 
instance and uses it to determine the next iteration’s predictions. Although using label 
predictions encapsulates the influence of a linked instance and simplifies learning [4], 
it can be problematic. For example, iterating with incorrectly predicted labels can 
propagate and amplify errors [11,14,15].  

To address this problem, we recently proposed the use of caution in a CC 
algorithm [8]. We defined an algorithm to be cautious if it sought to “explicitly 
identify and preferentially exploit the more certain relational information,” and 
explained that GC is cautious because it selectively ignores the estimated class labels 
for which the classifier is less certain. Neville and Jensen [9] had introduced a simpler 
version of GC but compared it only with non-relational classifiers. We showed that 
GC could outperform ICA and Gibbs, but did not identify the conditions under which 
such gains hold. 



In this paper, we broaden our original notion of caution to identify three general 
types of cautious techniques for CC. All three address the key potential problem with 
CC (which is also its potential strength): its use of estimated labels during testing. 
Below we summarize all three types and identify a specific example of that type for 
further study.  
• Caution type #1: Favoring more certain information. CC algorithms may 

choose to favor predicted information that has higher confidence. This is the 
approach taken by Gradual Commit (GC), which chooses to use only the most 
certain labels at the beginning of it’s operation, then “gradually” incorporates less 
certain predictions in later iterations.  

• Caution type #2: Reasoning with uncertainty. At each iteration, instead of 
always selecting the most likely class label for each instance (like ICA), a CC 
algorithm can utilize the estimated label distribution of each instance. For example, 
techniques like LBP and relaxation labeling directly reason with the estimated 
label distributions. Alternatively, at each iteration Gibbs sampling re-samples the 
label of each instance based on its estimated distribution. For further study of this 
class of techniques, we select Gibbs sampling, in part because it has been 
frequently studied and its generalization behavior tends to be more consistent than 
relaxation labeling or LBP [15]. 

• Caution type #3: Training influenced by test procedure uncertainty. Training a 
CC algorithm can be influenced by recognizing the disparity between the training 
set (where labels are known and certain) and the test scenario (where labels may be 
estimated and hence incorrect). In particular, a relational feature may appear to be 
highly predictive of the class when examining the training set (e.g. to learn 
conditional probabilities or feature weights), yet actually decrease accuracy if its 
value is often incorrect during testing. In response, one approach is to ensure that 
appropriate training parameters are cross-validated using the actual testing 
conditions (e.g. with estimated test labels). We use CVPL to achieve this goal. 
Section 4 describes how these ideas can be applied. Later, our experimental results 

demonstrate when they lead to significant performance improvements.   

4  Applying Caution to Collective Classification 

The previous section described three general types of cautious techniques for CC. 
Each addresses the fundamental problem of potential estimation errors in labels 
during collective inference. Some of the techniques can be combined, and at least one 
is used or is applicable to every CC algorithm known to us.  

In this section, we provide examples of how each of the three types of caution can 
be applied by describing specific CC algorithms that exploit them. Table 1 
summarizes the four CC algorithms that we will consider (along with one non-
collective baseline) and the types of caution they can exploit. Below, we first describe 
the non-cautious ICA algorithm, then explain how GC adds Type 1 caution to it. 
Second, we summarize Gibbs sampling and explain how it exhibits Type 2 caution. 
Third, we describe the wvRN algorithm, which also uses Type 2 caution. Finally, we 



ICA (Iterative Classification Alg.)

GC (Gradual Commit)

Caution Type UsedFeatures Used
Non-relat.

Gibbs (Gibbs Sampling)

wvRN (weighted vote Relat. Neighbor)

CO (content only)
321Relat.

ICA (Iterative Classification Alg.)

GC (Gradual Commit)

Caution Type UsedFeatures Used
Non-relat.

Gibbs (Gibbs Sampling)

wvRN (weighted vote Relat. Neighbor)

CO (content only)
321Relat.

Table 1. The five classification algorithms considered in this paper. CO is a baseline 
(non-collective) algorithm that only uses non-relational features. The other four 
algorithms are CC algorithms. For the Caution Types (see Section 3), a black check 
indicates that type is used, while a grey check indicates that the algorithm could
profitably use that type; our experiments consider both variants.

describe CVPL, our parameter learning technique for CC that can add caution to any 
CC algorithm (excluding the few that do not learn from a training set). 

ICA: Figure 1 displays pseudocode that can represent either ICA or GC; DoGC and 
DoCVPL are boolean parameters that control its operation. In particular, when DoGC 
is false, then Figure 1 represents ICA, which operates as follows. In step 1, it 
computes the relational features’ values for the fully labeled training set. In Step 2, a 
base classifier is learned using the training data. If DoCVPL is true, then this step 
utilizes Type 3 caution via CVPL, which is described more fully later. Step 3 predicts 
the test instances’ labels using only non-relational features. In steps 6-7, ICA 
estimates the relational features’ values based on its predictions and reclassifies the 
test set using all features. These steps are then repeated for n iterations. Note that step 
6 uses all available labels for feature computation and step 7 picks the most likely 
label for each instance based on the new predictions, so this process utilizes neither 
Type 1 nor Type 2 caution. Step 8 returns the final set of estimated class labels.   

GC: In step 6, ICA assumes that the assigned instance labels are all equally likely to 
be correct. When DoGC is true, the algorithm becomes GC, a more cautious 
algorithm because it only considers label assignments for which it has more 
confidence (Type 1 caution). Specifically, step 5 commits only the best K of the 
current label assignments (we use posterior probability as a confidence measure) and 
sets all other labels to unknown. Step 6 computes the relational features using only the 
committed labels, and step 7 classifies using this information. Step 5 gradually 
increases the number of test set labels that are committed per iteration (e.g., 0%, 10%, 
20%,…, up to 100% when n=10). Instances committed in an iteration j are not 
necessarily committed again in iteration j+1. 

GC favors more confident information (Type 1 caution) by ignoring instances 
whose labels are estimated with lower confidence. Step 5 executes this preference, but 
it affects the algorithm in several ways. First, leaving some label assignments as 
unknown in step 5 causes the feature value computation in step 6 to ignore those 
labels. Since this computation depends only on the most reliable label assignments, 
subsequent assignments should also be more reliable. Also, a secondary effect is that 
the computed value of some features will be unknown (e.g., when an instance links 



Figure 1. Pseudocode for ICA (when DoGC is false) and GC (when 
DoGC is true). We use n = 10.

return Te.Labels // return most likely class per test instance8
// ClassifyTe.Labels←classify(Te,Tr,M,NR,R,C)7

Te.R.values←setRelationalFeatures(Te∪Tr,R)6

if (DoGC) // Keep only top K labels (none when j=0)
K = (j / n) * |Te|    
Te.Labels←commit_best_k (Te.Labels, K)

5
// Iteratefor j = 0 to n4
// BootstrapTe.Labels←classify(Te,Tr,M,NR,∅,C)3
// TrainM←induce_model(Tr,NR,R,C,DoCVPL)2

Tr.R.values←setRelationalFeatures(Tr,R)1

ICC(Tr,Te,NR,R,n,C,DoGC,DoCVPL) =
// Tr=Training data, Te=Test data,  NR=non-relational features,  
// R=rel. features, n=#iters, C=classifier, DoGC=do Gradual Commit,
// DoCVPL=do Cross-Validation Parameter Learning

Figure 1. Pseudocode for ICA (when DoGC is false) and GC (when 
DoGC is true). We use n = 10.

return Te.Labels // return most likely class per test instance8
// ClassifyTe.Labels←classify(Te,Tr,M,NR,R,C)7

Te.R.values←setRelationalFeatures(Te∪Tr,R)6

if (DoGC) // Keep only top K labels (none when j=0)
K = (j / n) * |Te|    
Te.Labels←commit_best_k (Te.Labels, K)

5
// Iteratefor j = 0 to n4
// BootstrapTe.Labels←classify(Te,Tr,M,NR,∅,C)3
// TrainM←induce_model(Tr,NR,R,C,DoCVPL)2

Tr.R.values←setRelationalFeatures(Tr,R)1

ICC(Tr,Te,NR,R,n,C,DoGC,DoCVPL) =
// Tr=Training data, Te=Test data,  NR=non-relational features,  
// R=rel. features, n=#iters, C=classifier, DoGC=do Gradual Commit,
// DoCVPL=do Cross-Validation Parameter Learning

only to instances labeled unknown). Second, a realistic CC scenario’s test set may 
have links to training instances (e.g., new web pages may link to pages with known 
labels); these are the “most certain” labels that link to the test set and thus may aid 
classification. GC exploits only these labels when j=0. In this case, step 5 sets the 
value of all labels in the test set to unknown, but some relational feature values in step 
6 can be still be computed based on known labels in the training set. Thus, the known 
labels influence the first classification in Step 7, before any estimated labels are used, 
and in subsequent iterations. 

In prior work [8], we separately evaluated GC’s performance benefit from these 
two effects (favoring more confident labels vs. favoring known labels), and found 
both helpful. For this paper, we likewise found benefits from both, but for simplicity 
only report results with them together, since both are Type 1 cautious behaviors. 

Gibbs Sampling: Figure 2 summarizes how Gibbs sampling can be applied to 
collective inference. Steps 1-3 are identical to those in Figure 1, except that the 
classifier must output distributions with the likelihood of each class. In step 5, within 
the loop, the algorithm probabilistically samples the current class label distributions 
and assigns a label to each instance based on its distribution. In step 6, it records these 
labels, and in step 7 it computes the relational feature values given the current class 
labels. In step 8, it re-computes the posterior class label probabilities given these 
relational features. The process then repeats. When the process terminates, the 
statistics recorded in step 6 approximate the joint distribution of class labels, which is 
used in step 9 to identify each instance’s most likely class label.  These labels are 
returned in step 10.  

Like GC, Gibbs is cautious in its use of estimated labels, but in a different way. In 
particular, GC exercises caution in step 5 by ignoring (at least for some iterations) 
labels that have lower confidence (Type 1 caution). In contrast, Gibbs exercises 
caution by sampling, in step 5, values from each instance’s predicted label 
distribution (Type 2 caution) – causing instances with lower prediction confidence to 
reflect that uncertainty via higher fluctuation in their assigned labels. We expect 
Gibbs to perform better, since it makes use of more information, but this requires 



Te.Labels←pickMostLikelyClass(Te.Stats)9

Figure 2. Psuedocode for CC using Gibbs sampling. We use n = 1000. 
return Te.Labels // return most likely class for each instance10

// ClassifyTe.ClassProbs←classify(Te,Tr,M,NR,R,C)8
Te.R.values←setRelFeatures(Te∪Tr,R)7

// Take statsTe.Stats←updateStats(Te.Stats,Te.Labels)6
// SampleTe.Labels ←sampleDist(Te.ClassProbs)5
// Iteratefor j =1 to n4
// BootstrapTe.ClassProbs←classify(Te,Tr,M,NR,∅,C)3
// TrainM←induce_model(Tr,NR,R,C,DoCVPL)2

Tr.R.values←setRelFeatures(Tr,R)1

GibbsCC(Tr,Te,NR,R,n,C,DoCVPL) =
// Tr=Training data, Te=Test data,  NR=non-relational features,  
// R=rel. features, n=#iterations, C=classifier,
// DoCVPL = do Cross-Validation Parameter Learning

Te.Labels←pickMostLikelyClass(Te.Stats)9

Figure 2. Psuedocode for CC using Gibbs sampling. We use n = 1000. 
return Te.Labels // return most likely class for each instance10

// ClassifyTe.ClassProbs←classify(Te,Tr,M,NR,R,C)8
Te.R.values←setRelFeatures(Te∪Tr,R)7

// Take statsTe.Stats←updateStats(Te.Stats,Te.Labels)6
// SampleTe.Labels ←sampleDist(Te.ClassProbs)5
// Iteratefor j =1 to n4
// BootstrapTe.ClassProbs←classify(Te,Tr,M,NR,∅,C)3
// TrainM←induce_model(Tr,NR,R,C,DoCVPL)2

Tr.R.values←setRelFeatures(Tr,R)1

GibbsCC(Tr,Te,NR,R,n,C,DoCVPL) =
// Tr=Training data, Te=Test data,  NR=non-relational features,  
// R=rel. features, n=#iterations, C=classifier,
// DoCVPL = do Cross-Validation Parameter Learning

careful confirmation.  Furthermore, the sophistication of Gibbs comes at a cost – ICA 
and GC generally converge in about 10 iterations, whereas Gibbs typically requires 
thousands of iterations to yield good performance (for all three algorithms the cost 
per iteration is similar). Thus, GC’s simplicity and speed may make it a promising 
alternative to Gibbs.  

Weighted-Vote Relational Neighbor Classifier (wvRN). wvRN is a relational-only 
CC algorithm that Macskassy and Provost [7] argued should be considered as a 
baseline for all CC evaluations. At each iteration, each instance i updates its estimated 
class distribution by averaging the current distributions of each of its linked 
neighbors. wvRN ignores all non-relational features. Thus, wvRN is useful only if the 
test set links to some instances with known labels to “seed” the inference process. 
Macskassy and Provost showed that this simple algorithm could work well if auto-
correlation of instance labels was high and enough known labels were available. Since 
wvRN computes directly with the estimated label distributions, it exercises Type 2 
caution. However, unlike the other CC algorithms, it does not learn from a training 
set, and thus parameter learning with CVPL (Type 3 caution) does not directly apply.  

Cross-Validation Parameter Learning (CVPL). CC algorithms typically train a 
base classifier on a fully-labeled training set, then use that base classifier with some 
collective inference algorithm to classify the test set. Unfortunately, the classifier 
learned from the (fully labeled) training set may tend to produced poor estimates of 
important parameters related to the relational features (e.g., feature weights, 
conditional probabilities), since these features depend upon labels that may be 
estimated incorrectly during collective inference. We found that, in some cases, this 
can have a large negative impact on performance.  

One way to address this problem is to perform automated parameter tuning based 
on cross-validation (e.g., [5]). However, unlike the typical situation where the training 
and test sets have the same known features, the CC situation differs, since relational 
features must be estimated for testing. CVPL performs automated tuning by 
repeatedly evaluating a learned base classifier, with the collective inference 



algorithm, on a holdout set (a subset of the training set) using different values of a 
parameter that controls the impact of relational features. It selects the value that yields 
the best performance and applies it during testing. In essence, we use CVPL to set a 
classifier parameter that compensates for the bias that would otherwise be incurred 
from training on a fully-labeled set while testing using estimated labels.  

We expect CVPL’s utility to vary based upon the number of “known labels” that 
are available to the test set. If the test set has many such known labels, then there is 
less discrepancy between the training and test environments, and hence less need to 
apply CVPL. Conversely, if few labels are known, there is a large discrepancy and we 
expect CVPL to have a large effect. Also, because almost all CC algorithms use a 
base classifier that learns parameters based on relational features, CVPL is widely 
applicable (e.g., it can be applied to ICA, GC, and Gibbs, as shown in Table 1). 

CVPL has not been previously used for CC. A possible exception is Lu and Getoor 
[6], who appear to have used a form of CVPL to tune a relational parameter, but they 
did not discuss its need, the specific procedure, or the performance impact. Here, we 
explain its importance for CC, and empirically confirm that it can significantly 
increase accuracy.  

5 Evaluation Methodology 

Our goal is to investigate the performance and the utility of the three types of caution 
over a wide range of data characteristics (e.g., link density, auto-correlation).  

Data. We use a synthetic data generator with two components: a Graph Generator and 
an Attribute Generator. First, the Graph Generator [15] has four inputs: NI (the 
number of nodes/instances), NC (the number of classes), ld (the link density), and dh 
(the degree of homophily). For each link, dh specifies the probability that the linked 
nodes have the same class label; higher values yield higher auto-correlation. The final 
number of links is approximately NI/(1-ld), and the final link degrees follow a power 
law distribution, which is common in real networks [1]. To make this a practical 
study, we chose default parameter values that mimic characteristics of two frequently 
studied CC datasets, Cora and Citeseer [8,11,15]. In particular, NC=5 classes and 
Table 2 shows additional default values. We chose NI=250 instances, a smaller value 
than with Cora/Citeseer, to reduce CC execution time, but larger values did not 
change our trends. We use synthetic data instead of the actual Cora/Citeseer data to 
allow us to directly vary all of the interesting data characteristics. 

Second, the Attribute Generator1 uses a method motivated by our observations of 
common CC datasets. We found that, unlike synthetic models used in prior studies, 
different attributes vary in their utility for class prediction. To simulate this we 
construct 10 (NA) binary attributes Aj (j∈[0,NA-1]) and generate each attribute Aj’s 
values so that they are most predictive of a particular class Ck, where k=j mod NC. For 
node i with class Ci, we set the probability that its jth attribute Xij has value 1 as 
follows: 

                                                           
1 For simplicity, we henceforth refer to non-relational features as attributes. 



…decreases. (H4)0.0, 0.2lpLabeled proportion
…decreases. (H3)0.2ldLink density
… decreases. (H2)0.6apAttribute predictiveness
…increases. (H1)0.8dhDegree of homophily

Hypothesis: Relative gain of caution 
will increase as parameter value…

Default 
value

AbbrevData parameter

…decreases. (H4)0.0, 0.2lpLabeled proportion
…decreases. (H3)0.2ldLink density
… decreases. (H2)0.6apAttribute predictiveness
…increases. (H1)0.8dhDegree of homophily

Hypothesis: Relative gain of caution 
will increase as parameter value…

Default 
value

AbbrevData parameter

Table 2. The four data generation parameters that we vary to investigate our hypotheses. 
Default values are based on measurements from the Cora and Citeseer datasets [8,15].

P(Xij=1|Ci=Ck) = 0.15+(ap−0.15)*j/(NA−1)  if k = j mod NC 
   = 0.1               if k = (j−1) mod NC 
   = 0.05      if k = (j+1) mod NC 
   = 0.02      Otherwise 
The first line indicates that, when Ck is the class associated with Aj (i.e., k=j mod 

NC), P(Xij=1|Ci=Ck) ranges from 0.15 for j=0 to ap (attribute predictiveness) for j=9. 
However, Xij may also be 1 when Ck is some other class; the next  three  lines  encode  
this  class ambiguity.  This is based on our observations of Cora and Citeseer and is 
similar to the binomial distribution of Sen et al. [15].   

We focus on two evaluation conditions: the out-of-sample task, where test set 
nodes do not link to nodes with known labels, and the in-sample task, where they do 
link to known labels (e.g., in the training set). Both types of tasks may emerge in real-
world situations [10]. We simulate the latter by using a parameter for test set 
generation called lp (labeled proportion – the proportion of test instances with known 
labels), where accuracy is evaluated only over the unknown labels. We use a default 
lp value of 0.2, the average of the values found for Cora and Citeseer. For the out-of-
sample task, we set lp=0.0 (a second default value). 

Hypotheses. We evaluate the following hypotheses, which are summarized in Table 
2. In general, we expect cautious behaviors to be more important as the uncertainty in 
the relational features increases. Thus, each hypothesis varies one data generation 
parameter that impacts such uncertainty, and compares the resultant performance of 
GC and Gibbs (Types 1 or 2 caution) with ICA (non-cautious). Section 6 also briefly 
summarizes results for CVPL (Type 3 caution). 
H1: The relative gain of GC and Gibbs vs. ICA increases with the degree of 

homophily (dh). Larger homophily means higher label auto-correlation among 
related instances, in which case the relations are more predictive. This magnifies 
the impact that an error in a predicted label can have on neighboring instances. 
Therefore, we expect cautious algorithms to improve classification by a greater 
margin in such cases.  

H2: The relative gain of GC and Gibbs vs. ICA increases with decreasing attribute 
predictiveness (ap). Decreased ap implies a greater potential of errors/uncertainty 
in the predicted labels. The effect of cautiously using uncertain labels should be 
greater in such cases.   

H3: The relative gain of GC and Gibbs vs. ICA increases with decreasing link density 
(ld).  When the number of links is high, a single mispredicted label has relatively 
little impact on its neighbors. As the number of links decreases, however, a single 



misprediction can cause larger relational feature uncertainty, increasing the need 
for caution.  

H4: The relative gain of GC and Gibbs vs. ICA increases with decreasing labeled 
proportion (lp). When lp is high, only a small fraction of each instance’s 
neighbors have estimated labels (most are known with certainty), and thus it is 
less important to use estimated labels cautiously. However, as lp decreases the 
uncertainty in estimated labels increases and thus we expect the impact of caution 
to increase. 

CC Algorithms. We evaluate the 5 algorithms listed in Table 1. CO is a non-CC 
baseline, while wvRN is a collective but relational-only baseline. ICA, GC, and 
Gibbs are collective algorithms that use both relational features and attributes, with 
GC and Gibbs being more cautious than ICA. For Gibbs, we use 1000 iterations 
with a burn-in of 200.  

Classifiers. To account for possible variations in overall CC performance trends due 
to the effect of the underlying classifier, we tested two base classifiers with each CC 
algorithm except wvRN (which does not use a base classifier). The first classifier is 
Naïve Bayes (NB). With the relational features, NB employed a Dirichlet prior with a 
single “hyperparameter” α [3].  The manual setting used α=1.0, which reduces to the 
common Laplace smoothing. CVPL searched for α in [1,5000] (larger values yield 
less extreme probabilities). The second classifier is k-Nearest Neighbor (kNN); we 
empirically set k=5. When computing similarity, non-relational features (attributes) 
had a weight of 1, and relational features had weight WR. For a manual setting, 
WR=1.0. CVPL searched for WR in [0.01,5].  The specific similarity function, for 
instances i and j, was: 
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where wk is the weight of feature k, and fk(i) is the value of feature k for instance i. 
Weighted similarity was used for voting. 

Instance Representation. Each instance is represented by ten binary attributes and 
some relational features. Because representation choices can affect how well a CC 
algorithm handles the uncertainty of estimated labels, we considered two different 
types of relational features: proportion and multinomial. For NB, we experimented 
with both and found that multinomial consistently performed best across the different 
algorithms. For kNN, only the proportion features are directly applicable, so we used 
that. Below, we describe each feature in detail: 
• Proportion (used by kNN): This type represents the proportion of neighbors that 

belong to a particular class. There is one such feature fc per class label c, yielding 5 
total. The value of a feature fc(i) = Neighborsc(i) / Neighbors(i), where 
Neighbors(i) is the number of instances hyperlinked to instance i whose values are 
not unknown, and Neighborsc(i) is the number whose current label is c. If 
Neighbors(i) is zero, then fc(i) is set to unknown. 

• Multinomial (used by NB): Proportion features, like other features that have been 
used for CC such as count and exists, are features that aggregate the labels of an 



instance’s neighborhood to produce a single value (for proportion, a value between 
zero and one). In contrast, a multinomial feature uses a multinomial set to fully 
represent the estimated labels of all of an instance’s neighbors. During inference, 
each label in the set (excluding unknown labels) is then separately used to update 
the conditional probability that an instance has true label c. This is the 
“independent value” approach of Neville, Jensen, and Gallagher [12], which they 
also used in their later work (e.g., [11]). 

Test Procedure. For each control condition (i.e., data generated with a combination 
of dh, ap, ld, and lp values, see Table 2) we ran 25 random trials. For each trial, we 
generated training, holdout, and test data sets of 250 nodes (i.e., instances) each. The 
holdout set, when not used for parameter learning, was merged with the training set.  
We measured classification accuracy on the test set. 
Statistical Analysis. To compare algorithms for a single control condition, we used a 
one-tailed paired t-test accepted at the 95% confidence level. For hypotheses H1-H4, 
we compared two algorithms (e.g., GC vs. ICA) for each independent variable (X) 
(e.g., ld) as follows: For each trial, we computed the difference in the algorithms’ 
classification accuracies (e.g., 225 such differences for 25 trials and 9 values of ld). 
We performed linear regression (Y=a+bX), where the accuracy difference is the 
dependent variable (Y) and X is the independent variable (e.g., ld). The estimated 
value of slope b, when non-zero, indicates an increasing (+) or decreasing (-) trend. 
Regression produces a p value associated with the slope that indicates the significance 
level for hypothesis testing; we accept when p<0.05. Below, we only report results for 
lp=0.2 (the in-sample task). However, regression analyses for results with lp=0 (the 
out-of-sample task) supported the same conclusions. Likewise, we only mention the 
slope b for GC vs. ICA, but Gibbs vs. ICA yielded the same conclusions unless 
otherwise noted. 

6 Results 

Figure 3 display plots for average classification accuracy. These results all include 
CVPL except for where it does not apply (CO and wvRN); later we evaluate its effects 
separately. We consider each of the four hypotheses (see Table 2) in turn, then 
consider wvRN and CVPL. Percentages given are the raw difference between 
accuracies (e.g., we report a 6% gain due to improving the accuracy from 60% to 
66%, rather a percentage change of 10%). 
Result 1: GC and Gibbs outperform ICA by increasing amounts as the degree of 
homophily (dh) increases.  The regression analyses all found positive values for the 
slope b (e.g., 0.10 for GC-NB and 0.05 for GC-kNN, all p < 0.001), so we accept H1.  

Figures 3a and 3b show the details. When homophily is low, CC offers little gain 
and all algorithms except wvRN perform comparably. As the potential advantages of 
CC increase with higher homophily, the relative gain of GC and Gibbs increases 
(e.g., for NB from 4% at dh=0.6 to 9-10% at dh=0.9). These gains are significant for 
dh≥0.5 for NB (excluding dh=0.6 for Gibbs) and for dh≥0.7 for kNN.  
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Result 2: GC and Gibbs outperform ICA by increasing amounts as attribute 
predictiveness (ap)  decreases. The regression analyses of ap vs. the difference 
between ICA and either Gibbs or GC found a negative slope b (e.g., -0.34 for GC-
NB and -0.18 for GC-kNN, all p <0.001), so we accept H2.  

Figures 3c and 3d show details. When ap is 0.6 (the default), GC and Gibbs 
outperform ICA by 6-7% for NB and 2-3% for kNN. However, as ap decreases to 
0.2, label uncertainty increases (as evidenced by the drop for CO), causing the  
relative gain to increase to 23-25% for NB and 9%-12% for kNN. These gains are 
significant for all values of ap shown, except for Gibbs-kNN at ap=0.9.  
Result 3 GC and Gibbs outperform ICA when link density (ld) is low, but have 
mixed results when ld is high. The regression analyses found a significant negative 
slope for most cases (e.g., -0.14 for GC-NB and -0.12 for GC-kNN), but not for 
Gibbs-kNN. Thus, we do not accept H3. 

GC and Gibbs significantly outperform ICA when ld is low to moderate (Figures 
3e and 3f)). However, the performance of ICA consistently improves with ld; 
enabling it to eventually significantly outperform GC and Gibbs for NB, and GC for 
kNN. Intuitively, when the link graph is dense, the relational features are relatively 
unaffected by a few incorrect labels. Thus, if accuracy is high, ICA outperforms GC 
by simply using all available labels, since almost all are correct. Other results confirm 
that when attribute predictiveness is low, this effect does not hold and GC outperforms 
ICA even when ld is high. Since Gibbs uses all available information, at high ld it 
performs on par with ICA when using kNN – but not with NB. Instead, when ld is 
very high the NB classifier tends to produce probability estimates that are very close 
to zero or one, in which case Gibbs sampling is known to perform poorly. 
Result 4: GC and Gibbs outperform ICA more as the labeled proportion (lp) 
decreases.. All regression analyses found negative valued slopes (p < 0.002). Thus, 
we accept H4.  

As expected, Figures 3g and 3h show that the greater uncertainty caused by small 
lp yields larger gains for the more cautious algorithms. In addition, for GC and Gibbs 
(but not for ICA), CC accuracy improves by only 2-3% from lp=0.2 to lp=0.8, 
suggesting that the more cautious CC algorithms are effective in replicating the gain 
possible if almost all neighbors were known, even when few are actually known.  
wvRN: wvRN’s performance depends on homophily, link density, and lp. In our study, 
wvRN was competitive with the other CC algorithms only when homophily and/or lp 
was high, or when the attributes were not very predictive. For tasks in which a high lp 
or weak attributes are presumed, wvRN’s accuracy should be more competitive. On 
the other hand, wvRN requires that some labels are known in the test set, so it is not 
applicable when lp = 0 (the out-of-sample task).  
CVPL: The results described above all used CVPL. We found that when some test 
labels were known (lp > 0), CVPL had only a small impact. When all labels were 
unknown (lp = 0), however, the use of CVPL was sometimes important. Using CVPL 
almost always increased accuracy by at least a few percentage points. Moreover, for 
each algorithm there was some type of data for which not adjusting for CC training 
biases (i.e., not using CVPL) led to very poor performance. Using CVPL corrected for 



these problems. For instance, CVPL improved performance dramatically for the NB 
classifier (e.g., by 15-33% with Gibbs) when link density was high and for the kNN 
classifier (e.g., by 6-9% with ICA) when homophily was moderate. Thus, applying 
CVPL in all of our other experiments seemed advisable for maximizing performance 
and ensuring the fairest comparisons. 

7  Discussion and Explanation of Prior Results 

Our results enable us to explain the unanswered questions from Section 1: 
• Why did Sen et al. [15] find no consistent difference between Gibbs and ICA? In 

contrast, Gibbs had worked well in other work, and in this paper we found that 
Gibbs (and GC) often did significantly increase accuracy vs. ICA. However, our 
results and careful study of Sen et al.’s methodology explains the discrepancy: to 
generate the test set, they used a particular “snowball” sampling method that we 
found produced an effective labeled proportion of at least 0.5 – a region where we 
showed that the use of caution has little impact. Also, they did not vary attribute 
predictiveness, which we show is a significant factor in the relative performance of 
more cautious CC algorithms.  

• Why did McDowell et al. [8] find that GC outperformed Gibbs, while the results of 
this paper generally found Gibbs performing at least as well as GC? To 
investigate, we re-ran the earlier experiments (which used three real-world 
datasets), but with two variations informed by our now refined understanding of 
caution. First, we used CVPL with both the NB and kNN classifiers. Second, we 
changed the NB classifier to use multinomial features (instead of proportion). The 
use of multinomial features is in some sense more cautious, since it retains all label 
info rather than aggregating, and our results showed it yielded better accuracy for 
NB (it didn’t apply for kNN). With these enhancements, Gibbs’s relative 
performance improved, so that GC and Gibbs both significantly outperformed ICA, 
but Gibbs and GC were not significantly different from each other. Thus, more 
careful learning and representation choices yields results for the three previously-
used datasets that are highly consistent with those reported here for synthetic data. 

• When will cautious algorithms outperform more aggressive variants? We found 
that using more cautious CC frequently and sometimes dramatically increased 
accuracy. In general, cautious CC performs comparatively better whenever there is 
more uncertainty in the estimated relational feature values (e.g., as occurs when the 
attribute predictiveness is low) or when the effect of any such uncertainty is 
magnified (e.g., when homophily is high). In some cases, such as when the test set 
links to many known labels (high lp), using a more cautious CC algorithm may be 
unnecessary. However, in many cases (and with most previous work) lp is small or 
zero, and thus caution may be important. To increase the robustness of our 
conclusions, we performed additional tests using an alternative graph generator 
[11], an alternative attribute generator (a Naïve Bayes model learned directly from 
the raw Cora data), and different relational feature choices (neighbor counts 
thresholded to yield a binary value). The results were consistent with those 
reported here.  



This paper also examined several types of cautious behavior for CC. In particular, 
GC and Gibbs used different types of caution: favoring confident information (Type 
1) vs. re-sampling based on label distributions (Type 2). Because Gibbs more fully 
uses the available information, we expected Gibbs to perform better than GC in some 
situations. Instead, we found that, while Gibbs sometimes had a small gain over GC, 
they performed remarkably similarly given their large algorithmic differences. This is 
particularly interesting because, while they require similar execution time per 
iteration, deterministic GC typically needs several orders of magnitude fewer 
iterations to achieve good results. Thus, GC’s simplicity and speed may make it a 
promising alternative to Gibbs. 

Regarding Type 3 caution, we found that CVPL generally increased accuracy, 
sometimes substantially. It is well-known that parameter tuning is important for 
learning non-relational classifiers. We show for the first time that it can be especially 
critical for CC due to CC’s reliance on uncertain labels during testing. For example, 
further results showed that when link density was high, Gibbs-NB with a naïve α 
(prior hyperparameter) of 1.0 attained 99% of the accuracy attainable with any α – if 
most test labels were known (e.g., lp=0.8). However, when lp=0 this strategy’s 
accuracy was just 61% of optimal. Using CVPL instead increased accuracy, as we 
also found with ICA and GC, and expect to find with other classifiers and CC 
algorithms. 

8  Conclusion 

We identified and investigated three types of “cautious” algorithmic behaviors that 
address the problem of using estimated test set labels with collective classification 
(CC). Each behavior had been seen before in some context, but none had been 
subjected to analysis that explained its behavior in the context of cautious algorithms 
in general and that identified the data characteristics for which it outperformed more 
aggressive variants like ICA. In particular, we showed that cautious techniques 
produce accuracy gains that are especially large when the data characteristics are such 
that there is greater uncertainty in the values of the relational features. These results 
enabled us to answer several important unanswered questions from previous work. 

We showed that these cautious techniques work well with two base classifiers and 
expect that they will provide comparable benefits with others, although this needs to 
be demonstrated empirically. Also, our investigation should be extended to compare 
with other CC techniques that exercise caution including LBP and Markov Logic 
Networks [13]. Finally, we plan to investigate techniques that will improve cautious 
CC’s performance on data with high link density or other extreme conditions. 
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